This invention relates generally to EV, and more particularly to charging stations that provide a coupling to an on-line connector configured to provide charging, locking and communication
In cities in particular, electrically powered ss (EV) are increasingly being used for locomotion. An EV is a vehicle that resembles a kick scooter. An EV has an electric motor and a rechargeable electrical storage device, for example in the form of a lithium-ion battery, in order to supply the electric motor with energy.
A large number of the EVs used in a city, for example, are so-called rental EVs, which are made available to users by a provider. For example, a user can use an EV for a certain period of time and a certain rental fee. The user can often park the EV at any position in the city after it has been used. This repeatedly leads to parked EVs blocking paths, driveways, entrances, etc.
In order to operate an EV, it is necessary to charge the EV or its energy storage device regularly (usually at least once a day). For this purpose, the EVs, in particular every night, are collected by the provider, in particular employees of the provider, and connected to a conventional household socket for charging. After charging, an EV will be distributed around the city again.
Disadvantages of this process to be carried out regularly are the high effort and the correspondingly high costs. In addition, the EVs are usually collected with vehicles that have an internal combustion engine, so that the overall environmental balance of the EVs is also unsatisfactory.
An object of the present invention is to provide an EV charging station for an EV with an on-line connector configured to provide charging, locking and communication of the EV, the charging station configured to be coupled to an EV including an EV charging adapter.
A further object of the present invention is to provide an EV charging station for an EV with an on-line connector configured to provide charging, locking and communication of the EV, the charging station configured to be coupled to an EV including an EV charging adapter.
Another object of the present invention is to provide an EV charging station, wherein when the EV is locked into position it provides for lock or park and charge.
Yet another object of the present invention is to provide an EV charging station that provides one or more of: an EC rack; sufficiently sturdiness; EV stability; safety; anti-theft; maintains connectivity to a cloud; coupling to the EV adapter; a plug that couples to the EV adapter; a sensor; and is configured in a manner not to void warranties of the EV.
Still a further object of the present invention is to provide an EV charging station that does not require an EV be locked in a specific position.
Another object of the present invention is to provide an EV charging station that does not require precise locating of the EV relative to the charging station.
These and other objects of the present invention are achieved in an EV charging station with a charging source providing an electrical charge, and configured to be coupled to the charging station or included with the charging station. A charging interface and a communication link are provided. An on-line connector provided charging, locking and communication of the EV, the charging station configured to be coupled to an EV including an EV charging adapter.
In one embodiment, the in-line connector 14 connects the EV 100 to the charging station 12 and as a non-limiting example, a table style charging dock is provided. This can be similar to a gas pump. A motorized solenoid 13 can be provided on the grip of the charging station 12, e.g, the plug. 15. The plug then locks to the EV 100. In one embodiment, this can provide an electrical lock to the adaptor 17. In one embodiment two adapters are at the EV 100 and the charging station 12. In one embodiment, third parties are provided with an adapter that is capable of interfacing with the charging station. In one embodiment, the adapter provides a universal interface that can be is on the head tube or post of EV 100.
As a non-limiting example, the EV 100 does not have to in-line with the charging station 12. As a non-limiting example, the EV 100 can be parked anyway that the EC user desires and the charging station 12 does not require that the EV 100 be locked in a specific position.
As a non-limiting example, the charging station 12 does not require precise locating of the EV 100. The EV 100 can be parked substation within, a certain distance, but substantially at any angle relative to the charging station 12.
As illustrated in
In one embodiment, the charging station 12 is located at hotels, parking structures such as garages and the like. In one embodiment, charging stations 12 are located in unused spaces of parking structures.
The WiFi 18 can be initiated once charging is initiated. The charging station 12 can provide for full or partial signal strength. The connectivity makes it possible for private property properties to link up their charging station 12 with their WiFi 18.
