The subject matter disclosed herein relates to reciprocating engines and, more specifically, to detecting changes (e.g., increases or rises) in compression ratio and peak firing pressure using a knock sensor.
Combustion engines typically combust a carbonaceous fuel, such as natural gas, gasoline, diesel, and the like, and use the corresponding expansion of high temperature and pressure gases to apply a force to certain components of the engine, e.g., piston disposed in a cylinder, to move the components over a distance. Each cylinder may include one or more valves that open and close correlative with combustion of the carbonaceous fuel. For example, an intake valve may direct an oxidizer such as air into the cylinder, which is then mixed with fuel and combusted. Combustion fluids, e.g., hot gases, may then be directed to exit the cylinder via an exhaust valve. Accordingly, the carbonaceous fuel is transformed into mechanical motion, useful in driving a load. For example, the load may be a generator that produces electric power.
In order to maximize performance, the fuel-air mixture is ignited when the piston is at a particular location in the cylinder. Unfortunately, ignition or timing of the ignition of the fuel-air mixture may become inaccurate over time. Inaccurate ignition may result in a reduction in effective expansion ratio and peak firing pressure, thereby reducing an efficiency of the engine. Alternatively, inaccurate timing of the ignition event may result in an increase in peak firing pressure resulting in other undesired conditions, such as detonation (e.g., pre-ignition, knocking, or pinging) of the fuel-air mixture in the combustion chamber, which also reduces an efficiency of the engine. Accordingly, detection of ignition accuracy in reciprocating engines is needed.
In a first embodiment, a reciprocating engine system includes a cylinder, a piston disposed within the cylinder, a knock sensor disposed proximate to the cylinder and configured to detect vibrations of the cylinder, piston, or both, a crankshaft sensor configured to sense a crank angle of a crankshaft, and a controller communicatively coupled to the knock sensor and the crankshaft sensor. The controller is configured to receive a raw knock signal from the knock sensor and a crank angle signal from the crankshaft sensor corresponding to vibrations of the cylinder, piston, or both relative to the crank angle of the crankshaft, convert the raw knock signal into a digital value signal, and determine at least one of a crank angle for a start of combustion, a peak firing pressure, or a percentage of fuel mass fraction burn based on the digital value signal and the crank angle.
In a second embodiment, a method includes receiving a raw knock signal from a knock sensor coupled to a reciprocating engine and a crank angle signal from a crankshaft sensor coupled to a crankshaft of the reciprocating engine, converting the raw knock signal into a digital value signal, and determining at least one of a start of combustion crank angle, a peak firing pressure, or a percentage of fuel mass fraction burn based on the digital value signal and the crank angle signal.
In a third embodiment, a system includes computer program product being embodied in a non-transitory computer readable storage medium having computer-executable instructions for receiving a raw knock signal from a knock sensor coupled to a reciprocating engine and a crank angle signal from a crankshaft sensor coupled to a crankshaft of the reciprocating engine, converting the raw knock signal into a digital value signal, and determining at least one of a start of combustion crank angle, a peak firing pressure, or a percentage of fuel mass fraction burn based on the digital value signal and the crank angle signal.
These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
One or more specific embodiments of the present invention will be described below. In an effort to provide a concise description of these embodiments, all features of an actual implementation may not be described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
When introducing elements of various embodiments of the present invention, the articles “a,” “an,” “the,” and “said” are intended to mean that there are one or more of the elements. The terms “comprising,” “including,” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
The present disclosure is directed to reciprocating engines and, more specifically, to detection of firing conditions with cylinders of the reciprocating engines. For example, the reciprocating engine (e.g., an internal combustion engine such as a diesel engine, gasoline engine, compressed air engine), which will be described in detail below with reference to the figures, includes a cylinder and a piston disposed within the cylinder. The reciprocating engine includes an ignition feature that ignites a fuel-oxidant (e.g., fuel-air) mixture within a combustion chamber proximate to the piston (e.g., within the cylinder and above the piston). The hot combustion gases generated from ignition of the fuel-air mixture drive the piston within the cylinder. In particular, the hot combustion gases expand and exert a pressure against the piston that linearly moves the position of the piston from a top portion to a bottom portion of the cylinder during an expansion stroke. The piston converts the pressure exerted by the hot combustion gases (and the piston's linear motion) into a rotating motion (e.g., via a connecting rod coupled to, and extending between, the piston and a crankshaft) that drives one or more loads, e.g., an electrical generator.
