Evaluation method of magnetic disk, manufacturing method of magnetic disk, and magnetic disk

Information

  • Patent Grant
  • 8908315
  • Patent Number
    8,908,315
  • Date Filed
    Tuesday, March 29, 2011
    13 years ago
  • Date Issued
    Tuesday, December 9, 2014
    9 years ago
Abstract
An evaluation method that can easily evaluate properties of a carbon protective film and a lubricant on a magnetic-disk surface or particularly, an evaluation method of a magnetic disk in which the properties of the magnetic-disk surface can be evaluated accurately so that a strict demand for interactions between the magnetic-disk surface and a head can be met is provided. In a state in which an element portion of the magnetic head provided with the head element portion that projects by thermal expansion is projected, after being brought into contact with a predetermined radial position on the surface of the rotating magnetic disk, the head is further made to perform seeking in a state in which the element portion is projected by a specified amount, whereby the properties of the carbon film or the lubricant formed on the magnetic-disk surface is evaluated.
Description
TECHNICAL FIELD

The present invention relates to an evaluation method of a magnetic disk to be mounted on a magnetic disk device such as a hard-disk drive (HDD) and more particularly to an evaluation method of an amount of transfer of a carbon film or a lubricant formed on the magnetic disk onto a magnetic head, a manufacturing method of a magnetic disk, and a magnetic disk.


BACKGROUND ART

With the recent trend to higher-capacity information processing, various information recording technologies have been developed. Particularly, a surface recording density of an HDD (Hard Disk Drive) using the magnetic recording technology has continuously increased by a rate of approximately 100% a year. In recent years, an information recording capacity exceeding 250 GB per disk is required for a magnetic disk having a radius of 2.5 inches used in HDD or the like, and in order to meet such demand, realization of an information recording density exceeding 400 Gbits per 1 square inch is in demand. In order to achieve the high recording density in a magnetic disk used in an HDD or the like, magnetic crystal grains constituting a magnetic recording layer handling recording of an information signal need to be refined, and its layer thickness needs to be reduced at the same time. However, in the case of a magnetic disk of an in-plane magnetic recording method (also referred to as longitudinal magnetic recording method or horizontal magnetic recording method) having been merchandized, as the result of development of the refining of the magnetic crystal grains, a thermal fluctuation phenomenon in which thermal stability of the recording signal is damaged by a superparamagnetic phenomenon and the recording signal is lost begins to occur, which makes an obstructive factor to higher recording density of a magnetic disk.


In order to solve this obstructive factor, a magnetic recording medium of a perpendicular magnetic recording method has been proposed recently. In the case of the perpendicular magnetic recording method, different from the in-plane magnetic recording method, a magnetization easy axis of a magnetic recording layer is adjusted to be oriented in the perpendicular direction with respect to a substrate surface. As compared with the in-plane recording method, the perpendicular magnetic recording method can suppress the thermal fluctuation phenomenon, which is suitable for higher recording density. This type of perpendicular magnetic recording mediums include a so-called two-layer type perpendicular magnetic recording disk provided with a soft magnetic underlayer made of a soft magnetic body on a substrate and a perpendicular magnetic recording layer made of a hard magnetic body as described in Japanese Unexamined Patent Application Publication No. 2002-74648 (Patent Document 1).


CITATION LIST
Patent Literature



  • PTL 1: Japanese Unexamined Patent Application Publication No. 2002-74648



SUMMARY OF INVENTION
Technical Problem

Currently, in order to guarantee reliability of a perpendicular magnetic recording disk suitable for higher density, a load-unload test, a fixed-point floating test and the like are conducted using an actual HDD. In this evaluation, feedback is made usually through a test period of one week to one month on strength of a carbon protective film (resistance) and stains on a magnetic head (particularly on an ABS (Air Bearing Surface)) and particularly on presence of transfer of a lubricant and a result of a transferred amount. However, it takes a long time until the result is fed back in the prior-art load-unload test and fixed-point floating test. Also, the results are fluctuated, and it is likely that characteristics which should have been known were not found.


Recently, in a magnetic head, reduction of spacing has been rapidly promoted through introduction of the Dynamic Flying Height (DFH) technology in which electricity is supplied to a thin-film resistor provided inside an element so as to generate heat and to thermally expand a tip of a magnetic pole, and thus, development of a medium that satisfies a back-off margin of 1 nm of a DFH element is required from now on. In achieving the above, determination is difficult with the present-state evaluation method, and so a new evaluation method is in demand.


The inventor has found that in a state in which an element portion of a magnetic head provided with the head element portion that projects by thermal expansion is projected, after being brought into contact with a predetermined radial position on the surface of a rotating magnetic disk, the magnetic head is further made to perform seeking in a state in which the element portion is projected by a specified amount so that properties of the carbon protective film and a transferred amount of the lubricant to the magnetic head can be detected in a shorter time and more accurately than the prior-art evaluation method.


From the above circumstances, it is obvious that if the properties of the carbon protective film and the lubricant on the manufactured magnetic-disk surface can be evaluated easily and accurately, its utility is extremely high.


The present invention was made in view of the above problems and has an object to provide an evaluation method that can easily evaluate properties of a carbon film and a lubricant on the magnetic-disk surface or particularly to provide an evaluation method of a magnetic disk in which the properties of the carbon film and the lubricant on the magnetic-disk surface can be evaluated accurately so that a strict demand for interactions between the protective film and the lubricant on the magnetic-disk surface and the head can be met, a manufacturing method of a magnetic disk using the evaluation method, and a magnetic disk.


Solution to Problem

The inventor has keenly conducted researches in order to solve the above problems and completed the present invention.


That is, the present invention is an invention having the following configuration.


(Configuration 1)


An evaluation method of a magnetic disk characterized in that in a state in which an element portion of a magnetic head provided with the head element portion that projects by thermal expansion is projected, after being brought into contact with a predetermined radial position on the surface of a rotating magnetic disk, the magnetic head is further made to perform seeking in a state in which the element portion is projected by a specified amount, whereby properties of a carbon film or a lubricant formed on the surface of the magnetic disk is evaluated.


(Configuration 2)


The evaluation method of a magnetic disk described in the configuration 1, in which the projecting amount of the head element portion at measurement is within a range of 0.1 to 10 nm.