Referring to
The charging station 12 may include a stationary energy storage system 32,
In some embodiments, the stationary energy storage system 32 may be provided within a housing of the charging station 12. In some embodiments, the energy storage units may all be provided within a single housing or pack, or may be distributed among multiple housings or packs. The stationary energy storage system may be electrically connected to a fast-charging interface. In some embodiments, one or more groupings of energy storage units (e.g., battery cells) may be directly or indirectly connected to the fast-charging interface via one or more electrical connections.
An external energy source 34,
The external energy source 34 may electrically connect to the stationary energy storage system 32. Alternatively, the external energy source 34 may be electrically connected to a vehicle connector head without requiring a stationary energy storage system.
The charging station 12 may include a controller 36,
In one embodiment of the invention, the vehicle energy storage system 32 or 34 may include lithium titanate batteries. In some implementations, the propulsion power source may include batteries that are only lithium titanate batteries, without requiring any other types of batteries. The lithium titanate batteries may include any format or composition known in the art. See, e.g., U.S. Patent Publication No. 2007/0284159, U.S. Patent Publication No. 2005/0132562, U.S. Patent Publication No. 2005/0214466, U.S. Pat. Nos. 6,890,510, 6,974,566, and 6,881,393, each of which is entirely incorporated herein by reference for all purposes.
EV 100 may have a vehicle charging interface 38 which may be capable of making electrical contact with the charging station 12. The vehicle charging interface 38 may include a conductive material, which may include any of the conductive materials discussed elsewhere herein. In some embodiments, the vehicle charging interface 38 may be provided at the top of EV 100, while in other embodiments, it may be provided on a side or bottom of the EV 100. Vehicle charging interface 38 may be electrically connected to vehicle energy storage system. 32 or 34 They may be connected via an electrical connection of the EV 100. The electrical connector may be formed of a conductive material. In some embodiments, charging interface 38 may include a positive and negative electrode. In some embodiments, the electrical connection may include separate electrical connectors for the positive and negative electrodes to the vehicle energy storage system. The positive and negative electrodes may be electrically insulated and/or isolated from one another.
EV 100 may include one or more signal emitters 40,
The signal may include information about EV 100 location or position relative to the charging station 12, the vehicle's orientation, the vehicle's identification, the state of charge of vehicle energy storage system 32 or 34, or any other information.
EV 100 includes one or more batteries. In some embodiments, the battery may be electrically coupled to a motor of the scooter by electrical cables and an electrical connector. The electrical connector may be a quick twist connector that is opened and closed by twisting its halves in opposite directions.
In some embodiments, instead of using electrical cables, EV 100 and deck assembly may include electrical connectors that mate when the deck assembly is installed in the scooter. The electrical connectors may be surrounded by cushions that protect the connectors from micro-vibrations, dirt and water, and the like.
Referring to
The EV 100 is depicted in
In the depicted embodiment, the lock assembly 308 is implemented as a physical lock, to be used with a physical key. But in other embodiments, the lock assembly 308 may be implemented in other ways. For example, the lock assembly 308 may be an electronic lock, which may be operated using an electronic key, fob, remote control, or the like. In embodiments where security is not required, the lock in the lock assembly 308 may be replaced with a knob, a button, or another mechanism. In any case, the lock assembly 308 may be hidden or disguised. This feature is especially useful in a ridesharing fleet, where users should not operate the lock assembly 308, or remove the deck assembly 102.
Also visible in
Other advantages are especially applicable to a fleet of shareable EVs. In current fleets, the scooters are generally collected each evening, and taken to a charging facility where the batteries are charged. The charged scooters are then returned to scooter sharing locations the next morning. But in this arrangement, the scooters are unavailable for sharing while being charged. And this arrangement requires two trips per day: one trip to collect the scooters, and another trip to deploy them.