Generally, the reciprocating engine includes an ignition feature or mechanism (e.g., a spark plug) that ignites the fuel-air mixture within the combustion chamber as the piston moves upwardly toward the top portion of the cylinder. For example, the spark plug may ignite the fuel-air mixture when the crank angle of the crankshaft is approximately 5-35 degrees from top dead center (TDC), where TDC is a highest position of the piston within the cylinder. Timing of the ignition is important in order to maximize performance of the reciprocating engine. For example, poor timing of the ignition may cause pre-ignition (e.g., engine knocking, pinging), which describes a condition in which pockets of the fuel-air mixture combust outside an envelope of a primary combustion front. Pre-ignition may significantly reduce recovery of work (e.g., by the piston) from the expanding combustion gases and may lead to undesired maintenance events for the engine.
Thus, in accordance with the present disclosure, a knock sensor is included in, or proximate to, the cylinder of the reciprocating engine and may be communicatively coupled to an engine control unit (ECU) or controller. The knock sensor detects, e.g., vibrations of the cylinder, and the ECU or controller converts a vibrational (e.g., sound) profile of the cylinder, provided by the knock sensor, into useful parameters for determining combustion conditions in the cylinder. For example, the knock sensor detects vibrations in, or proximate to, the cylinder, and communicates a signal indicative of the vibrational profile to the ECU or controller. The controller converts the signal indicative of the vibrational profile to a parameter indicative of peak firing pressure, which describes a maximum pressure exerted by the expanding combustion gases on the piston during each expansion stroke. The parameter indicative of peak firing pressure may be a position of the piston within the cylinder (e.g., measured in crank angles at, for example, the time of ignition), a speed (e.g., maximum speed) of the piston within the cylinder, an acceleration (e.g., maximum acceleration) of the piston within the cylinder, or a pressure (e.g., maximum pressure or peak firing pressure) within the cylinder. In other words, operating or actual peak firing pressure may be determined from any one of these parameters (e.g., position, speed, acceleration, or pressure).
Generally, a baseline peak firing pressure is determined for the reciprocating engine before installation and normal operational use. The baseline peak firing pressure may be determined, e.g., in a factory before the reciprocating engine is installed for normal use. The reciprocating engine may be operated to, ideally, achieve baseline peak firing pressure during each expansion stroke. For example, an increase in operating peak firing pressure above the baseline peak firing pressure may result in engine knocking (e.g., local pockets of combustion outside the primary combustion front) that reduces an efficiency of the reciprocating engine, as the piston may be unable to efficiently recover work from the expanding combustion gases.
Accordingly, as previously described, the knock sensor transmits a signal indicative of vibration of the cylinder (or piston within the cylinder) to the controller, and the controller converts the signal into a function from which a crank angle for operating parameters such as a start of combustion, a peak firing pressure, or a percentage of fuel mass fraction burn may be determined. For example, the controller may first receive the raw signal from the knock sensor and perform filtering techniques (e.g., parametric (e.g., statistical) estimation or non-parametric estimation (e.g., neural networks and/or kernel estimation), bandpass filtering, wavelet denoising, spectral subtraction, magnitude squared coherence, cross spectral coherence, principal component analysis, independent component analysis, auto regressive and/or moving average filtering, empirical mode decomposition, total variance denoising) to achieve a filtered data signal. From the filtered data signal, the controller may determine an envelope, an energy signature, or perform other operations on the filtered data signal to develop a function that may be evaluated to determine the crank angle of the final operating parameters. From the determined crank angle, certain diagnostic functions may be performed as well. The controller may output a signal indicative of the crank angle for an operator to view. In certain embodiments, a crank angle or range of crank angles for each of the operating parameters may trigger an alarm or notification, and/or may adjust operation of the reciprocating engine. Adjustments to the reciprocating engine may include fuel injection, load, exhaust gas recirculation, firing timing, among others.