(Configuration 3)


The evaluation method of a magnetic disk described in the configuration 1 or 2, in which a contact radius of the head element portion at measurement is a region excluding 1 mm and inside from an inner peripheral edge portion and 0.1 mm and outside from an outer edge portion of the magnetic disk.


(Configuration 4)


The evaluation method of a magnetic disk described in any one of the configurations 1 to 3, in which contact time of the head element portion at measurement is 30 seconds or more.


(Configuration 5)


The evaluation method of a magnetic disk described in any one of the configurations 1 to 4, in which a seek speed at measurement is within a range from 0.1 to 3.0 m/s.


(Configuration 6)


The evaluation method of a magnetic disk described in any one of the configurations 1 to 5, in which a magnetic disk rotation speed at measurement is within a range of 100 to 20000 rpm.


(Configuration 7)


A manufacturing method of a magnetic disk characterized by including a process in which on the basis of an evaluation result by the evaluation method of a magnetic disk described in any one of the configurations 1 to 6, a manufacturing condition of a lubrication layer is determined and the lubrication layer is formed on the surface of the magnetic disk in accordance with the determined manufacturing condition.


(Configuration 8)


The manufacturing method of a magnetic disk characterized by including a process in which on the basis of an evaluation result by the evaluation method of a magnetic disk described in any one of the configurations 1 to 6, a manufacturing condition of a carbon protective layer is determined and the carbon protective layer is formed on the surface of the magnetic disk in accordance with the determined manufacturing condition.


(Configuration 9)


A magnetic disk determined as acceptable by the evaluation method of a magnetic disk described in any one of the configurations 1 to 6.


Advantageous Effects of Invention

According to the present invention, an evaluation method that can easily evaluate properties of a carbon film or a lubricant formed on the surface of a magnetic disk and particularly an evaluation method of a magnetic disk that can accurately evaluate properties of the magnetic-disk surface can be provided, whereby a strict demand for interactions between the magnetic-disk surface and a head can be met.


Also, according to the present invention, a manufacturing method of a magnetic disk including a process in which on the basis of the evaluation method of a magnetic disk of the present invention, a manufacturing condition of a carbon protective layer or a lubrication layer is determined, and the carbon protective layer or the lubrication layer is formed in accordance with the determined manufacturing condition can be provided.


Also, a magnetic disk determined as acceptable by the evaluation method of a magnetic disk of the present invention can pass a drive reliability test, and a magnetic disk provided with high reliability performances can be obtained.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 is a diagram illustrating an evaluation result of liquid contamination in Example 1.



FIG. 2 is a diagram illustrating the evaluation result of the liquid contamination in a comparative example.





DESCRIPTION OF EMBODIMENTS

An embodiment of the present invention will be described below in detail.


The present invention is, as described in the configuration 1, an evaluation method of a magnetic disk characterized in that an element portion of a magnetic head provided with the head element portion that projects by thermal expansion is projected, and after being brought into contact with a predetermined radial position on the surface of a rotating magnetic disk, the magnetic head is further made to perform seeking in a state in which the element portion is projected by a specified amount, whereby properties of a carbon film or a lubricant formed on the surface of the magnetic disk is evaluated.


The head element portion (DFH element) thermally expands the magnetic-electrode tip by supplying electricity to a thin-film resistor provided inside the element so as to generate heat. Regarding the DFH technology, description can be found in Japanese Unexamined Patent Application Publication No. 2003-168274, for example. This technology enables reduction in magnetic spacing in a magnetic head while a slider floating amount is maintained. Currently, a distance from the surface of the magnetic disk to an RW element of the DFH element is reduced to as small as several nm.


In the present invention, a projecting amount after the DFH element is brought into contact with the disk surface at measurement is, as in the configuration 2, preferably within a range of 0.1 to 10 nm, for example. In the evaluation method of the present invention, the magnetic disk is rotated and the magnetic head provided with the DFH element which is projected by thermal expansion is floated above the magnetic disk. After that, DFH power is gradually increased so as to make the DFH element portion of the magnetic head projected and brought into contact at a predetermined radial position on the surface of the rotating magnetic disk. Moreover, from the contact point, seeking is made on the magnetic-disk surface in a state in which the DFH element portion is projected by a specified amount.


As a method of detecting a point where the DFH element is in contact with the magnetic-disk surface, detection can be made by mounting an AE sensor that detects an AE output on a head suspension or the vicinity thereof, for example, and by monitoring an output of this sensor.


In the present invention, as in the configuration 3, the contact radius of the head element portion at measurement is preferably a region excluding 1 mm and inside from an inner peripheral edge portion and 0.1 mm and outside from an outer edge portion of the magnetic disk, for example.


Also, in the present invention, as in the configuration 4, contact time of the head element portion at measurement is preferably at least 30 seconds or more and preferably within a range of 5 to 360 minutes, for example.


Also, in the present invention, as in the configuration 5, the seek speed at measurement is preferably within a range of 0.1 to 3.0 m/s.


Also, in the present invention, as in the configuration 6, the rotation speed of the magnetic disk at measurement is preferably within a range of 100 to 20000 rpm, for example.


In the present invention, detection of an amount of transfer of the lubricant formed on the surface of the magnetic disk onto the magnetic head (particularly, onto the ABS surface) can be made by optical microscopic observation of the ABS surface of the magnetic head, for example. Alternatively, the detection can be made by TOF-SIMS (Time Of Flight Secondary Ion Mass Spectrometer) capable of analysis of organic substances at an atomic layer level of a micro region with the size of several nm.


According to the present invention, the properties of the carbon film and the lubricant on the magnetic-disk surface can be easily evaluated, and it is particularly suitable for accurate evaluation of the properties of the carbon film and the lubricant on the magnetic-disk surface that can meet a strict demand for interactions between the magnetic-disk surface and the magnetic head.


Specifically, the evaluation method of a magnetic disk according to the present invention enables determination as to acceptability of the following properties.


That is, regarding the carbon film, the type of the carbon protective film, the carbon-protective-film thickness (if the carbon protective film is thinner than a certain film thickness, pickup becomes easy, for example) and the like, and regarding the lubricant, the type of the lubricant, a refining method of the lubricant, the lubricant film thickness (if the lubricant film thickness is larger than a certain film thickness, pickup can easily occur, for example) and the like can be evaluated.


