Evacuated high voltage connector

Information

  • Patent Grant
  • 6471522
  • Patent Number
    6,471,522
  • Date Filed
    Thursday, December 28, 2000
    24 years ago
  • Date Issued
    Tuesday, October 29, 2002
    22 years ago
Abstract
A connector between an x-ray tube and high voltage source. An epoxy-filled housing is connected to the casing or housing of an x-ray tube or vacuum vessel. A high conductivity silicone gasket is positioned between the ceramic insulator of the x-ray tube and the epoxy material in the housing. Air is evacuated in the joint between the connector housing and x-ray tube vessel and a vacuum created therein. Appropriate seals are positioned maintaining the integrity of the vacuum. Spring-loaded attachment bolts are also utilized to secure the connector housing and vacuum vessel casing together.
Description




TECHNICAL FIELD




The invention relates to high voltage connection mechanisms and more particularly to connection mechanisms between x-ray tubes and high voltage power sources.




BACKGROUND OF THE INVENTION




There are numerous connectors known today between a source of high voltage on the one hand and a system or mechanism in which the high voltage is utilized on the other hand. One of these connector mechanisms connect high voltage sources to x-ray tubes for use in the medical and/or industrial areas. The connections must be reliable and yet removable for maintenance and replacement.




Reliable yet removable high voltage connectors require that the interface between the connector and the high voltage system be free of voids and provide a secure connection. In the areas in which x-ray tubes are utilized, the connectors typically fall into two categories, oil filled and dry. Dry-type connectors typically use tapered wafers of compliant silicone to make a tight connection between the x-ray tube and the high voltage cable. Pressure applied through bolts in the connector-housing compress the silicone members to remove air from the connection. The silicone members have poor thermal connectivity, however, and heat can be trapped in the connection accelerating failure.




In an effort to overcome this problem with dry-type connections, thermally conductive silicones have been utilized. The additives which enhance connectivity, however, reduce the compliance of the silicone layer making it difficult to compress and exude air from the joint.




Thus, a means or mechanism for making a reliable connection between high voltage sources and x-ray systems using higher conductivity silicone members is needed.




SUMMARY OF THE INVENTION




It is an object of the present invention to provide an improved connector mechanism between a source of high voltage and an x-ray tube. It is another object of the present invention to provide a reliable high voltage connector mechanism using higher conductivity silicone material in a dry-type connection.




The present invention overcomes the problems with dry-type connectors and provides a secure and reliable yet removable high voltage connection for a dry-type connector assembly. In accordance with the present invention, an epoxy-filled housing is removably mounted to an x-ray tube ceramic insulator. A high conductivity silicone gasket member with parallel faces is positioned between the ceramic insulator and the epoxy material in the housing. Seals between the connector housing and casing of the x-ray tube form a vacuum seal. The space between the x-ray tube casing and connector housing is evacuated by a vacuum. The vacuum causes the connector housing to be pressed onto the silicone gasket member which in turn is pressed onto the ceramic insulator. This results in a loaded and air-free connection. Spring loaded attachment bolts hold the connector housing to the x-ray tube casing and maintain the security of the joint over the life of the connector.




In an alternate embodiment, a second housing is positioned over the epoxy-filled connector housing and the space between the two housings is filled with a cooled liquid.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

schematically illustrates a system in which the present invention is utilized;





FIG. 2

is a schematic cross-sectional view of a preferred embodiment of the present invention;





FIGS. 3 and 4

are schematic perspective top and bottom views, respectively, of a preferred connector housing in accordance with the present invention; and





FIG. 5

is a cross-sectional schematic view of an alternate preferred embodiment of the present invention.











DESCRIPTION OF THE PREFERRED EMBODIMENTS(S)




The present invention relates to secure and reliable connection mechanisms particularly between x-ray tubes and high voltage sources. However, the present invention is not be limited only to that situation since it encompasses all connectors and connection mechanisms between high voltage sources on the one hand and a mechanism or device which utilizes the high voltage on the other hand. The term “x-ray tube” is also defined to be sufficiently broad to cover any vacuum vessel in which a high voltage is needed or utilized, and thus the term “vacuum vessel” is used herein to mean x-ray tubes and other vacuum-type high voltage powered devices.”




Problems have been experienced today in the use of dry-type connection assemblies between high voltage sources and vacuum vessels, particularly when thermally conductive silicone gaskets are utilized. The additives which are used to enhance conductivity in the silicone material reduce the resiliency or compliance of the material. This makes evacuation of air from the joint or connection more difficult. Any remaining air in the joint or connection can adversely affect the electrical integrity of the connection and thus reduce the life of the connector.




