Embodiments described herein relate generally to a technique of estimating the power generation amount of a PV apparatus (PV unit) including a PV (Photovoltaic power generation) panel.
In a future smart energy society, the key point is to accurately estimate not only the demanded quantity of energy (demand) of each customer but also the energy production amount. Of the energy generation apparatuses, PV apparatuses are particularly popular, and various methods for estimating the power generation amount of the PV apparatus have been proposed.
For example, there is known a model (for example, Erbs model) used to obtain a total solar irradiance based on a global solar irradiance and the installation information of a PV panel. Also known is a method of converting an estimated global solar irradiance into a total solar irradiance and multiplying it by a power generation coefficient to estimate the power generation amount. A method of estimating the power generation amount based on the weather forecast, atmospheric temperature, humidity information, and the like of the estimation day is known as well. There is further known a method of searching past log data for patterns similar to the estimation day and estimating the power generation amount by pattern matching.
In the known techniques, a similar pattern is extracted by pattern matching using time series data obtained from a wattmeter or pyrheliometer near the point of estimation, thereby estimating the power generation amount of the PV panel. For this reason, calculations with relatively heavy load are necessary. In addition, the power generation amount in the near future can only be estimated. There is also a method of specifying a portion shaded by the PV panel using three-dimensional map information and correcting the estimated power generation amount. However, aging degradation of the PV panel or the like cannot be taken into consideration.
Additionally, in the existing estimation techniques, data (for example, power generation efficiency) specific to each device (for example, PV unit or PV-PCS (Power Conditioning System)) needs to be used. A technique capable of accurately estimating the power generation amount by a uniform method without depending on the device or the maker thereof is needed.
In general, according to an embodiment, an estimation system estimates the power generation amount of a photovoltaic power generation unit. The estimation system includes a calculation unit and a coefficient optimization unit. The calculation unit calculates the estimated value of the power generation amount from the estimated value of a solar irradiance based on a power generation coefficient that converts the solar irradiance into the power generation amount. The coefficient optimization unit adaptively changes the power generation coefficient.
The apartment house 101 is connected to a cloud computing system (to be abbreviated as a cloud hereinafter) 141 via a local server 121. The home 102 and the factory 103 are also connected to the cloud 141 via local servers 122 and 123, respectively. The local server 121 measures the power generation amount (PV power generation amount) of the PV unit 111 of the apartment house 101. The obtained measured value is transmitted to the cloud 141 at an interval of, for example, 30 min. Similarly, the local server 122 transmits the power generation amount of the PV unit 112 (home 102) to the cloud 141, and the local server 123 transmits the power generation amount of the PV unit 113 (factory 103) to the cloud 141. As is known, the cloud 141 is a computer network.
The cloud 141 includes a weather server 131, an estimation server 132, and a data server 133. The data server 133 stores the measured values of the PV power generation amounts transmitted from the local servers 121, 122, and 123. The data server 133 also stores the measured value of a daily solar irradiance over a span of, for example, one year or 10 years. The measured value of the solar irradiance may be given by the weather server 131, or obtained from the local servers 121, 122, and 123. The measurement can be done, for example, on a minute-by-minute basis or hourly (i.e., at 0 minutes).
The weather server 131 distributes weather information, weather estimation data, wind velocity data, and the like (to be generically referred to as weather data hereinafter) to the cloud 141. The weather data is provided by the Meteorological Agency, weather company, or the like.
The estimation server 132 estimates the power generation amounts of the PV units 111, 112, and 113 based on the weather data, the measured values of the PV power generation amounts stored in the data server 133, and the like. In the embodiment, this processing will be described in detail.
A future value to be estimated will be referred to as an estimated value, and a past value as an actual value hereinafter. The estimated value and the actual value are thus discriminated. The measured values of the PV power generation amounts and various kinds of data stored in the data server 133 are actual values.
Note that protocols such as ECHONET, ECHONET Lite, ZigBEE, Z-Wave, and KNX are usable in the above-described system. In a lower layer, a wired LAN such as Ethernet, power line communication, wireless LAN, Bluetooth, or a protocol for a cellular phone such as 3G or 4G can be used. These protocols are applicable to communication between a local server and a customer (and electrical apparatuses thereof) or between a local server and the cloud 141.