The evaluation method according to the present invention, that is, in a state in which the element portion of the magnetic head provided with the DFH element portion is projected, the magnetic head is brought into contact with a predetermined radial position on the surface of the rotating magnetic disk and then, the magnetic head is further made to perform seeking in the state in which the element portion is projected by a specific amount. This means to project the DFH element by a certain amount from initial contact and to keep it in contact with the lubricant film or the carbon layer for a certain time rather than to slide the DFH element in point contact only with the major surface of the lubricant layer and usually enables evaluation on the properties of the lubricant and the carbon film in a totally new DFH contact state, whereby more accurate determination as to acceptability is made possible.


A magnetic disk for which evaluation on the properties of the carbon film on the magnetic-disk surface and a transfer amount of the lubricant using the evaluation method according to the present invention is manufactured by forming at least a magnetic layer, a protective layer, a lubrication layer and the like on a substrate for a magnetic disk. The size of a magnetic disk suitable for the present invention is not particularly limited, and the present invention can be applied to any of magnetic disks having the size of 0.85 to 3.5 inches, for example.


As a substrate for a magnetic disk, a glass substrate is preferable. Glass forming the glass substrate is preferably amorphous aluminosilicate glass. This type of glass substrates can be finished to a smooth mirror surface by mirror-polishing the surface. As this type of aluminosilicate glass, aluminosilicate glass containing SiO2 of 58 weight % or more and 75 weight % or less, Al2O3 of 5 weight % or more and 23 weight % or less, Li2O of 3 weight % or more and 10 weight % or less, and Na2O of 4 weight % or more and 13 weight % or less as main component (however, aluminosilicate glass not containing phosphorous oxides) can be used. For example, the glass can be amorphous aluminosilicate glass containing SiO2 of 62 weight % or more and 75 weight % or less, Al2O3 of 5 weight % or more and 15 weight % or less, Li2O of 4 weight % or more and 10 weight % or less, Na2O of 4 weight % or more and 12 weight % or less and ZrO2 of 5.5 weight % or more and 15 weight % or less as main components, having a weight ratio of Na2O/ZrO2 at 0.5 or more and 2.0 or less and the weight ratio of Al2O3/ZrO2 at 0.4 or more and 2.5 or less, and not containing phosphorous oxides.


The glass substrate for a magnetic disk is preferably a mirror surface having maximum roughness Rmax of 6 nm or less on the surface of the glass substrate realized at least by mirror polishing processing and washing processing of the glass substrate. Such a mirror surface state can be realized by performing the mirror polishing processing and the washing processing in this order.


After the washing processing process, chemical reinforcement processing may be applied. As a method of the chemical reinforcement processing, a low-temperature type ion exchange method of performing ion exchange at a temperature of 300° C. or more and 400° C. or less, for example, is preferable.


As a material of the magnetic layer formed on the substrate for a magnetic disk, a CoPt ferromagnetic alloy, which is a hexagonal crystal having a large anisotropy field can be used. As a method of forming the magnetic layer, a sputtering method or a method of forming a film of a magnetic layer on the glass substrate by using a DC magnetron sputtering method, for example, can be used. Also, by interposing an underlayer between the glass substrate and the magnetic layer, an orientation direction of magnetic grains of the magnetic layer or the size of the magnetic grain can be controlled. For example, by using a hexagonal crystal underlayer containing Ru and Ti, the magnetization easy direction of the magnetic layer can be oriented along a normal line of the magnetic-disk surface. In this case, a magnetic disk of the perpendicular magnetic recording type is manufactured. The underlayer can be formed by the sputtering method similarly to the magnetic layer.


Also, on the magnetic layer, the carbon protective layer is formed. As the carbon protective layer, an amorphous hydrogenated carbon protective layer is suitable. The protective layer can be formed by the plasma CVD method, for example. As the film thickness of the protective layer, 10 to 70 angstrom is preferable.


Also, the lubrication layer is further formed on the protective layer. As the lubrication layer, a lubricant having a functional group at the end of a main chain of a perfluoropolyether compound or particularly, a perfluoropolyether compound provided with a hydroxyl group at the end as a polar functional group as a main component is preferable. The film thickness of the lubrication layer is preferably 5 to 15 angstrom. The lubrication layer can be applied and formed by the dip method.


Also, the present invention provides a manufacturing method of a magnetic disk including a process in which on the basis of an evaluation result by the above-described evaluation method of a magnetic disk according to the present invention, manufacturing conditions of the carbon protective layer and the lubrication layer are determined, and the carbon protective layer and the lubrication layer are formed in accordance with the determined manufacturing conditions. For example, samples for which the carbon film thickness or carbon type is known in advance are prepared, and from the evaluation result of these samples according to the present invention, a product provided with a protective layer having desired carbon film thickness and carbon type can be determined. Also, samples for which numeric values of a lubrication-layer bonded rate and a non-fixed lubrication-layer film thickness (the evaluation methods thereof will be described in examples which will be described later) are known in advance are prepared, and from the evaluation results of these samples according to the present invention, a product provided with a lubrication layer having desired lubrication layer bonded rate and non-fixed lubrication-layer film thickness can be determined. Also, samples for which manufacturing conditions (temperature, time, composition and the like) of the carbon protective layer or the lubrication layer are known in advance are prepared, and from the evaluation results of these samples according to the present invention, the desired manufacturing conditions of the carbon protective layer and the lubrication layer can be determined. By forming the carbon protective layer and the lubrication layer on the basis of the desired manufacturing conditions determined as above, a magnetic disk provided with preferable characteristics can be obtained.


EXAMPLE

An embodiment of the present invention will be described below in more detail by referring to examples.


Example

In this example, first, a glass substrate made of disk-shaped aluminosilicate glass having a diameter of 66 mm and a thickness of 1.5 mm was obtained from molten glass by direct press using an upper die, a lower die, and a body mold, which was sequentially subjected to a rough lapping process (rough grinding process), a shape machining process, a fine lapping process (fine grinding process), an end-face mirror machining process, a first polishing process, and a second polishing process and then, subjected to chemical reinforcement so as to manufacture a glass substrate for a magnetic disk. This glass substrate has the main surface and end face mirror-polished.