Embodiments of the disclosed technology solve both of these problems. With the disclosed removable deck assembly, the scooters need not be collected. Instead, only the deck assemblies may be collected. The scooters may be left in the sharing location, sharing racks, and the like. Furthermore, with a fleet of similar scooters, the deck assemblies are interchangeable. Therefore, an operator can replace a discharged battery pack with a fresh battery pack, requiring only one trip, and keeping the scooter available while the discharged battery pack is recharged. And because the disclosed deck assemblies are much smaller than the scooters, many more scooters can be serviced by a single truck than with current arrangements. In addition, because the disclosed deck assemblies weigh less than the scooter, there is less likelihood an operator will be injured while lifting them.
In some embodiments, one half of the soft connector may include a locking indicator 814. The locking indicator 814 may shine red until the soft connector is completely closed, whereupon the indicator 814 may switch to green to indicate a positive lock of the soft connector.
One advantage of the disclosed quick twist electrical soft connector is that it mitigates the problem of micro vibrations. Vehicles such as automobiles and bicycles are subject to vibrations caused by imperfections in the road surface. Vehicles with small, hard wheels, such scooters, are subject to these vibrations, and also to micro vibrations, which are caused by tiny imperfections in the road surface, for example such as the pebbles in a conglomerate road surface. Electrical connectors in particular are adversely affected by micro vibrations, which cause the mating electrical parts to rub together and thereby deteriorate. Gold plating on electrical connectors is particularly subject to this deterioration. In the disclosed embodiments, the lengths of electrical cables 806, 808 isolate the electrical connector from these micro vibrations, greatly reducing any wear the electrical connectors 812 experience.
Another advantage of the disclosed quick twist electrical soft connector is that it encourages users not to pull on the cables 806, 808 to open the soft connector. In conventional electrical connectors with no twist lock mechanism, users may be tempted to pull on the cables to open the connector. This abuse may shorten the life of the electrical cable and electrical connector considerably. But this is not possible with the twist connector. The user must grasp the soft connector halves in order to twist them in opposite directions. Consequently, the electrical soft connector and electrical cables 806, 808 may enjoy a longer lifespan.
Referring again to
In some embodiments, the electric lock 1008 may operate in parallel with the mechanical lock 1002. In such embodiments, the electric lock 1008 may insert the tab 1014 into a notch in the deck assembly. In such embodiments, both locks 1002, 1008 must be opened to release the deck assembly.
In some embodiments, the tab 1014 of the electrical lock 1008 may have multiple stops. In one of the stops, the tab 1014 engages the latch 1006 of the mechanical lock 1002, thereby preventing its operation, as illustrated in
In embodiments that include an electrical power cable, the scooter may include a mechanism to retain and protect the cable when the deck assembly is installed.
When the deck assembly 102 is installed in the frame 104 of the EV 100, the retention device 1102 retracts, guides, organizes, and stores the loose portions of the electrical cables 806, 808, as shown in
In some embodiments, the latch that retains the deck assembly 102 within the frame 104 of the EV 100 may be hidden within a structure such as the frame 104 or the housing 110 of the EV 100 so that it cannot be seen, and to protect the latch from damage. One such embodiment is illustrated in
Referring to
Referring to
Referring to
Referring again to
In some embodiments, the electric lock 1008 may operate in parallel with the mechanical lock 1002. In such embodiments, the electric lock 1008 may insert the tab 1014 into a notch in the deck assembly. In such embodiments, both locks 1002, 1008 must be opened to release the deck assembly.
In some embodiments, the tab 1014 of the electrical lock 1008 may have multiple stops. In one of the stops, the tab 1014 engages the latch 1006 of the mechanical lock 1002, thereby preventing its operation, as illustrated in
In embodiments that include an electrical power cable, the scooter may include a mechanism to retain and protect the cable when the deck assembly is installed.
