This disclosure relates generally to the field of identification of economically productive subsurface formations penetrated by wellbores. More specifically, the disclosure relates to the identification of formations having low electrical resistivity and low resistivity contrast and determination whether they contain economically productive fluid contents (e.g., hydrocarbons) or not (e.g., water-bearing). That is, the present disclosure relates to techniques for better distinguishing between hydrocarbon-bearing and water-bearing formations in low resistivity and low contrast formations where evaluation based on conventional resistivity measurements alone have been unable to do so.
The combination of certain well log instrument measurements, such as gamma-gamma density porosity, neutron porosity and resistivity, has proven to be very effective in the evaluation of conventional reservoirs. For low-resistivity hydrocarbon productive reservoirs, however, an accurate determination of the petrophysical parameters with such conventional instrument measurements has proven difficult. For example, using models based on the Archie water saturation equation, the Dual Water equation, Sen-Goode-Sibbit (SGS) equation, Waxman-Smith (WS) equation, and/or ELAN (a trademark of Schlumberger Technology Corporation of Sugar Land, Tex.) interpretation models may show high water saturation in certain formations, which is generally indicative of non-economically productive fluids. However, when some of these zones are tested, it has been found that water-free hydrocarbon(s) and/or wet gases may be produced, contrary to what would conventionally be expected. Thus, in the case of low resistivity contrast reservoirs, i.e., where the hydrocarbon productive formations do not exhibit much difference in electrical resistivity between them and water productive formations, it may be difficult to determine the depth position in the subsurface of a water/hydrocarbon (e.g., gas and/or oil) contact using electrical resistivity well log measurements.
As an example, major hydrocarbon accumulations have been produced in what may be termed “low resistivity, low contrast” (LRLC) sandstone formations in the Gulf of Mexico Basin (GOM). In the past, these LRLC intervals were overlooked, ignored, or misidentified as a shale or considered “wet”, i.e., saturated with enough water so as to be considered non-productive of hydrocarbons. Low resistivity hydrocarbon productive formations have been commonly defined having at most 5.0 ohm-meter resistivity. LRLC productive zones known in the art, which commonly result from thin, inter-bedded productive sandstone layers and non-productive, low resistivity shale layers can be recognized through proper identification and evaluation techniques using standard axial resolution and high axial resolution well logs, drill cuttings, sidewall cores and whole core samples and indirectly, surface reflection seismic surveys.
A number of factors have been found to act on measurements made by well logging instruments to produce low resistivity and/or low contrast, yet economically productive formations. Moore et al., “PRODUCTIVE LOW RESISTIVITY WELL LOGS OF THE OFFSHORE GULF OF MEXICO”, The New Orleans Geological Society (1993), cites the following causes:
Of all of the factors listed above, probably the most well known cause of low resistivity “pay” (economically productive formation) is the simple combination of thin beds containing highly conductive shales (and their associated bound water), along with thin pay sandstone layers.
From experimental results, corroborated by thermodynamic modeling of downhole fluids at reservoir pressure-temperature conditions, and contrary to conventional perspective it has been have discovered that dense gases having high relative humidity at high pressure/high temperature (HPHT) reservoir conditions (understood for the purposes of this disclosure as a temperature exceeding about 300 degrees F. and pressure exceeding about 10,000 pounds per square inch) may solvate halides, screen ions, and exhibit ionic activity. This results in the fact that dense, wet gases can be potentially electrically conductive. Such is contrary to the basic assumption made in resistivity-based interpretation of whether formations are likely to be economically productive or water productive. Reservoirs with such conditions and being rich in acid gases (e.g., CO2 and H2S) may manifest low resistivity and little or no contrast between productive reservoirs and water producing formations. However such reservoirs may not have any clay or shale, thin bedding and/or conductive minerals, often associated with traditional LRLC.
Accordingly, there exists a need to identify LRLC productive formations that are not associated with laminated sand and shale sequences.
This summary is provided to introduce a selection of concepts that are further described below in the detailed description. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
A method according to one aspect for identifying low resistivity low contrast productive subsurface formations penetrated by a wellbore includes obtaining dielectric permittivity measurements of selected formations adjacent at least part of the wellbore. Nuclear magnetic resonance relaxometry measurements are obtained for the selected formations, the relaxometry measurements being calibrated to identify relaxation times corresponding to acid gases in high humidity at elevated pressure and temperature. Zones are then identified for withdrawing formation fluid samples based on the dielectric permittivity and relaxometry measurements.
Other aspects and advantages will be apparent from the description and claims which follow.
Certain embodiments are described below with reference to the following figures:
The present description is made with reference to the accompanying drawings, in which example embodiments are shown. However, many different embodiments may be used, and thus the description should not be construed as being limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete. Generally, like numbers refer to like elements throughout the present description.