As the result of visual inspection and detailed inspection of the glass substrate surface having been subjected to the chemical reinforcement and the subsequent washing, no projection caused by adhesion on the glass substrate surface or defect such as a scar was found. Also, surface roughness on the main surface of the glass substrate obtained through the above processes was measured by an atomic force microscope (AFM), and it was found that a glass substrate for a magnetic disk having an extremely smooth surface with Rmax=2.13 nm and Ra=0.20 nm was obtained. The outer diameter of the glass substrate was 65 mm, the inner diameter was 20 mm, and the plate thickness was 0.635 mm.


Subsequently, using a cluster-type sputtering device on the obtained glass substrate for a magnetic disk, an adhesion layer made of a Ti alloy thin film (film thickness: 100 Å), a soft magnetic layer made of a Co alloy thin film (film thickness: 600 Å), a first underlayer made of a Pt alloy thin film (film thickness: 70 Å), a second underlayer made of an Ru alloy thin film (film thickness: 400 Å), and a magnetic layer made of a CoPtCr alloy film (film thickness: 200 Å) were sequentially formed and then, a carbon protective layer was formed by the plasma CVD method. This magnetic disk is a magnetic disk for a perpendicular magnetic recording method.


The above protective layer is a diamond-like carbon protective layer and was formed by the plasma CVD method.


As the lubrication layer to be formed on the above protective layer, a lubricant having a perfluoropolyether compound provided with a hydroxyl group as a polar functional group at the end of the main chain of a perfluoropolyether compound as a main component was used. As for the film thickness of the lubrication layer, 9 types of samples with different film thicknesses from 10 to 16 angstroms were prepared. The lubrication layer can be applied and formed by the dip method.


The samples fabricated as above are referred to as magnetic disks 1 to 9.


As for the above magnetic disks 1 to 9, a transfer amount to the magnetic head ABS surface of the lubricant formed on the magnetic disk in accordance with the method of the present invention was evaluated.


Specifically, a magnetic head provided with a DFH element was made to perform seeking on the surface of the magnetic disks 1 to 9 within a range of the radius of 12.5 to 31.5 mm for 60 minutes, and the lubricant transfer amount onto the head was examined. An additional projecting amount after initial contact of the DFH element at this time was set at 0.5 nm. Also, the disk rotation speed was set at 5400 rpm. Moreover, a seek speed was set at 1.5 m/s.


A relationship between the result of lubricant pickup (transfer) obtained by the test method using DFH element contact according to the present invention and the film thickness of the lubricant, the lubrication-layer bonded rate, the film thickness of the non-fixed lubrication layer (hereinafter referred to as a fluidized layer) was examined. A small value of the fluidized layer film thickness results in less lubricant in a free state, and improvement of the lubricant pickup is assumed. Also, the lubricant pickup amount was evaluated by observation of the ABS surface of the head after test using an optical microscope and rated in five ranks in accordance with the degree of stains as “favorable=rank 1 . . . no stain on the head element portion and the ABS”, “slight stains=rank 2 . . . partial adhesion to the head element portion”, “medium stains=rank 3 . . . large quantity adhesion to the head element portion”, “medium large stains=rank 4 . . . large quantity adhesion to the head element portion and small quantity adhesion to the ABS”, “extreme stains=rank 5 . . . large quantity adhesion to the head element portion and large quantity adhesion to the ABS”.


Also, bonding of the lubrication layer was evaluated by the following tests.


The film thickness of the lubrication layer of a magnetic disk is measured in advance by using the FTIR (Fourier Transform Infrared Spectrophotometer) method. Subsequently, the magnetic disk is immersed in a solvent (solvent used in the dip method) for 1 minute. By immersing the magnetic disk in the solvent, a portion of the lubrication layer with weak adhesion power is dispersed and dissolved in the solvent, but a portion with strong adhesion power can remain on the protective layer. The magnetic disk is pulled out of the solvent, and the film thickness of the lubrication layer is measured by the FTIR method again. A ratio of the film thickness of the lubrication layer after the immersion in the solvent to the film thickness of the lubrication layer before the immersion in the solvent is referred to as a lubrication layer bonded rate. The higher the bonded rate is, the higher the adhesion performance (close contact) of the lubrication layer can be considered.



FIG. 1 is an evaluation result of liquid contamination of this example. If the liquid contamination adheres to the magnetic head ABS surface, head floating becomes unstable, and nonconformity that data cannot be rewritten during head write in the actual hard disk drive occurs. Also, head-floating for a long time can cause head crush at the worst.


From the result shown in FIG. 1, it was known that on the basis of the evaluation result by the evaluation method of the present invention, pickup of the lubricant on the magnetic disk determined as acceptable was not confirmed (lubricant pickup amount is favorable). On the other hand, lubricant transfer to the magnetic head ABS surface was confirmed on the magnetic disk determined as unacceptable.


Specifically, by forming the lubrication layer under the manufacturing condition in which the lubrication layer bonded rate (bonded rate: BR) is 82.5% or more, for example, and the film thickness of the lubricant fluidized layer is 2.5 Å or less, for example, a magnetic disk that can improve pickup resistance of the lubricant with respect to the magnetic head can be obtained.


It is needless to say that the numeric values of the lubrication layer bonded rate and the film thickness of the lubricant fluidized layer are changed depending on the test head (shape, floating amount and the like) and test conditions (head seek conditions, disk rotation speed, air pressure, temperature and humidity and the like).


As described above, by using the evaluation method (evaluation results) according to the present invention as above, determination as to whether or not the lubricant pickup resistance of the magnetic disk is favorable can be made.


COMPARATIVE EXAMPLE

As a comparative example of the evaluation method of the present invention, a magnetic disk fabricated in the above example was evaluated in the prior-art load-unload test. The evaluation results of liquid contamination of this comparative example are shown in FIG. 2. As shown in FIG. 2, from the result of examination on the relationship between the lubricant pickup (transfer) result after the load-unload test and the film thickness of the lubricant, the lubrication layer bonded rate, and the film thickness of the fluidized layer, the lubricant pickup onto the head ABS surface was confirmed on a part of the sample magnetic disks but it was found that relationship with the lubrication layer bonded rate and the film thickness of the fluidized layer was not confirmed. Also, the similar evaluation was made by the CFT test using the prior-art fixed-point floating, but a lubricant pickup phenomenon was not found in any of the magnetic disks.