The PV parameters include information representing the features of the PV unit. The PV parameters are pieces of information that characterize the PV unit; for example, the installation position (latitude and longitude) and the installation orientation (tilt angle and azimuth) of the PV panel. Information such as the date (estimation day) on which the power generation amount should be estimated may be included in the PV parameters. By using the PV parameters, a total solar irradiance can be calculated from a global solar irradiance based on, for example, an Erbs model. The power generation amount (estimated value) can be calculated by multiplying the total solar irradiance by a power generation coefficient including an element such as a power generation efficiency.
In the existing techniques, however, since the value of the power generation coefficient is a fixed value, it is impossible to follow a change in the power generation amount caused by, for example, aging degradation. In the embodiment, the value of the power generation coefficient can adaptively be changed. That is, the value of the power generation coefficient can be changed to an appropriate value. Details will be described below.
The power generation coefficient output from the coefficient optimization unit 214 is given to the power generation amount calculation unit 213 together with the solar irradiance (estimated value) and the PV parameters. The power generation amount calculation unit 213 converts the solar irradiance (estimated value) into a total solar irradiance based on the PV parameters, and multiplies the total solar irradiance by the optimized power generation coefficient, thereby calculating the power generation amount (estimated value). A plurality of embodiments of the coefficient optimization unit 214 will be described next.
The data extraction unit 512 acquires the solar irradiance (actual value) and the power generation amount (actual value) of the PV unit from a data server 133 (
The extracted samples are transferred to the peak calculation unit 513. The peak calculation unit 513 calculates the peak value in each time zone or on the hour from the data of the solar irradiance (actual value) of the past N days. The peak calculation unit 513 also calculates the peak value in each time zone or on the hour from the data of the power generation amount (actual value) of the past N days. The obtained peak value of the solar irradiance (actual value) and the peak value of the power generation amount (actual value) are transferred to the coefficient calculation unit 514.
Note that the peak value is calculated mainly to remove noise components. When data of a large value is used as a sample, noise only has a slight effect. Hence, the coefficient calculation unit 514 can calculate an accurate value.
The coefficient calculation unit 514 calculates the power generation coefficient by proportional calculation. That is, the coefficient calculation unit 514 divides the peak value of the power generation amount (actual value) by the peak value of the solar irradiance (actual value), thereby calculating the power generation coefficient. In the embodiment, the power generation coefficient is calculated at an interval of, for example, 10 min.
Assume that the estimation day is set to Jan. 16, 2013, and the power generation amount for 24 hrs of the day is estimated. The data extraction unit 512 extracts data of the past N days previous to the estimation day. For example, when acquiring data of the past seven days (N 7), the data extraction unit 512 extracts, as samples, data from 0:00 on Jan. 9, 2013 to 23:50 on Jan. 15, 2013.
The peak calculation unit 513 obtains the peak value in each time (time zone) from the extracted past data. There are 144 pieces of data from 0:00 to 23:50 on Jan. 9, 2013. As shown in
The coefficient calculation unit 514 divides the peak value of the power generation amount calculated by the peak calculation unit 513 by the peak value of the solar irradiance, thereby calculating the time series of the power generation coefficient. That is, a power generation coefficient (t) at time t is calculated by equation (1).
power generation coefficient (t)=power generation amount peak value (t)÷solar irradiance peak value (t) (1)
The power generation amount calculation unit 213 converts the solar irradiance (estimated value) into a power generation amount (estimated value) using the PV parameters and the power generation coefficient calculated by the coefficient calculation unit 514. As illustrated in
In the embodiment, using the time series of the power generation coefficient (t) calculated by the coefficient optimization unit 214, the time series of the power generation amount (estimated value) (t) is calculated by, for example, equation (2).
power generation amount (estimated value) (t)=total solar irradiance (t)×power generation coefficient (t) (2)
As described above, according to the first embodiment, the power generation coefficient is not fixed and is adaptively changed based on the actual values of the power generation amount and the solar irradiance.