Various examples of methods and apparatus to be explained herein may be implemented in a wellbore fluid sample taking and analysis instrument, or as separate well logging instruments or modules. Such instruments or modules may be conveyed through a wellbore during or after drilling thereof as part of a drill string assembly. Other examples of such instruments may be conveyed into a wellbore using armored electrical cable (wireline), coiled tubing, workover pipe, production tubing or any other conveyance known in the art. Two examples will now be explained with reference to
A drill string 12 is suspended within the borehole 11 and has a bottom hole assembly 100 which includes a drill bit 105 at its lower end. The surface system includes platform and derrick assembly 10 positioned over the borehole 11, the assembly 10 including a rotary table 16, kelly 17, hook 18 and rotary swivel 19. The drill string 12 is rotated by the rotary table 16, energized by means not shown, which engages the kelly 17 at the upper end of the drill string. The drill string 12 is suspended from a hook 18, attached to a traveling block (also not shown), through the kelly 17 and a rotary swivel 19 which permits rotation of the drill string relative to the hook. As is well known, a top drive system (not shown) could be used instead of the kelly 17 and swivel 19.
In the present example, the surface system may further include drilling fluid or mud 26 stored in a pit 27 formed at the well site. A pump 29 delivers the drilling fluid 26 to the interior of the drill string 12 via a port in the swivel 19, causing the drilling fluid to flow downwardly through the drill string 12 as indicated by the directional arrow 8. The drilling fluid exits the drill string 12 via ports in the drill bit 105, and then circulates upwardly through the annulus region between the outside of the drill string and the wall of the borehole, as indicated by the directional arrows 9. In this well known manner, the drilling fluid lubricates the drill bit 105 and carries formation cuttings up to the surface as it is returned to the pit 27 for recirculation.
A bottom hole assembly 100 of the illustrated embodiment may include a logging-while-drilling (LWD) module 120, a measuring-while-drilling (MWD) module 130, a rotary steerable directional drilling system and/or drilling motor 150, and drill bit 105.
The LWD module 120 may be housed in a special type of drill collar, as is known in the art, and can contain one or multiple known types of logging tools. It will also be understood that more than one LWD and/or MWD module can be employed, e.g. as represented at 120A. (References, throughout, to a module at the position of 120 can thus also mean a module at the position of 120A as well.) The LWD module may include capabilities for measuring, processing, and storing information, as well as for communicating with the surface equipment 25. In the presently illustrated embodiment, the LWD 120 module may include a formation dielectric constant measuring instrument, referred to in
Like the LWD module 120 (or 120A), the MWD module 130 may also be housed in a special type of drill collar, as is known in the art, and can contain one or more devices for measuring characteristics of the drill string and/or drill bit. The MWD tool 130 further includes an apparatus (not shown) for generating electrical power to the downhole system. This may typically include a mud turbine generator powered by the flow of the drilling fluid, it being understood that other power and/or battery systems may be employed instead of or in addition thereto. In the present example, the MWD module 130 may include one or more of the following types of measuring devices: a weight-on-bit measuring device, a torque measuring device, a vibration measuring device, a shock measuring device, a stick slip measuring device, a direction measuring device, and an inclination measuring device. The MWD module 130 may include a local communication device 132 for telemetry, such as a drilling fluid flow modulator of any type known in the art to communicate measurements made by the MWD module 130 and/or LWD modules 120, 120A to a surface logging and control unit 25. The modules 130, 120, 120A may also include internal memory or other data storage (not shown separately) in which measurements made by the various instruments in the modules 130, 120, 120A may be recorded and communicated to the surface logging and control unit 25 such as by electrical cable when the BHA 100 is withdrawn to the surface from the wellbore 11.
Additionally, the LWD module 120 may be provided with devices, such as sample chambers (not shown in
In the present example, measurements made by the dielectric constant module (120B in
Dielectric permittivity measurements may be able to assess pore and clay bound water in the formation and distinguish it from total porosity less hydrocarbon occupied pore volume. This is because water and hydrocarbons/gases have different dielectric permittivities, even at high pressure-high temperature (HPHT), though the difference may be smaller due to the large volume fraction of water dissolved in dense or supercritical gases. As stated above, for the purposes of this disclosure, high pressure and high temperature conditions (HPHT) is understood to mean reservoir conditions at a temperature of about 300 degrees F. in temperature and a pressure of about 10,000 psi or higher. By way of example, conditions up to 600 degrees F. and 40,000 psi may be considered HPHT conditions as well, although these example values should not be construed as necessarily implying upper limits for HPHT. Further, in some instances, HP (high pressure) may be considered as beginning at about 5,000 psi. Appended are data points suggestive of using a HPHT dielectric tool in such environments to assist in identifying LRLC hydrocarbon productive formations. One example of a dielectric module and/or instrument that may be used in some examples is sold under the trademark DIELECTRIC SCANNER, which is a trademark of Schlumberger Technology Corporation, Sugar Land, Tex. Table 1 below shows a comparison of common materials' dielectric permittivity.