In short, even if a magnetic disk passes an acceptable standard according to the prior-art evaluation method, it might be determined as unacceptable according to the evaluation method of the present invention, and a more accurate evaluation method of a magnetic disk that can be conducted in a shorter time can be provided.


As described above, according to the evaluation method of the present invention, the properties of the carbon protective film and the lubricant on the surface of the magnetic disk can be evaluated easily and accurately, and particularly, an evaluation method of a magnetic disk that can accurately evaluate the properties of the magnetic-disk surface capable of meeting a strict demand for the interaction between the magnetic-disk surface and the magnetic head can be provided. The magnetic disk determined as acceptable by the evaluation method of a magnetic disk according to the present invention can also pass the drive reliability test, and a magnetic disk also provided with high reliability performances can be obtained.


Examples 1 and 2 and Comparative Examples 1 and 2

Subsequently, as the other examples, evaluation was made by changing the film thickness of the lubricant into three sizes, that is, large, medium and small. However, the carbon protective film thickness was set at medium.


The result is as shown in Table 1. In Table 1, the adhesion of the liquid contamination was evaluated in five ranks, that is, 1: small, 3: medium, and 5: large. The term “Push-out” in Table 1 is an additional projection amount after the initial contact of the DFH element, and the numerical values with “+” mean the projection amounts to the inside of the lubrication layer.











TABLE 1









Lubricant of sample media













Film
Film
Film




thickness:
thickness:
thickness:



Push-out
small
medium
large















Comparative
−2 nm
1
1
1


Example 1


Comparative
Zero (contact)
1
1
2


Example 2


Example 1
+1 nm
2
2
4


Example 2
+2 nm
4
5
5









As for the lubricant, little significant difference was found in Comparative Examples 1 and 2, but it is known that liquid contamination of the sample with the Push-out plus 1 nm and the large lubricant layer film thickness in Example 1 was large. The contamination amount of the Push-out plus 2 nm in Example 2 showed an increasing tendency but a difference by the film thickness was hard to be found.


Examples 3 and 4 and Comparative Examples 3 and 4

Subsequently, as other example, evaluation was made by changing the film thickness of the carbon protective film into three sizes, that is, large, medium and small. However, the lubrication layer film thickness was set at medium.


The result is as shown in Table 2. In Table 2, the adhesion of the granular contamination was evaluated in five ranks, that is, 1: small, 3: medium, and 5: large.











TABLE 2









Carbon protective film of sample media













Film
Film
Film




thickness:
thickness:
thickness:



Push-out
small
medium
large















Comparative
−2 nm
1
1
1


Example 3


Comparative
Zero (contact)
1
1
1


Example 4


Example 3
+1 nm
3
2
1


Example 4
+2 nm
5
3
1









As for the carbon protective film, little significant difference was found in Comparative Examples 3 and 4, but a significant difference caused by the film thickness was detected in Examples 3 and 4. Particularly, a difference in the granular contamination by the film thickness is marked in Push-out plus 2 nm in Example 4.


From the results of the above Examples 1 to 4 and Comparative Examples 1 to 4, the following findings are obtained.

  • 1. In the case of Push-out plus (pushing-out), the thickness limit of the lubricant can be more clearly detected than the evaluation with the Push-out zero (contact);
  • 2. In the case of Push-out plus (pushing-out), the protective film thickness limit can be more clearly detected than the evaluation with the Push-out zero (contact); and
  • 3. It is effective to select the amount of Push-out in accordance with the purpose of the evaluation. For example, a favorable evaluation can be made for the lubricant pickup by reducing the Push-out amount rather than wear of the protective film.


The evaluation in the above examples was made in the atmospheric environment, but evaluations in combination with a pressure-reduced environment can be also made. Evaluations in combination with temperatures (high temperature and low temperature) or humidity can be also made. Evaluations can be also made by adding a load-unload operation during seeking as an evaluation condition. Evaluation can be also made by fixed-point floating without seeking. Evaluations can be also made in the case of seek-and-stop (after seeking in a specific radius and with a fixed-point floating for a certain time in the specific radius, the specific radius is sought again).