When the deck assembly 102 is installed in the frame 104 of the EV 100, the retention device 1102 retracts, guides, organizes, and stores the loose portions of the electrical cables 806, 808, as shown in
In some embodiments, the latch that retains the deck assembly 102 within the frame 104 of the EV 100 may be hidden within a structure such as the frame 104 or the housing 110 of the EV 100 so that it cannot be seen, and to protect the latch from damage. One such embodiment is illustrated in
Referring to
Referring to
Referring to
In one embodiment, illustrated in
Private keys and private key pairs (collectively 1512 and 1514) are used to cryptographically secure sensitive information, private keys 1512 can be used to decrypt, encrypt, or sign data, the corresponding public key 1514 can be used to decrypt or verify the signature of the data signed by its private key, public keys cannot be used to encrypt or sign data.
As a non-limited example, as used herein a vehicle 1516 is a means of carrying or transporting something including but not limited to an EV motor vehicle 1516, including but not limited to a scooter, skateboard, skates, and the like.
As used herein an encryption key is a piece of information that determines the functional output of a cryptographic algorithm. For encryption algorithms, a key specifies the transformation of plaintext into ciphertext, and vice versa for decryption algorithms. Keys also specify transformations in other cryptographic algorithms, such as digital signature schemes and message authentication codes.
As used herein, the cloud 1518 is a global network of servers, each with a unique function. The is not a physical entity, but instead is a vast network of remote servers around the globe which are hooked together and meant to operate as a single ecosystem. These servers are designed to either store and manage data, run applications, or deliver content or a service such as streaming videos, web mail, office productivity software, or social media. Instead of accessing files and data from a local or personal computer, you are accessing them online from any internet-capable device—the information will be available anywhere you go and anytime you need it. In the case of this embodiment the cloud 1518 is securely storing and generating public key and private key pairs for each component in the vehicle 1516.
As non-limiting examples, there are four different methods to deploy resources.
These include: a public cloud 1518 that shares resources and offers services to the public over the Internet; a private cloud that isn't shared and offers services over a private internal network typically hosted on-premises; a hybrid cloud that shares services between public and private clouds depending on their purpose; and a community cloud 1518 that shares resources only between organizations, such as with government institutions.
In one embodiment, system 10 is coupled to the cloud 1518.
As used herein, a local area network (LAN) is a network that interconnects within a limited area such as a residence, school, laboratory, university campus or office building. By contrast, a wide area network (WAN) not only covers a larger geographic distance, but also generally involves leased telecommunication circuits. Ethernet and Wi-Fi are two common technologies in use for local area networks. Historical network technologies include ARCNET, Token ring, and AppleTalk.
As a non-limiting example, a wide area network (WAN) is a network that exists over a large-scale geographical area. A WAN connects different smaller networks, including local area networks (LANs) and metro area networks (MANs). This ensures that computers and users in one location can communicate with computers and users in other locations. WAN implementation can be done either with the help of the public transmission system or a private network.
As a non-limiting example, system 10 is coupled to the cloud. This can be achieved via GSM, WiFi, satellite, a mobile device and the like.
Other wireless standards that are specifically designed for IoT devices are becoming available such as Lora, NB-IOT and LTE-M, and the like.
As a non-limiting example, in one embodiment one or more hardware elements 1510 of the vehicle 1516 has public keys 1514 stored therein. Secure encryption is not put on the hardware elements 1510.
A vehicle 1516 consists of one or more in individual components 1520. Individual components 1520 of the vehicle 1516 are given an Acton Unique Identifier (AUIDs). When a vehicle 1516 is activated the first time, a unique public key 1514 and private key 1512 pair are generated by the cloud. AUIDs, public key and private keys 1514 and 1512 are then stored in the cloud. Each component stores its AUID and public key in persistent memory within the component thus eliminating theft of private keys 1512.
For selected components 1520 of the vehicle 1516, the cloud 1518 produces a unique private key 1512 and a public key 1514. As a non-limiting example, with the present invention, private keys 15112 are secure and in the cloud. They cannot be taken from the vehicle 1516. Non-limiting examples of vehicle 1516 components 1520 with public keys 1514 include but are not limited to: IOTA, the battery, motor controller, and the like.