Dielectric permittivity measurements can distinguish water, as both pore space-bound and clay-bound water, and free (mobile) water in the total formation porosity less hydrocarbon occupied pore volume. In an example screening procedure, the following steps may be performed:
As can be appreciated, the permittivity ∈′ of water is very different from that of gases. At HPHT conditions (e.g., 300 degrees F. or higher, 10,000 psi or higher), ∈′ of water will typically decrease and the ∈′ of gases (with dissolved water) will typically increase. However, hydrocarbon bearing zones and water productive zones may still be distinguished based on permittivity.
As described in the article, Boyd et al, “The Lowdown on Low-Resistivity Pay,” Schlumberger Oilfield Review, vol. 7, issue 3, pp. 4-18 (1995), a more difficult problem for well log interpreters than thin beds is the existence of small grain size rock minerals in the formation (e.g., F in
A possible solution may be to use a nuclear magnetic resonance (NMR) relaxometry instrument or module (120B in
As can be appreciated, the area under a spectrum (curve) of relaxation times (i.e., a graph of amplitude with respect to values of relaxation time) may be referred to as the NMR porosity, and is generally lithology independent (unlike density and/or neutron and/or acoustic travel time determined porosity). In one example embodiment, an NMR instrument may have a diameter of investigation of about 1 inch, and a vertical (axial) resolution of about 6 inches. In the case of HPHT wet, dense gases (especially those rich in acid gases) with large volume fraction of dissolved water, and thus available mobile protons, the relaxation time (e.g., T2) distribution may be different than that of a dry gas. Thus, as NMR instrument used to perform aspects to perform aspects of the presently disclosed techniques may, by way of example, include the CMR instrument or another NMR instrument, such as one sold under the trademark MR SCANNER, by Schlumberger Technology Corporation of Sugar Land, Tex., trained or otherwise calibrated to such fluids to provide a robust solution in such LRLC productive formations, i.e., to help distinguish between LRLC formations that are economically productive and those that are not.
An NMR measuring instruments may be calibrated for such a purpose, for example, by filling sample formations having known porosity and porosity distribution using gas having selected concentrations of water vapor, methane, CO2 and H2S. Resulting relaxation time distributions (T2 or T1) determined as ordinarily performed using such instruments or modules may be stored in a look up table or calibrated to a best fit curve with respect to acid gas/methane saturation and measured electrical resistivity. Hydrocarbon productive zones, in some examples, may not manifest lower electrical resistivity due to the presence of highly sorted, fine grain structure and/or coating of grains with water adsorbing minerals, such as ash, i.e., See the above-referenced Sondergeld publication. Such minerals may be identifiable using nuclear magnetic resonance measurements and mineralogy of thin sections from core samples.
In operation of an instrument string, such as shown in
A method according to the examples explained herein may enable identification of zones that are suitable for fluid sample testing, and may reduce the number of formation zones that are bypassed for such testing on the basis of conventional resistivity analysis.
In one example, the formation testing instrument shown in
A processor can include a microprocessor, microcontroller, processor module or subsystem, programmable integrated circuit, programmable gate array, application-specific integrated circuit (ASIC), a system-on-a-chip (SoC) processor, or another suitable type of control or computing device.
The storage media 206 can be implemented as one or more computer-readable or machine-readable storage media. Note that while in the example of
It should be appreciated that computing system 200 is only one example of a computing system, and that computing system 200 may have more or fewer components than shown, may combine additional components not depicted in the exemplary embodiment of
Further, the steps in the various processing and evaluation methods and steps described above may be implemented by running one or more functional modules in an information processing apparatus such as general purpose processors or application specific chips, such as ASICs, FPGAs, SoCs, PLDs, or other appropriate devices. These modules, combinations of these modules, and/or their combination with general hardware are all included within the scope of the present disclosure.
While the invention has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments can be devised which do not depart from the scope of the invention as disclosed herein. Accordingly, the scope of the invention should be limited only by the attached claims.
This application claims the benefit of a related U.S. Provisional Patent Application Ser. No. 61/664,238, filed Jun. 26, 2012, entitled “EVALUATION OF LOW RESISTIVITY LOW CONTRAST PRODUCTIVE FORMATIONS,” the disclosure of which is incorporated by reference herein in its entirely.
Number | Date | Country | |
---|---|---|---|
61664238 | Jun 2012 | US |