Claims
  • 1. An evaluation method of a magnetic disk, the evaluation method comprising: thermally expanding a head element portion of a magnetic head;bringing the magnetic head into contact with a predetermined radial position on a surface of the magnetic disk that is rotating; andevaluating properties of a carbon film or a lubricant formed on the surface of the magnetic disk by performing seeking, using the magnetic head having the head element portion projected by a specified amount, after the magnetic head is brought into contact with the magnetic disk.
  • 2. The evaluation method of a magnetic disk according to claim 1, wherein the projecting amount of said head element portion at measurement is within a range of 0.1 to 10 nm.
  • 3. The evaluation method of a magnetic disk according to claim 1, wherein a contact radius of said head element portion at measurement is a region excluding 1 mm and inside from an inner peripheral edge portion and 0.1 mm and outside from an outer edge portion of the magnetic disk.
  • 4. The evaluation method of a magnetic disk according to claim 1, wherein contact time of said head element portion at measurement is 30 seconds or more.
  • 5. The evaluation method of a magnetic disk according to claim 1, wherein a seek speed at measurement is within a range from 0.1 to 3.0 m/s.
  • 6. The evaluation method of a magnetic disk according to claim 1, wherein a magnetic disk rotation speed at measurement is within a range of 100 to 20000 rpm.
  • 7. The evaluation method of a magnetic disk according to claim 1, wherein evaluating properties of the carbon film or the lubricant includes evaluating a dimension of the carbon film or the lubricant.
  • 8. The evaluation method of a magnetic disk according to claim 7, the dimension is thickness.
  • 9. The evaluation method of a magnetic disk according to claim 1, evaluating properties of the carbon film or the lubricant includes evaluating a type of the carbon film or the lubricant.
  • 10. The evaluation method of a magnetic disk according to claim 1, wherein the properties of the carbon film are evaluated.
  • 11. The evaluation method of a magnetic disk according to claim 1, wherein the properties of the lubricant are evaluated, and evaluating the properties of the lubricant includes evaluating a refining method of the lubricant.
  • 12. An evaluation method of a magnetic disk, the evaluation method comprising: initially contacting a magnetic head with a surface of the magnetic disk;projecting a head element of the magnetic disk by a specific amount from the initial contact; andevaluating properties of a carbon film or a lubricant formed on the surface of the magnetic disk while keeping the projected head element in contact with the carbon film or the lubricant film.
  • 13. The evaluation method of a magnetic disk according to claim 12, wherein evaluating properties of the carbon film or the lubricant includes evaluating a dimension of the carbon film or the lubricant.
  • 14. The evaluation method of a magnetic disk according to claim 13, the dimension is thickness.
  • 15. The evaluation method of a magnetic disk according to claim 12, evaluating properties of the carbon film or the lubricant includes evaluating a type of the carbon film or the lubricant.
  • 16. The evaluation method of a magnetic disk according to claim 12, wherein the properties of the carbon film are evaluated.
  • 17. The evaluation method of a magnetic disk according to claim 12, wherein the properties of the lubricant are evaluated, and evaluating the properties of the lubricant includes evaluating a refining method of the lubricant.
  • 18. A manufacturing method of a magnetic disk, comprising: a process in which on the basis of an evaluation result by the evaluation method of a magnetic disk according to claim 1, a manufacturing condition of a lubrication layer is determined and a lubrication layer is formed on the surface of the magnetic disk in accordance with the determined manufacturing condition.
  • 19. The manufacturing method of a magnetic disk, comprising: a process in which on the basis of an evaluation result by the evaluation method of a magnetic disk described in claim 1, a manufacturing condition of a carbon protective layer is determined and the carbon protective layer is formed on the surface of the magnetic disk in accordance with the determined manufacturing condition.
  • 20. A magnetic disk determined as acceptable by the evaluation method of a magnetic disk according to claim 1.
Priority Claims (1)
Number Date Country Kind
2010-075291 Mar 2010 JP national
US Referenced Citations (316)
Number Name Date Kind
5309301 Gregory et al. May 1994 A
5541789 Fukuoka et al. Jul 1996 A
6013161 Chen et al. Jan 2000 A
6063248 Bourez et al. May 2000 A
6068891 O'Dell et al. May 2000 A
6086730 Liu et al. Jul 2000 A
6099981 Nishimori Aug 2000 A
6103404 Ross et al. Aug 2000 A
6117499 Wong et al. Sep 2000 A
6136403 Prabhakara et al. Oct 2000 A
6143375 Ross et al. Nov 2000 A
6145849 Bae et al. Nov 2000 A
6146737 Malhotra et al. Nov 2000 A
6149696 Jia Nov 2000 A
6150015 Bertero et al. Nov 2000 A
6156404 Ross et al. Dec 2000 A
6159076 Sun et al. Dec 2000 A
6164118 Suzuki et al. Dec 2000 A