In general, in accordance with the present invention, a filled connector housing is utilized, and the air in the connection joint is evacuated by a vacuum in order to compress the silicone gasket between the filled housing and the ceramic insulator of the vacuum vessel. Appropriate seals and spring-loaded fasteners are utilized to hold the connector and vacuum vessel together. This maintains the integrity of the joint and increases the life of the connector.




A system in which the present invention can be utilized is shown schematically in FIG.


1


and referred to generally by the reference numeral


10


. In general, the connector mechanism


20


is attached to a vacuum vessel


25


and connects a transformer


30


or other high voltage source via cable


32


to the vacuum vessel


25


. Also, in accordance with known technology, the vacuum vessel


25


typically is cooled by a conventional cooling system


34


which includes a cooling fluid, such as oil. Also, with respect to one embodiment of the present invention, as shown and discussed below with respect to

FIG. 5

below, the cooling system can also be used to cool the connector


20


. This is shown in the alternative by dash line


36


in FIG.


1


.




A preferred embodiment of the connector housing


40


is shown in

FIGS. 3 and 4

, with

FIG. 3

being a top perspective view, and

FIG. 4

being a bottom perspective view. The housing


40


has a generally cylindrical portion


42


and an annular connection flange


44


. The flange


44


has a plurality of openings


46


spaced around its circumference for position of fasteners, as described below. The connector housing


40


also has a port


48


for entry of the high voltage cable


50


, as well as an evacuation port


52


which is used during the vacuum procedure. The connector housing


40


has a central cavity


54


, as shown in

FIG. 4

, as well as an annular groove or channel


56


.




As shown schematically in

FIG. 2

, the connector housing


40


is adapted to be positioned on the end of a vacuum vessel


25


and used to connect the high voltage cable


50


with the vacuum vessel. In this regard, the vacuum vessel


25


has a generally cylindrical container


60


connected to a ceramic insulator


62


. The container


60


is positioned inside an outer supporting container


64


which provides a supporting structure for the vacuum vessel. An annular seal


66


, such as an O-ring, is used to provide a seal between the inner container


60


and the outer container


64


.




As shown in

FIG. 2

, the connector housing


40


is positioned over the end


64


A of the support housing


64


. The end


64


A is annular and fits within the annular groove


56


in the connector housing. A seal


68


, such as an O-ring, is used to provide a seal between the connector housing


40


and the supporting container


64


.




The ceramic insulator


62


can be of any conventional type, such as an alumina (aluminum oxide), insulator which is a sintered ceramic material. The insulator


62


has a flat or planar outer surface


62


A and a conical or angular inner surface


62


B. The insulator


62


is brazed at


70


A to annular connector member


70


, which in turn is welded at


70


B to the upper end of the vacuum vessel container


60


. Each of these connections, namely connections


70


A and


70


B, provide air tight secure connections. In this regard, a vacuum is typically provided in the inner space or volume


72


of the vacuum vessel


25


.




The space


74


which exists between the container


60


and outer supporting container


64


is typically filled with a cooling fluid (not shown), such as oil, which is circulated in the space


74


by the cooling system


34


.




The interior volume (central cavity)


54


of the connector housing


40


is filled with an electrically insulating material


80


, such as an epoxy. Also, potted in the epoxy insulating material


80


are three wires or electrical connectors


81


,


82


, and


83


, which are part of the high voltage cable


50


.




Positioned between the insulator


62


and insulating material


80


is a silicone gasket member


84


. The gasket member


84


is made from a high thermal conductivity material and has an annular shape with parallel faces


84


A and


84


B and a central opening


86


. The thermally conductive material forming the silicone gasket


84


can be of any conventional type, such as those currently used with conductivity enhancing additives in them.




The ceramic insulator


62


has a plurality of elongated connectors


91


,


92


, and


93


which are either molded into the insulator when it is made or positioned in holes formed in the insulator after it is made. The shaft connectors are typically made from a Kavor material.




The annular flange member


70


is made of any metal material, such as Kovar™. The cylindrical vacuum vessel


60


is typically made from a metal material, such as stainless steel. The outer support housing container


64


is also typically made of a conductive metal material, such as aluminum. The sealing members


66


and


68


are typically made from an elastomeric material, such as nitryl, buna-N, or rubber. The connector housing


40


also can be made of any conductive metal material, but preferably is made from an aluminum material.




The support housing


64


has an annular flange


65


around its outer surface which mates with flange


44


on the connector housing


40


. The flange


65


has a plurality of openings


67


which correspond in number and are aligned with the openings


46


in the housing


40


.




