1. Technical Field
This invention relates in general to safety devices, and more particularly it relates to an ethylene-vinyl acetate (“EVA”) helmet that is worn to protect an individual's head while a head injury is healing, protecting an individual's head from additional injury, and/or protecting an individual's head from sustaining an initial injury.
2. Background of the Invention
Padded helmets are commercially available to protect a wearer's head in a variety of situations. They are used by athletics in a variety of sports. These devices, such as football helmets, typically provide impact protection, but typically are heavy and uncomfortable to wear. Further, they become more comfortable with time due to the effect of weight. Likewise, padded helmets are available for treatment of a variety of medical conditions, most notably to protect patients with head injuries from inadvertently sustaining subsequent injuries. Medically oriented helmets also have the same drawbacks in regard to weight and comfort. It would be desirable to have a low weight helmet that can provide a high level of protection while being comfortable to wear.
Thermal considerations related to this and that many uses of helmets extend from the casual headwear, such as sporting equipment, to medical devices. The comfort and wake considerations, discussed above, are also factor in special-purpose headwear, such as thermal helmets. Casual headwear, such as baseball caps, are known to have been used In conjunction with cooling devices for the purpose of keeping an individual cool and participating in outdoor activities. These devices typically use pre-cooled pouches containing ice, cold water, or gel that are positioned at the back of the wearer's head or around the neck. This type of headwear typically does not provide the wearer any protection, except from sunlight.
Some casual headwear even go so far as to provide water filled pouches that allow water to slowly be released on to a wearer's head such that heat from the wearer's body evaporates the water to create a cooling effect. Of these devices, some use a headband and the cap, and others use larger compartments that emit water over the entire wearer's head. These devices can provide relief from heat, but can also be uncomfortable due to the constant release of moisture onto a wearer's head.
Impact resistant headwear, such as sports helmets (e.g., football helmets), and protected medical headwear both provide impact protection. However, neither combine impact protection with thermal control elements that allow an individual's came to be either cooled or warmed at the individual's discretion.
Another disadvantage of the prior art is that prior art help us are typically fabricated from a number of components that increase the cost of materials, and increases the chance that defective products will be manufactured due to complexity. It would be desirable to have the helmet that can be manufactured as a single component and a low-cost.
While the prior art has provided basic impact protection, it has failed to provide a helmet shell that is fabricated as a single unit. Nor has it provided the ability to incorporate therapeutic properties, such as the application of thermal treatments to selected areas of an individual's head.
This invention provides a pliable padded EVA helmet that conforms to a patient's head. The helmet is fabricated as a single unit via a molding process. The EVA material provides a stable lightweight structure that allows it to be comfortably worn for extended periods of time. The EVA shell is molded into a protective shell that can optionally be covered by a suitable pliant external layer of material. Optional pockets can be positioned on the inside or outside of the helmet such that thermal packs can be installed in the pockets to provide thermal treatment to the wear.
Prior to a discussion of the figures, an overview of the invention will be presented. The invention is an apparatus and method for applying thermal treatments to head injuries or conditions while simultaneously providing impact protection for patients. The invention protects and treats injuries that have already occurred, and also protects the head from subsequent injuries. In some cases, as when children or adults have chronic or pre-existing conditions, the helmet may be worn prior to any actual injuries. The invention uses a pliable padded helmet that conforms to a patient's head such that the patient is protected from impacts. This is especially important for children who may not be as careful about protecting head injuries. The helmet is fabricated with pockets that hold thermal packs that can be hot or cold depending on the treatment intended for an injury, an infection, etc. The pockets can be positioned on the inside or outside of the helmet. The preferred embodiment envisions replaceable internal thermal packs, but optionally, the thermal packs can be an integral part of the helmet and non-removable. The thermal packs can provide heat or cold depending on the condition being treated. The helmet also includes ventilation apertures to provide airflow for the patient's comfort.
The helmet can be fabricated from a variety of materials. The only requirement is that the materials chosen be suitable for the helmet's intended purpose. While a wide variety of materials can be used to fabricate the thermal safety helmet, a preferred combination of suitable materials used in the preferred embodiment of the invention is the use of an external surface of Lycra™ Sport Fabric in combination with an internal surface of Poron™ Plus foam cushioning. These materials provide several advantages. Poron can be stamped as a single piece during manufacture, as illustrated in
In the preferred embodiment, the inside Poron layer will have two layers. The outer layer is envisioned as having a 9.5 mm layer, and a 6 mm inner layer. Two layers are used to provide the ability to form pockets between the inner and outer layers such that thermal packs can be inserted into the pockets. The Poron layers can be stamped from single sheets of material, and bonded together with an adhesive.