6200441 Gornicki et al. Mar 2001 B1
6204995 Hokkyo et al. Mar 2001 B1
6206765 Sanders et al. Mar 2001 B1
6210819 Lal et al. Apr 2001 B1
6216709 Fung et al. Apr 2001 B1
6221119 Homola Apr 2001 B1
6248395 Homola et al. Jun 2001 B1
6261681 Suekane et al. Jul 2001 B1
6270885 Hokkyo et al. Aug 2001 B1
6274063 Li et al. Aug 2001 B1
6283838 Blake et al. Sep 2001 B1
6287429 Moroishi et al. Sep 2001 B1
6290573 Suzuki Sep 2001 B1
6299947 Suzuki et al. Oct 2001 B1
6303217 Malhotra et al. Oct 2001 B1
6309765 Suekane et al. Oct 2001 B1
6356405 Gui et al. Mar 2002 B1
6358636 Yang et al. Mar 2002 B1
6362452 Suzuki et al. Mar 2002 B1
6363599 Bajorek Apr 2002 B1
6365012 Sato et al. Apr 2002 B1
6381090 Suzuki et al. Apr 2002 B1
6381092 Suzuki Apr 2002 B1
6387483 Hokkyo et al. May 2002 B1
6391213 Homola May 2002 B1
6395349 Salamon May 2002 B1
6403919 Salamon Jun 2002 B1
6408677 Suzuki Jun 2002 B1
6426157 Hokkyo et al. Jul 2002 B1
6429984 Alex Aug 2002 B1
6482330 Bajorek Nov 2002 B1
6482505 Bertero et al. Nov 2002 B1
6500567 Bertero et al. Dec 2002 B1
6528124 Nguyen Mar 2003 B1
6548821 Treves et al. Apr 2003 B1
6552871 Suzuki et al. Apr 2003 B2
6565719 Lairson et al. May 2003 B1
6566674 Treves et al. May 2003 B1
6571806 Rosano et al. Jun 2003 B2
6628466 Alex Sep 2003 B2
6664503 Hsieh et al. Dec 2003 B1
6670055 Tomiyasu et al. Dec 2003 B2
6682807 Lairson et al. Jan 2004 B2
6683754 Suzuki et al. Jan 2004 B2
6730420 Bertero et al. May 2004 B1
6743528 Suekane et al. Jun 2004 B2
6759138 Tomiyasu et al. Jul 2004 B2
6760175 Smith Jul 2004 B2
6778353 Harper Aug 2004 B1
6795274 Hsieh et al. Sep 2004 B1
6855232 Jairson et al. Feb 2005 B2
6857937 Bajorek Feb 2005 B2
6893748 Bertero et al. May 2005 B2
6899959 Bertero et al. May 2005 B2
6914739 Feliss et al. Jul 2005 B2
6916558 Umezawa et al. Jul 2005 B2
6939120 Harper Sep 2005 B1
6946191 Morikawa et al. Sep 2005 B2
6967798 Homola et al. Nov 2005 B2
6972135 Homola Dec 2005 B2
7004827 Suzuki et al. Feb 2006 B1
7006323 Suzuki Feb 2006 B1
7016154 Nishihira Mar 2006 B2
7019924 McNeil et al. Mar 2006 B2
7045215 Shimokawa May 2006 B2
7070870 Bertero et al. Jul 2006 B2
7090934 Hokkyo et al. Aug 2006 B2
7099112 Harper Aug 2006 B1
7105241 Shimokawa et al. Sep 2006 B2
7119990 Bajorek et al. Oct 2006 B2
7147790 Wachenschwanz et al. Dec 2006 B2
7161753 Wachenschwanz et al. Jan 2007 B2
7166319 Ishiyama Jan 2007 B2
7166374 Suekane et al. Jan 2007 B2
7169487 Kawai et al. Jan 2007 B2
7174775 Ishiyama Feb 2007 B2
7179549 Malhotra et al. Feb 2007 B2
7184139 Treves et al. Feb 2007 B2
7196860 Alex Mar 2007 B2
7199977 Suzuki et al. Apr 2007 B2
7208236 Morikawa et al. Apr 2007 B2
7220500 Tomiyasu et al. May 2007 B1
7229266 Harper Jun 2007 B2
7239970 Treves et al. Jul 2007 B2
7252897 Shimokawa et al. Aug 2007 B2
7277254 Shimokawa et al. Oct 2007 B2
7281920 Homola et al. Oct 2007 B2
7292329 Treves et al. Nov 2007 B2
7301726 Suzuki Nov 2007 B1
7302148 Treves et al. Nov 2007 B2
7305119 Treves et al. Dec 2007 B2
7314404 Singh et al. Jan 2008 B2
7320584 Harper et al. Jan 2008 B1
7329114 Harper et al. Feb 2008 B2
7375362 Treves et al. May 2008 B2
7420886 Tomiyasu et al. Sep 2008 B2
7425719 Treves et al. Sep 2008 B2
7471484 Wachenschwanz et al. Dec 2008 B2
7498062 Calcaterra et al. Mar 2009 B2
7531485 Hara et al. May 2009 B2
7537846 Ishiyama et al. May 2009 B2
7549209 Wachenschwanz et al. Jun 2009 B2
7569490 Staud Aug 2009 B2
7573682 Pust et al. Aug 2009 B2
7597792 Homola et al. Oct 2009 B2
7597973 Ishiyama Oct 2009 B2
7608193 Wachenschwanz et al. Oct 2009 B2
7632087 Homola Dec 2009 B2
7656615 Wachenschwanz et al. Feb 2010 B2
7682546 Harper Mar 2010 B2
7684152 Suzuki et al. Mar 2010 B2
7686606 Harper et al. Mar 2010 B2
7686991 Harper Mar 2010 B2
7695833 Ishiyama Apr 2010 B2
7722968 Ishiyama May 2010 B2
7733605 Suzuki et al. Jun 2010 B2
7736768 Ishiyama Jun 2010 B2
7755861 Li et al. Jul 2010 B1
7758732 Calcaterra et al. Jul 2010 B1
7833639 Sonobe et al. Nov 2010 B2
7833641 Tomiyasu et al. Nov 2010 B2
7910159 Jung Mar 2011 B2
7911736 Bajorek Mar 2011 B2
7924519 Lambert Apr 2011 B2
7944165 O'Dell May 2011 B1
7944643 Jiang et al. May 2011 B1
7955723 Umezawa et al. Jun 2011 B2
7983003 Sonobe et al. Jul 2011 B2
7993497 Moroishi et al. Aug 2011 B2
7993765 Kim et al. Aug 2011 B2
7998912 Chen et al. Aug 2011 B2
8002901 Chen et al. Aug 2011 B1
8003237 Sonobe et al. Aug 2011 B2
8012920 Shimokawa Sep 2011 B2
8038863 Homola Oct 2011 B2
8057926 Ayama et al. Nov 2011 B2
8062778 Suzuki et al. Nov 2011 B2
8064156 Suzuki et al. Nov 2011 B1
8076013 Sonobe et al. Dec 2011 B2
8092931 Ishiyama et al. Jan 2012 B2
8100685 Harper et al. Jan 2012 B1
8101054 Chen et al. Jan 2012 B2
8125723 Nichols et al. Feb 2012 B1
8125724 Nichols et al. Feb 2012 B1
8137517 Bourez Mar 2012 B1
8142916 Umezawa et al. Mar 2012 B2
8163093 Chen et al. Apr 2012 B1
8171949 Lund et al. May 2012 B1
8173282 Sun et al. May 2012 B1
8178480 Hamakubo et al. May 2012 B2
8206789 Suzuki Jun 2012 B2
8218260 Iamratanakul et al. Jul 2012 B2
8247095 Champion et al. Aug 2012 B2
8257783 Suzuki et al. Sep 2012 B2
8298609 Liew et al. Oct 2012 B1
8298689 Sonobe et al. Oct 2012 B2
8309239 Umezawa et al. Nov 2012 B2
8316668 Chan et al. Nov 2012 B1
8331056 O'Dell Dec 2012 B2
8354618 Chen et al. Jan 2013 B1
8367228 Sonobe et al. Feb 2013 B2