As non-limiting examples, a simple EV 1516 can include a battery; vehicle control unit (motor controller), and IoT gateway. Each of these components 1520 is given an AUID. Additional components 1520 include but are not limited to vehicle locks; dashboards; helmets; docking stations; and the like.
As non-limiting examples, selected vehicle components 1520 have unique IDs with a unique identifier. These components 1520 are given a unique key pair. As a non-limiting example, the private key 1512 is securely stored in the cloud. An associated public key 1512 is stored in the vehicle components 1520. Communication in the cloud 1518 can be authenticated with the vehicle 1516 through the components 1520 that have public keys.
As a non-limiting example of authentication steps, public keys 1514 are passed to the vehicle 1516, e.g., vehicle components 1520. The private key 1512 is stored in the cloud, and the public key 1514 is transferred to a respective vehicle component.
As a non-limiting example, when the vehicle 1516 connects to the server 1522, it tells the server 1522 it has components 1520 A, B, and C. The System looks up in an associated database and generates an activation message composed of multiple parts, each part signed with the private key 1512 that corresponds to the AUID of the vehicle component A, B, or C 1510. When the activation message is received by the vehicle 1516, the individual components 1520 A, B, and C will decrypt and verify their parts of the message. If anyone component's message part fails verification, the vehicle 1516 will not activate.
As a non-limiting example, a secret key is not needed that unlocks the entire scoter. Instead, the system creates components 1520 are identified as being unique with associated keys.
As illustrated in
When vehicles communicate with the cloud, they report their status occasionally. When they report status, they report the presence of other fleet-vehicles that they have detected on local wireless. As a non-limiting example, this status message can then be communicated with other fleet vehicles IDs that are within local communication. This provides information about the location of fleet vehicles, which can be used to reduce theft and increase fleet availability.
As a non-limiting example, data can be distributed to the fleet by seeding it to only certain vehicles, and these vehicles that receive the communications then communicate with other vehicles. Data that could be sent includes, but is not limited to updates, navigation information, vehicle configuration, secure one-time-keys. This mechanism decreases fleet-wide data-usage and improves fleet operation.
As a non-limiting example, a vehicle 1516 can detect, via local wireless communication, other vehicles, report their presence to the cloud, and the can then determine if another vehicle 1516 is located within a selected proximity. The cloud 1518 can then determine if the reporting vehicle 1516 can communicate data to the other vehicle. The cloud 1518 can then send a one-time use session key to the vehicles, allowing them to communicate securely.
When a vehicle 1516 communicates with the cloud 1518 that it sees another vehicle, it sends this message up to the cloud. The cloud 1518 can use this vehicle 1516 presence information to disable vehicles, track stolen vehicles, locate missing vehicles, and the like.
Fleet vehicles are vehicles operated by an entity that provides them for public or private use to individuals or employees. A fleet is a group of one or more Fleet Vehicles that an operator makes available for use. Private vehicles are vehicles operated by individuals for their own use.
In one embodiment, this invention can be used with both fleet and individual vehicles. If individual or fleet Operators of EV include their vehicle 1516 in this system, the benefits of lost vehicle 1516 discovery, reduced data usage, and the like can be extended across fleets and individuals. In this way, the fleet vehicles of Operator A can look for a stolen fleet vehicle 1516 of Operator B, while a private vehicle 1516 operated by individual C can receive software update data from Operator A's fleet.
When misplaced or stolen fleet or individual vehicles are located, the owner and/or authorities can be notified.
The coronavirus has been divided the virus into a plurality of sub-groupings, including but not limited to: 229E (alpha); NL63 (alpha); OC43 (beta); HKU1 (beta); MERS-CoV; SARS-CoV; SARS-CoV-2; and the like.
As non-limiting examples, UVC lights, 200-400 nm, can be provided, as well as any light that kills pathogens, including but not limited to light with intensity for a certain amount of time, lights that shine on the handlebar, or a plastic handle bar that is made with lights at interior.
In one embodiment, energy is supplied to the surface to equal to or exceed 60 degrees F.