Turning to the drawings,
Determination of combustion parameters including peak cylinder pressure, start of combustion or mass fraction burn is valuable for many types of engines. Hence this methodology can be applied to many kinds of reciprocating engines including spark ignited engines, diesel engines and, dual fuel engines. Furthermore, the detection algorithms will be insensitive to the fueling strategy and engines with different fuel systems (e.g., carbureted, port injected, or direct injected) or combinations of fuel systems can implement this methodology.
The system 8 disclosed herein may be adapted for use in stationary applications (e.g., in industrial power generating engines) or in mobile applications (e.g., in cars or aircraft). The engine 10 may be a two-stroke engine, three-stroke engine, four-stroke engine, five-stroke engine, or six-stroke engine. The engine 10 may also include any number of combustion chambers 12, pistons 20, and associated cylinders (e.g., 1-24). For example, in certain embodiments, the system 8 may include a large-scale industrial reciprocating engine having 4, 6, 8, 10, 16, 24 or more pistons 20 reciprocating in cylinders. In some such cases, the cylinders and/or the pistons 20 may have a diameter of between approximately 13.5-34 centimeters (cm). In some embodiments, the cylinders and/or the pistons 20 may have a diameter of between approximately 10-40 cm, 15-25 cm, or about 15 cm. The system 10 may generate power ranging from 10 kW to 10 MW. In some embodiments, the engine 10 may operate at less than approximately 1800 revolutions per minute (RPM). In some embodiments, the engine 10 may operate at less than approximately 2000 RPM, 1900 RPM, 1700 RPM, 1600 RPM, 1500 RPM, 1400 RPM, 1300 RPM, 1200 RPM, 1000 RPM, 900 RPM, or 750 RPM. In some embodiments, the engine 10 may operate between approximately 750-2000 RPM, 900-1800 RPM, or 1000-1600 RPM. In some embodiments, the engine 10 may operate at approximately 1800 RPM, 1500 RPM, 1200 RPM, 1000 RPM, or 900 RPM. Exemplary engines 10 may include General Electric Company's Jenbacher Engines (e.g., Jenbacher Type 2, Type 3, Type 4, Type 6 or J920 FleXtra) or Waukesha Engines (e.g., Waukesha VGF, VHP, APG, 275GL), for example.
The driven power generation system 8 may include one or more knock sensors 23 suitable for detecting engine “knock.” The knock sensor 23 may sense vibrations caused by the engine, such as vibration due to detonation, pre-ignition and/or pinging. The sensor may also sense vibrations caused by a “normal” combustion event. The knock sensor 23 is shown communicatively coupled to an engine control unit (ECU) 25. During operations, signals from the knock sensor 23 are communicated to the ECU 25 to determine if knocking conditions (e.g., pinging) exist. The ECU 25 may then adjust certain engine 10 parameters to ameliorate or eliminate the knocking conditions. For example, the ECU 25 may adjust ignition timing and/or adjust boost pressure to eliminate the knocking. Alternately, the ECU may adjust the parameters of the engine to either advance or retard a normal combustion event to provide more optimal efficiency or exhaust emissions. As further described herein, the knock sensor 23 may additionally derive that certain vibrations should be further analyzed and categorized to detect, for example, a start of combustion (SoC), a peak cylinder pressure (PCP), and a mass fraction burn (MFB) for the engine 10.