8383209 Ayama Feb 2013 B2
8394243 Jung et al. Mar 2013 B1
8397751 Chan et al. Mar 2013 B1
8399809 Bourez Mar 2013 B1
8402638 Treves et al. Mar 2013 B1
8404056 Chen et al. Mar 2013 B1
8404369 Ruffini et al. Mar 2013 B2
8404370 Sato et al. Mar 2013 B2
8406918 Tan et al. Mar 2013 B2
8414966 Yasumori et al. Apr 2013 B2
8425975 Ishiyama Apr 2013 B2
8431257 Kim et al. Apr 2013 B2
8431258 Onoue et al. Apr 2013 B2
8453315 Kajiwara et al. Jun 2013 B2
8488276 Jung et al. Jul 2013 B1
8491800 Dorsey Jul 2013 B1
8492009 Homola et al. Jul 2013 B1
8492011 Itoh et al. Jul 2013 B2
8496466 Treves et al. Jul 2013 B1
8517364 Crumley et al. Aug 2013 B1
8517657 Chen et al. Aug 2013 B2
8524052 Tan et al. Sep 2013 B1
8530065 Chernyshov et al. Sep 2013 B1
8546000 Umezawa Oct 2013 B2
8551253 Na'Im et al. Oct 2013 B2
8551627 Shimada et al. Oct 2013 B2
8556566 Suzuki et al. Oct 2013 B1
8559131 Masuda et al. Oct 2013 B2
8562748 Chen et al. Oct 2013 B1
8565050 Bertero et al. Oct 2013 B1
8570844 Yuan et al. Oct 2013 B1
8580410 Onoue Nov 2013 B2
8584687 Chen et al. Nov 2013 B1
8591709 Lim et al. Nov 2013 B1
8592061 Onoue et al. Nov 2013 B2
8596287 Chen et al. Dec 2013 B1
8597723 Jung et al. Dec 2013 B1
8603649 Onoue Dec 2013 B2
8603650 Sonobe et al. Dec 2013 B2
8605388 Yasumori et al. Dec 2013 B2
8605555 Chernyshov et al. Dec 2013 B1
8608147 Yap et al. Dec 2013 B1
8609263 Chernyshov et al. Dec 2013 B1
8619381 Moser et al. Dec 2013 B2
8623528 Umezawa et al. Jan 2014 B2
8623529 Suzuki Jan 2014 B2
8634155 Yasumori et al. Jan 2014 B2
8658003 Bourez Feb 2014 B1
8658292 Mallary et al. Feb 2014 B1
8665541 Saito Mar 2014 B2
8668953 Buechel-Rimmel Mar 2014 B1
8674327 Poon et al. Mar 2014 B1
8685214 Moh et al. Apr 2014 B1
20020060883 Suzuki May 2002 A1
20030022024 Wachenschwanz Jan 2003 A1
20040022387 Weikle Feb 2004 A1
20040132301 Harper et al. Jul 2004 A1
20040202793 Harper et al. Oct 2004 A1
20040202865 Homola et al. Oct 2004 A1
20040209123 Bajorek et al. Oct 2004 A1
20040209470 Bajorek Oct 2004 A1
20050036223 Wachenschwanz et al. Feb 2005 A1
20050142990 Homola Jun 2005 A1
20050150862 Harper et al. Jul 2005 A1
20050151282 Harper et al. Jul 2005 A1
20050151283 Bajorek et al. Jul 2005 A1
20050151300 Harper et al. Jul 2005 A1
20050155554 Saito Jul 2005 A1
20050167867 Bajorek et al. Aug 2005 A1
20050263401 Olsen et al. Dec 2005 A1
20060147758 Jung et al. Jul 2006 A1
20060181697 Treves et al. Aug 2006 A1
20060207890 Staud Sep 2006 A1
20070070549 Suzuki et al. Mar 2007 A1
20070245909 Homola Oct 2007 A1
20080075845 Sonobe et al. Mar 2008 A1
20080093760 Harper et al. Apr 2008 A1
20090117408 Umezawa et al. May 2009 A1
20090136784 Suzuki et al. May 2009 A1
20090169922 Ishiyama Jul 2009 A1
20090191331 Umezawa et al. Jul 2009 A1
20090202866 Kim et al. Aug 2009 A1
20090311557 Onoue et al. Dec 2009 A1
20100143752 Ishibashi et al. Jun 2010 A1
20100190035 Sonobe et al. Jul 2010 A1
20100196619 Ishiyama Aug 2010 A1
20100196740 Ayama et al. Aug 2010 A1
20100209601 Shimokawa et al. Aug 2010 A1
20100215992 Horikawa et al. Aug 2010 A1
20100232065 Suzuki et al. Sep 2010 A1
20100247965 Onoue Sep 2010 A1
20100261039 Itoh et al. Oct 2010 A1
20100279151 Sakamoto et al. Nov 2010 A1
20100300884 Homola et al. Dec 2010 A1
20100304186 Shimokawa Dec 2010 A1
20110097603 Onoue Apr 2011 A1
20110097604 Onoue Apr 2011 A1
20110171495 Tachibana et al. Jul 2011 A1
20110206947 Tachibana et al. Aug 2011 A1
20110212346 Onoue et al. Sep 2011 A1
20110223446 Onoue et al. Sep 2011 A1
20110244119 Umezawa et al. Oct 2011 A1
20110299194 Aniya et al. Dec 2011 A1
20110311841 Saito et al. Dec 2011 A1
20120069466 Okamoto et al. Mar 2012 A1
20120070692 Sato et al. Mar 2012 A1
20120077060 Ozawa Mar 2012 A1
20120127599 Shimokawa et al. May 2012 A1
20120127601 Suzuki et al. May 2012 A1
20120129009 Sato et al. May 2012 A1
20120140359 Tachibana Jun 2012 A1
20120141833 Umezawa et al. Jun 2012 A1
20120141835 Sakamoto Jun 2012 A1
20120148875 Hamakubo et al. Jun 2012 A1
20120156523 Seki et al. Jun 2012 A1
20120164488 Shin et al. Jun 2012 A1
20120170152 Sonobe et al. Jul 2012 A1
20120171369 Koike et al. Jul 2012 A1
20120175243 Fukuura et al. Jul 2012 A1
20120189872 Umezawa et al. Jul 2012 A1
20120196049 Azuma et al. Aug 2012 A1
20120207919 Sakamoto et al. Aug 2012 A1
20120225217 Itoh et al. Sep 2012 A1
20120251842 Yuan et al. Oct 2012 A1
20120251846 Desai et al. Oct 2012 A1
20120276417 Shimokawa et al. Nov 2012 A1
20120308722 Suzuki et al. Dec 2012 A1
20130040167 Alagarsamy et al. Feb 2013 A1
20130071694 Srinivasan et al. Mar 2013 A1
20130165029 Sun et al. Jun 2013 A1
20130175252 Bourez; Allen J. Jul 2013 A1
20130216865 YASUMORI; Junichi; et al. Aug 2013 A1
20130230647 ONOUE; Takahiro; et al. Sep 2013 A1
20130314815 YUAN; Hua; et al. Nov 2013 A1
20140011054 SUZUKI; Kouta Jan 2014 A1
20140044992 ONOUE; Takahiro Feb 2014 A1
20140050843 Yl; Chang B.; et al. Feb 2014 A1
Foreign Referenced Citations (4)
Number Date Country
2002-74648 Mar 2002 JP
2003-067980 Mar 2003 JP
2004-039049 Feb 2004 JP
2009-157987 Jul 2009 JP
Non-Patent Literature Citations (1)
Entry
Japanese Office Action dated Jan. 23, 2014 from related Japanese Application No. 2010-075291 (M4999JP) 5 pages.
Related Publications (1)
Number Date Country
20120077060 A1 Mar 2012 US