Connector members, such as copper contact buttons


94


, are positioned on the ends of the shaft contacts


91


,


92


, and


93


on the surface


62


A of the ceramic insulator


62


. The contact buttons are positioned in the space formed by the central opening


86


in the silicone gasket member


84


. In this regard, when the connector housing


40


is assembled onto the vacuum vessel


25


, the wire connectors


81


,


82


, and


83


are soldered or otherwise connected to the copper buttons


94


which, in turn, supply high voltage electricity into the vacuum vessel through the connectors


91


,


92


, and


93


.




A plurality of fastener members


98


, preferably spring-loaded bolts or the like are positioned through aligned openings


46


and


67


and used to hold the connector housings


40


to the vacuum vessel


25


. The spring loaded fastener members apply a force between the two annular flanges


44


and


67


in order to securely and firmly hold the connector housing and vacuum vessel together.




During assembly, the connector housing


40


is lightly positioned over the ceramic insulator


62


such that the flange


44


slightly engages the O-ring


68


on the support housing


64


. A vacuum is then applied through evacuation port


52


which draws out the air in space


100


. As the pressure in the connector


20


drops, the connector housing


40


is pressed onto the silicone gasket


84


which, in turn, is pressed against the ceramic insulator


62


. Once the desired level of vacuum has been achieved, the attachment bolts and preloaded springs are installed. The joint between the flanges


44


and


67


is also sealed in any conventional manner. The springs in the attachment fasteners apply additional preload to the joint to maintain joint security in the event that the vacuum in space


100


reduces over the life of the connector.




Once the appropriate vacuum level is reached in the annular space


100


, the evacuation port is closed or crimped off in a conventional manner, preventing the vacuum from dissipating.




The net effect of the present invention is that no additional force is applied on the ceramic insulator


62


. This is significant since ceramic insulators are relatively delicate and fragile and can crack if too much pressure is applied to them. The ambient air pressure slightly compresses the gasket member while removing the air surrounding it resulting in a loaded and air free connection.




The force on the housing


40


is basically one atmosphere due to the atmospheric pressure. The vacuum in the space


100


allows use of the atmospheric pressure to preload the connector without putting additional load on the ceramic insulator. Thus, the invention results in a net effect of one atmosphere force on the vacuum vessel without any additional force on the ceramic insulator. This results in approximately 500 pounds of preload force in the connector


20


. The spring-loaded fasteners


98


supply approximately another 500 pounds of preload creating a total of about 1,000 pounds of preload on the connection joint.




An alternate connector embodiment


20


′ of the present invention is shown in FIG.


5


. In this embodiment, basically all of the components are substantially the same as those described above, with the exception of an additional housing member


120


being positioned over the connector housing


40


. For this purpose, an annular ridge


142


is provided on the connector housing


40


in order to separate and support the housings


40


and


120


. Preferably, the outer housing is also made from a metal material, such as aluminum.




The annular space or volume


150


, which exists between the two housing members


40


and


120


is filled with a cooling fluid, such as transformer oil. The cooling fluid is circulated by a cooling mechanism or system, such as cooling system


34


shown in

FIG. 1

, in order to dissipate heat from the connector


20


′.




While the invention has been described in connection with one or more embodiments, it is to be understood that the specific mechanisms and techniques which have been described are merely illustrative of the principles of the invention. Numerous modifications may be made to the methods and apparatus described without departing from the spirit and scope of the invention as defined by the appended claims.