In the existing techniques, the power generation coefficient is a fixed value, as shown in, for example,
power generation amount (estimated value) (t)=total solar irradiance (t)×power generation coefficient (fixed value) (3)
For this reason, a change in the power generation efficiency of the PV panel or the like cannot be reflected, and the power generation amount estimation accuracy gradually lowers. It is also impossible to follow not only a time-rate change in the characteristic but also an environmental change at the installation location.
On the other hand, in the first embodiment, the power generation coefficient of the estimation day is calculated using the solar irradiance (estimated value) at the PV unit installation location and the solar irradiance (actual value) and power generation amount data (actual value) in the past. The estimated value of the power generation amount in the estimation day is calculated based on the calculated power generation coefficient. Since this makes it possible to use the power generation coefficient that always reflects the latest state, the influence of aging degradation and the like can be eliminated. Furthermore, the estimated value of the power generation amount can be calculated by a uniform method without depending on data unique to a device such as a PV unit or PV-PCS. Additionally, the power generation amount can be estimated while reflecting a temporary decease in the power generation amount caused by a shadow on the PV unit or the like.
Hence, the power generation amount of the PV unit can accurately be estimated. This makes it possible, by extension, to improve the accuracy of the operation schedule of an electrical apparatus, including optimum charge and discharge control of a storage battery, and promote reduction of the CO2 output and the heat and electricity cost.
The coefficient optimization unit 611 includes a sample optimization unit 615. The sample optimization unit 615 calculates the value of the number N of extraction days to obtain an accurate power generation amount (estimated value). That is, in the second embodiment, the value of the number N of extraction days is adaptively changed to minimize an error. In the first embodiment, the value of the number N of extraction days is fixed, and the number of data extracted by the data extraction unit 512 is a fixed value. In the second embodiment, the number of pieces of data is changeable, and the number is optimized.
The sample optimization unit 615 shown in
In the second embodiment, past N day determination processing is executed next (step S4). That is, the processes of steps S1 to S3 are repeated while incrementing the value N until the natural number N changes from 1 to a maximum value Nmax. If N is smaller than Nmax, the processing procedure returns to step S1, and the procedure of obtaining the power generation coefficient is repeated from the beginning. With the above-described procedure, power generation coefficients of the Nmax days are calculated.
When the power generation coefficients of the Nmax days are obtained (N≧Nmax), processing of calculating the power generation amount is executed (step S5). That is, a separately acquired solar irradiance (estimated value) is converted into the total solar irradiance by an Erbs model, and the total solar irradiance is multiplied by the power generation coefficient to obtain the power generation amount. However, since the power generation coefficients of the Nmax days are calculated, the power generation amounts are also calculated for the Nmax days. Since the power generation amounts calculated in this step are temporary values, they will be referred to as temporary power generation amounts.
When the temporary power generation amounts of the Nmax days are obtained, error calculation processing is executed (step S6). In this step, the error calculation unit 643 obtains the error between the temporary power generation amount and the acquired power generation amount (actual value) by equation (4).
error=Σ{temporary power generation amount−power generation amount (actual value)}2 (4)
In equation (4), Σ is the sum for time t, and addition for 24 hrs is performed. That is, a value obtained by squaring the difference between the temporary power generation amount and the power generation amount (actual value) in each time zone is added over one day, and Nmax error data are obtained. Next, based on the Nmax error data, the extraction day count calculation unit 644 decides the number N of days that minimizes the error. Power generation coefficient decision processing is executed based on the actual value data of the decided N days (step S7).
As described above, in the second embodiment, the number of samples of solar irradiances (actual values) and power generation amounts (actual values) associated with calculation of power generation coefficients is optimized. That is, the number N of days to extract data from the data server 133 is optimized. More specifically, the error between the power generation amount (actual value) and the estimated value of the power generation amount based on the calculated power generation coefficient is calculated from N=1 to Nmax, and the optimum number N of extraction days that minimizes the error is found.