As shown, the piston 20 is attached to a crankshaft 54 via a connecting rod 56 and a pin 58. The crankshaft 54 translates the reciprocating linear motion of the piston 24 into a rotating motion. As the piston 20 moves, the crankshaft 54 rotates to power the load 24 (shown in
The engine 10 also includes a crankshaft sensor 66, the knock sensor 23, and the ECU 25, which includes a processor 72 and memory 74. The crankshaft sensor 66 may be one or more sensors configured to sense the position of the crankshaft 54. In one embodiment, the crankshaft sensor may be a Hall effect type sensor configured to sense every 10 degrees of rotation. The crankshaft sensor 66 may be a sensor on the crank configured to detect smaller or larger intervals of rotation, for example, 1 degree, 5 degrees, 20 degrees, 30 degrees, 45 degrees, 90 degrees, 180 degrees, 360 degrees, 720 degrees, or some other intermediate interval. The crankshaft sensor 66 may also include a sensor on the camshaft configured to detect 2 revolutions of the crankshaft 54 (i.e., one complete cycle). Some embodiments may include a sensor on the crankshaft 54 as well as a sensor on the camshaft. It should be understood that these are only examples of crankshaft sensors 66 and that the crankshaft sensor 66 or sensors implemented may include one or more types of sensors not discussed.
When monitoring reciprocating engines, timing is frequently expressed in terms of crankshaft 54 angle. Thus, in the embodiment shown in
The knock sensor 23, in particular, may be utilized to detect vibrations associated with movement of the piston 20 within the cylinder 26. The vibration profile detected by the knock sensor 23 may be converted by the knock sensor 23 or by the ECU 25 into a parameter indicative of compression ratio or peak firing pressure. The parameter indicative of compression ratio or peak firing pressure may be analyzed by the ECU 25 via control logic implemented on the ECU to determine if the peak firing pressure has increased beyond a desirable amount, which indicates pre-ignition conditions, as explained above, or indicates the engine 10 is approaching pre-ignition conditions.
For example, a process flow diagram of an embodiment of a method 200 of detecting a start of combustion (SoC), peak firing pressure (PFP), or mass fraction burn (MFB) in the reciprocating engine 10 is shown in
Once the noise has been removed from the data signal, the method includes determining conditions within the engine 10 such as: a start of combustion (SoC), a peak cylinder pressure (PCP), a fuel mass fraction burn (MFB), or any combination of these (block 208). The method may perform algorithms on the data signal for each condition separately, or may include algorithms that detect multiple conditions simultaneously.
Additionally or alternatively to determining the energy of the data signal, the SoC may be determined by involving the determination of an envelope of the data signal (block 228). Calculating or determining the envelope may be done using an upper envelope, a lower envelope, or curve detection techniques. The envelope is a curve that represents a distilling of the data signal that may be read by the ECU 25. The envelope of the data signal, the energy of the data signal, or combination thereof may be compared to a threshold to determine the SoC. The threshold, for example, may be between 1 percent and 10 percent of the normalized value of the energy or envelope, or may be between 2 percent and 7 percent, or may be 5 percent of the normalized values. The ECU 25 may thus determine that combustion has started when the threshold is reached. The threshold may be obtained through testing the combustion chamber 12 under laboratory conditions. That is, in a laboratory, extra sensors may be included within the combustion chamber 12 to determine exactly when combustion starts, and the actual SoC may be compared to the SoC determined by the ECU 25 using the data signal from the knock sensor 23.
After the data signal is convolved, the method 240 includes determining a reconstructed change in cylinder pressure (block 250). The change in cylinder pressure may be reconstructed by taking the inverse Fourier transform. The change may be integrated to model the actual cylinder pressure (block 252). The PCP is the crank angle at which the maximum value of the reconstructed cylinder pressure is located.
Once the parameters have been inferred (e.g., start of combustion (SoC), peak cylinder pressure (PCP), fuel mass fraction burn (MFB), or any combination of these, the ECU may command a change a controlled engine parameter including but not limited to: injection timing, injected fuel quantity, engine speed, air-fuel ratio, spark timing, or fuel pressure.
In general, systems and methods in accordance with the present disclosure detect operating conditions within a reciprocating engine 10 based on signals from a knock sensor 23. The systems and methods utilize detection of vibrations of a cylinder 26 of the engine 10 or of a piston 20 with the cylinder 26, conversion of the vibration profiles to one or more values can accurately predict or model a start of combustion, a peak firing pressure, and/or a fuel mass fraction burn. By implementing various control logic on a controller (e.g., engine control unit (ECU 25)) and utilizing the control logic to compare the various values detected by the knock sensor, operating data and potential problems can be communicated to an operator, such that the operator may intervene and remedy the problem.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.