Referring to
In one embodiment any type of handle device that people touch, externally with UV, or internally with the light shine inside.
As non-limiting examples, door knobs include but are not limited to: entrance door handles typically used on exterior doors, and include keyed cylinders; privacy door handles typically used on bedrooms and bathrooms; while they are lockable; passage knows such as hall or closet, these do not lock and are used in hall or closet doors.
As non-limiting examples, any type of handle device that people touch, externally with UVC, or internally with the light shine inside.
In one embodiment, UVC can be used with buttons touched by people. These buttons are difficult to avoid, which is part of the reason why push buttons can be crawling with germs.
Further, ubiquitous buttons, are found on ATMs, elevators, telephones and drink machines, among other things, are located in areas that are not often cleaned and disinfected to kill bacteria and viruses.
In another embodiment, any surface of a vehicle that an operator or rider is in contact with can be made from an antibacterial/antimicrobial plastic, or an associated exterior surface, where the operator or rider contacts, including but not limited to grips, brake levers, and the like, can be treated with an antibacterial/antimicrobial material. As a non-limiting example, an actual paint, applied at the factory, can include these elements. In one embodiment, the entire vehicle can be covered with the antibacterial/antimicrobial agent.
In one embodiment, ‘stickers’, which are essentially thin pieces of plastic with adhesive backing, can be attached to selected areas of the vehicle, including but not limited to brake levers, bells, throttles, other parts of high contact and the like.
As non-limiting examples, UVC lights, 200-400 nm, can be provided, as well as any light that kills pathogens, including but not limited to light with intensity for a certain amount of time, lights that shine on the handlebar, or a plastic handle bar that is made with lights at interior.
In one embodiment, energy is supplied to the surface to equal to or exceed 60 degrees F.
Referring to
In one embodiment any type of handle device that people touch, externally with UV, or internally with the light shine inside.
As non-limiting examples, door knobs include but are not limited to: entrance door handles typically used on exterior doors, and include keyed cylinders; privacy door handles typically used on bedrooms and bathrooms; while they are lockable; passage knows such as hall or closet, these do not lock and are used in hall or closet doors.
As non-limiting examples, any type of handle device that people touch, externally with UVC, or internally with the light shine inside.
In one embodiment, UVC can be used with buttons touched by people. These buttons are difficult to avoid, which is part of the reason why push buttons can be crawling with germs.
Further, ubiquitous buttons, are found on ATMs, elevators, telephones and drink machines, among other things, are located in areas that are not often cleaned and disinfected to kill bacteria and viruses.
In another embodiment, any surface of a vehicle that an operator or rider is in contact with can be made from an antibacterial/antimicrobial plastic, or an associated exterior surface, where the operator or rider contacts, including but not limited to grips, brake levers, and the like, can be treated with an antibacterial/antimicrobial material. As a non-limiting example, an actual paint, applied at the factory, can include these elements. In one embodiment, the entire vehicle can be covered with the antibacterial/antimicrobial agent.
In one embodiment, ‘stickers’, which are essentially thin pieces of plastic with adhesive backing, can be attached to selected areas of the vehicle, including but not limited to brake levers, bells, throttles, other parts of high contact and the like.
It is to be understood that not necessarily all objects or advantages may be achieved in accordance with any particular implementation of the invention. Thus, for example, those skilled in the art will recognize that the invention may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other objects or advantages as may be taught or suggested herein.
The present application is a Continuation-In-Part of U.S. patent application Ser. No. 16/569,151, filed Sep. 12, 2019, which claims priority from U.S. Provisional Patent Application No. 62/864,927, filed Jun. 21, 2019. The present application also claims priority from U.S. Provisional Patent Application No. 63/157,921, filed Mar. 8, 2021, the disclosure thereof incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
62864927 | Jun 2019 | US | |
63157921 | Mar 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16569151 | Sep 2019 | US |
Child | 17689930 | US |