For example, assume that it continued raining for three days immediately before the estimation day. At this time, if the value N is fixed to N=3, the power generation coefficient needs to be calculated based on only the data of the rainy days, and the accuracy lowers. This is because only values close to 0 are obtained as the solar irradiance (actual value) and the power generation amount (actual value).
To prevent this, in the second embodiment, N is made variable so that, for example, N=7 can also be obtained. This makes it possible to calculate the power generation coefficient in consideration of not only the data of rainy days but also the data of sunny days and further improve the power generation amount estimation accuracy.
Referring to
The correction coefficient application unit 753 corrects the power generation coefficient using, for example, an exponential moving average method to suppress an abrupt change of the power generation coefficient. The correction coefficient application unit 753 calculates the power generation coefficient (t) as the time series of the power generation coefficient after correction based on, for example, equation (5). The power generation coefficient (t, T) indicates power generation coefficient data at the time t T months before of the power generation coefficients stored in the power generation coefficient database 731.
power generation coefficient (t)=Σ(power generation coefficient (t,T)×correction coefficient (T)) (5)
In equation (5), Σ is the sum for T. The correction coefficient (T) in equation (5) is a weight coefficient applied to the data T months before. According to the exponential moving average method, the correction coefficient (T) exponentially decreases as T becomes large, that is, as the time goes back to the past. When T is small, that is, for immediately preceding data, the correction coefficient (T) takes a relatively large value.
In the third embodiment, the power generation coefficient calculated by the coefficient calculation unit 514 is corrected by the exponential moving average method using, for example, a date as a reference. That is, the power generation coefficient is corrected by averaging such that the immediately preceding data is weighted heavily, and the weight is made small as the time goes back to the past, thereby suppressing an abrupt change of the power generation coefficient. This can suppress an excessive change in the estimated value of the power generation amount caused by, for example, an abrupt change of the weather. That is, it is possible to estimate the power generation amount without excessively reacting to the latest abrupt change of the weather or the like.
Note that the present invention is not limited to the above-described embodiments. For example, in the embodiments, photovoltaic power generation has been described. However, the present invention is also applicable to solar thermal power generation. In the above description, the power generation amount is calculated from the solar irradiance. However, the power generation amount can also be calculated from the solar irradiation. That is, the same discussion as described above holds even if solar irradiance is replaced by solar irradiation.
In the embodiments, the power generation coefficient is calculated using data of the past N days previous to the estimation day. As the value N, not only an arbitrary natural number but also, for example, 7, 14, 28, 60, 90, 180, or 365 can be assumed. Alternatively, one year may be divided on a monthly, seasonal, or yearly basis, and data over the period may be extracted. The extraction period may be decided based on a concept that the power generation coefficient changes little in the same month or same season.
Alternatively, the intervals of sunny days may be checked based on past weather data, and the power generation amount (actual value) and the solar irradiance (actual value) during the longest interval may be extracted as samples. The number of days from the estimation day to the immediately preceding sunny day may be employed, and an optimum solution may be calculated every time estimation processing is performed. Data of a sunny day may be extracted at random as sample data.
In the third embodiment, a case has been described in which the power generation coefficient is corrected using monthly data. However, the present invention is not limited to this. The power generation coefficient can be corrected by various methods, for example, by applying daily data, seasonal data of three months or the like, or data of the same months of past years. Instead of the exponential moving average method, a simple moving average method may be used. A weighted moving average method using a weight coefficient that decreases not exponentially but linearly with respect to T is also usable.
While certain embodiments of the invention have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes may be made without departing from the spirit of the invention. The accompanying claims and their equivalents are intended to cover the embodiments and modifications thereof as would fall within the scope and spirit of the inventions.
Number | Date | Country | Kind |
---|---|---|---|
2013-130380 | Jun 2013 | JP | national |
This application is a Continuation Application of PCT Application No. PCT/JP2013/084664, filed Dec. 25, 2013 and based upon and claiming the benefit of priority from prior Japanese Patent Application No. 2013-130380, filed Jun. 21, 2013, the entire contents of all of which are incorporated herein by reference.