Likewise, in the preferred embodiment the outer layer of Lycra Sport Fabric was selected because it is a lightweight, breathable, and comfortable material. Lycra is resistant to sunlight, ultraviolet light, chlorine, and static cling. It provides an effective layer of protection for the inner Poron foam and protects it from the environment. The Lycra can be adhered to the Poron via adhesive. Those skilled in the art will recognize that the invention can be implemented with a single outer layer of Lycra. However, in the preferred embodiment, two Lycra layers are used to encapsulate the Poron foam. The use of an additional inner Lycra layer provides improved longevity and comfort.
In regard to the chinstrap, a preferred embodiment envisions the use of a nylon strap that was chosen due to its strength and durability properties. Likewise, the straps are commercially available and can be manufactured with integral hook and loop attachment surfaces. In addition, an optional cushioned sleeve can be provided such that, when the strap is secured to the patient, the chinstrap will be covered by the cushioned sleeve for the patient's comfort.
The shape of the helmet can also vary depending on the size of the patient as well as the type of affliction the helmet is intended to treat. Further, the optional chinstrap, as illustrated in
An improved version of the helmet uses an EVA shell fabricated as a single unit, preferably using a molding process.
EVA has been discovered to exhibit highly desirable properties for use in helmets. Ethylene vinyl acetate is the copolymer of ethylene and vinyl acetate. The ethylene typically comprises sixty to ninety percent of the EVA weight, while the vinyl acetate component usually comprises from ten to forty percent of the weight. EVA has desirable characteristics in that it is similar to elastomeric materials in softness and flexibility, but has an advantage in that it can be processed like numerous types of thermoplastics. EVA has a combination of qualities such as good clarity and gloss, low temperature toughness, adhesive properties, crack resistance, waterproof properties, and resistance to UV radiation.
EVA is a component in a variety of products, including hot melt adhesives, hot glue sticks, plastic wraps, children's foam stickers, and medical applications (i.e., drug delivery devices). EVA is an expanded rubber (i.e., foam rubber). EVA is buoyant, and is useful in products that are intended to float. It can be used as an encapsulation material for silicon cells in the manufacture of photovoltaic modules. EVA, is also used in the formulation of paints.
Having discussed the invention in general, we turn now to a detailed discussion of the drawings.
In the event that the thermal packs are inserted into pockets 3 on the external side of the thermal safety helmet 1, each external pocket 3 may use an access flap that seals the external pocket once the thermal pack is installed. While the access flap can use any suitable means to secure the thermal pack, the preferred embodiment envisions hook and loop material as the sealing means.
The thermal packs can be fabricated from any suitable material. They can be commercially available “blue ice” packs, they can be chemical packs, etc. Further, the thermal packs can provide heat or cold thermal effects, as needed. In the preferred embodiment, the thermal pack is a non-toxic gel pack.
The following embodiments are directed to helmets 10 fabricated from EVA. Those skilled in the art will recognize that these helmets 10 can be fabricated with a unitary shell 11, or fabricated with the shell 11 and an external cover 12 (shown in
In addition to the foregoing, the helmet provides for optional features. For example
In addition to ornamental images, this embodiment can also take advantage of the optional chin pad sleeve 7 discussed above in regard to
While the embodiments of
While specific embodiments have been discussed to illustrate the invention, it will be understood by those skilled in the art that variations in the embodiments can be made without departing from the spirit of the invention. For example, the thickness of the materials used to fabricate the helmet can vary, the number and location of the ventilation apertures can vary, the method of securing the helmet to the patient's head can vary, etc. Therefore, the invention shall be limited solely to the scope of the claims.
This application is related to, and claims the benefit of, the commonly owned provisional patent application, now expired, entitled “Thermal Safety Helmet For Treating Head Injuries”, filed Oct. 16, 2012, bearing U.S. Ser. No. 61/714,732 and naming Daniel M. Shapiro, the named inventor herein, as sole inventor, and the commonly owned co-pending non-provisional application emitted “Thermal Safety Helmet For Treating Head Injuries”, filed Oct. 16, 2013, bearing U.S. Ser. No. 14/055,848 and naming Daniel M. Shapiro, the named inventor herein, as sole inventor, the contents of both applications are specifically incorporated by reference herein in their entirety.
Number | Date | Country | |
---|---|---|---|
61714732 | Oct 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14055848 | Oct 2013 | US |
Child | 14504396 | US |