Claims
  • 1. A method of securely attaching a high voltage connector device to a vacuum vessel, said method comprising the steps of:assembling said connector device on said vacuum vessel, said vacuum vessel having a vessel container and insulator member and said connector device having a first connector housing filled with an insulating material; positioning a substantially flat gasket member between said first connector housing and said insulating material, said gasket member being made from a silicone material; said insulator member having a first substantially planar surface and said insulating material having a second substantially planar surface; positioning a second connector housing over said first connector housing leaving an annular space between them; cooling the annular space between said first and second housing members with a cooling fluid; pulling a vacuum and thereby removing the air in the space between said connector device and said insulator member, thereby compressing said gasket member between said first and second substantially planar surface; and securing said connector device to said vacuum vessel.
  • 2. The method as recited in claim 1 wherein the connector device is secured to said vacuum vessel by a plurality of fasteners.
  • 3. The method as recited in claim 2 wherein said fasteners are spring-loaded bolt members.
  • 4. The method as recited in claim 1 wherein said insulator member is made from a ceramic material and said insulating material is an epoxy material.
  • 5. The method as recited in claim 1 further comprising a vacuum evacuation port member on said connector housing.
  • 6. A high voltage connector for connecting a high voltage source to a vacuum vessel, the vacuum vessel having an insulator member, said connector comprising:a first housing member having a central cavity; an insulating member positioned in said central cavity; a substantially flat silicone gasket member positioned adjacent said insulating member; a second housing member positioned over said first housing member leaving an annular space therebetween; wherein when said connector is connected to said vacuum vessel, the gasket member is compressed between said insulating member and said insulator member; and wherein said annular space between said first and second housing members can be cooled by circulation of a cooling fluid.
  • 7. The connector as recited in claim 6 wherein said insulator member is made from a ceramic material and said insulting member is made from an epoxy material.
  • 8. The connection as recited in claim 6 wherein the insulator member has a first substantially planar surface, said insulating member has a second substantially planar surface, and said gasket member is compressed between said first and second planar surfaces.
  • 9. The connector as recited in claim 6 further comprising fastener members on said housing member for connecting said connector to the vacuum vessel.
  • 10. A high voltage connector for connecting a high voltage source to a vacuum vessel, said connector comprising a first housing member having a central cavity, insulating material positioned in said central cavity, said insulating material having a substantially planar surface, a gasket member, said gasket member being made from a silicone material and having at least one substantially planar surface positioned in direct contact with said insulating material's substantially planar surface; a second housing member positioned over said first housing member and leaving a cavity therebetween, and means for cooling said cavity between said second housing member and said first housing member, wherein when said connector is connected to the vacuum vessel, the gasket member is compressed creating a tight seal.
  • 11. The connector as recited in claim 10 wherein said insulating material is an epoxy material.
  • 12. The connector as recited in claim 10 further comprising fastening members on said housing member for tightly securing said connector to a vacuum vessel.
  • 13. The connector as recited in claim 10 further comprising a vacuum evacuation port member on said first housing member.
  • 14. A method of securely attaching a high voltage connector device to a vacuum vessel, said method comprising the steps of:assembling said connector device on said vacuum vessel, said vacuum vessel having a vessel container and insulator member and said connector device having a first connector housing member filled with an insulating material; positioning a highly conductive gasket member between said first connector housing member and said insulating material; positioning a second connector housing member over said first connector housing member leaving an annular cavity therebetween; cooling said annular cavity with cooling means; pulling a vacuum and thereby removing the air in the space between said connector device and said insulator member; and securing said connector device to said vacuum vessel.
  • 15. The method as recited in claim 14 wherein the connector device is secured to said vacuum vessel by a plurality of fasteners.
  • 16. The method as recited in claim 15 wherein said fasteners are spring-loaded bolt members.
  • 17. The method as recited in claim 14 wherein said insulating material is an epoxy material and is positioned to compress said gasket member against said insulator member.
  • 18. The method as recited in claim 17 wherein said insulating material has a first substantially planar surface, said insulator member has a second substantially planar surface facing said first planar surface, and said gasket member is compressed between said first and second substantially planar surfaces.
  • 19. The method as recited in claim 14 wherein said highly conductive gasket member is made of a silicone material.
  • 20. The method as recited in claim 14 wherein said insulator member is made from a ceramic material and said insulating material is an epoxy material.
  • 21. The method as recited in claim 14 further comprising a vacuum evacuation port member on said first connector housing member.
  • 22. A high voltage connector for connecting a high voltage source to a vacuum vessel, said connector comprising:a first housing member having a central cavity and an annular flange, said first housing member filled with an insulating material; a high conductivity silicone gasket member, said gasket member having a central cavity for allowing connection of a high voltage source to a vacuum vessel; and a second housing member positioned over said first housing member and leaving an annular space therebetween for circulation of a cooling fluid thereon.
  • 23. The high voltage connector as recited in claim 22 wherein said silicone gasket member has substantially planar parallel faces thereon.
  • 24. The high voltage connector as recited in claim 22 wherein said insulating material is an epoxy material and is positioned to compress said gasket member wherein said connector is connected to a vacuum vessel.
US Referenced Citations (6)
Number Name Date Kind
4209745 Hines Jun 1980 A
4780086 Jenner et al. Oct 1988 A
4842526 Stukalin et al. Jun 1989 A
5247424 Harris et al. Sep 1993 A
5514562 Saugmann et al. May 1996 A
5576937 Kubo Nov 1996 A
Non-Patent Literature Citations (1)
Entry
IBM Technical Disclosure Bulletin, vol. 20, No. 118, pp. 4846-4847, Apr. 1978.