Evaluation of a new class of molecules for treating MRSA infective endocarditis

Information

  • Research Project
  • 8521011
  • ApplicationId
    8521011
  • Core Project Number
    R41AI106066
  • Full Project Number
    1R41AI106066-01
  • Serial Number
    106066
  • FOA Number
    PA-12-089
  • Sub Project Id
  • Project Start Date
    2/1/2013 - 11 years ago
  • Project End Date
    7/31/2015 - 9 years ago
  • Program Officer Name
    XU, ZUOYU
  • Budget Start Date
    2/1/2013 - 11 years ago
  • Budget End Date
    7/31/2015 - 9 years ago
  • Fiscal Year
    2013
  • Support Year
    01
  • Suffix
  • Award Notice Date
    1/18/2013 - 12 years ago
Organizations

Evaluation of a new class of molecules for treating MRSA infective endocarditis

DESCRIPTION (provided by applicant): Patients with infective endocarditis (IE) have a poor prognosis with one third of the patients succumbing to the infection within the first year. Treatments for endocarditis involve antibiotic therapy and/or surgery that cost upwards of $100,000 per patient; however, many cases do not respond to the antibiotic treatment and surgery poses high risks. Cases of endocarditis that are recalcitrant to antibiotic therapies are often caused by drug- resistant organisms, in particular methicillin-resistant Staphylococcus aureus (MRSA). Agile Sciences is developing an alternative approach to treating resistant bacterial infections that bypasses many of the inherent limitations of developing new antibiotics. Agile Sciences' technology does not act as a microbicide to the bacteria, but instead inhibits antibiotic defense mechanisms, so that resistant strains become susceptible to traditional antibiotic therapies. Agile Sciences' co-founders, Drs. Christian Melander and John Cavanagh of North Carolina State University, have developed a new class of 2-aminoimidazole (2-AI) small molecules that bind to a novel protein target within the bacteria. These 2-AI molecules inhibit the ability of the bacteria to respond to environmental stimuli, including antibiotics, thu rendering the bacteria more sensitive to antibiotics. Agile Sciences' 2-AI compounds have been shown to lower the MIC of cell wall-acting antibiotics against MRSA, and this novel class of 2-AI compounds also inhibits and disperses MRSA biofilms. Preliminary studies indicate that these 2-AI compounds have favorable toxicity and metabolic stability profiles, and so they represent promising scaffolds for evaluation as potential therapeutics. The overarching goal of this proposal is to obtain proof of concept that Agile Sciences' 2-AI compounds enhance antibiotic efficacy against MRSA in an in vivo model of IE. The objective of Aim 1 is to rank lead compounds using assessments of biological activity, toxicity, and pharmacokinetic properties. In Aim 2, the most promising 2-AI compound will be evaluated for in vivo effectiveness as an antibiotic adjuvant therapy in a well-established rat model of IE. This project will be overseen by Dr. Angela Pollard, a microbiologist with expertise in microbial colonization and host-pathogen interactions. The in vivo model will be executed by an experienced team of UCLA scientists led by Dr. Yan Xiong, with consulting expertise by Dr. Arnold Bayer, a well-known expert in endocarditis models. Physician Dr. Ralph Corey of Duke University will contribute valuable clinical insight to this project. If Agile Sciences' 2-AI compounds are successfully shown to enhance the activity of current antibiotics against MRSA in an in vivo model of IE, this new class of molecules could potentially provide a more effective therapeutic strategy for treating IE infections that are currently resistant to treatment. As a result of this improved therapy, the high costs and risks of surgery as well as the substantial mortality rate associated with this disease could potentially be significantly reduced.

IC Name
NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES
  • Activity
    R41
  • Administering IC
    AI
  • Application Type
    1
  • Direct Cost Amount
  • Indirect Cost Amount
  • Total Cost
    300000
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    855
  • Ed Inst. Type
  • Funding ICs
    NIAID:300000\
  • Funding Mechanism
    SBIR-STTR RPGs
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    AGILE SCIENCES, INC.
  • Organization Department
  • Organization DUNS
    828576202
  • Organization City
    RALEIGH
  • Organization State
    NC
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    276062576
  • Organization District
    UNITED STATES