The present invention relates to an evaporation heat exchange device for air cooling for conditioning and climate control systems for server rooms and the like.
Nowadays conditioning and climate control systems are known, and are disclosed and claimed in a plurality of patent applications in the name of Emerson Network Power SRL, such as for example EPA 14189922.9, U.S. Ser. No. 14/627,490, U.S. Ser. No. 14/937,106, U.S. Ser. No. 14/950,700 and U.S. Ser. No. 14/970,674, for conditioning and climate control for server rooms, and for industrial environments in general, which are provided with evaporation means, i.e. water-based, for cooling an air stream entering or exiting the system.
Such evaporation means comprise:
Such conditioning units and systems use an indirect/direct evaporation process as their type of cooling.
The process consists of spraying water against the stream of air in order to increase its relative humidity and therefore lower its temperature.
The physical limit that can be reached is the wet bulb temperature of the ambient air, which is a function of the humidity and of the temperature.
Differently from an evaporation tower, in which the temperature is uniform over the heat exchange surface, in such free cooling systems with evaporation cooling a cross-flow exchanger is installed, which has a marked thermal unevenness that is typical of exchangers in which the flows are not perfectly with or against the current.
It has been found experimentally that evaporation of the water is not uniform along the exchanger, but decreases with the thermal gradient.
Dividing the exchanger into a plurality of identical parts, in the direction passed through by the conditioning air flow, i.e. the air flow intended for an environment to be climate controlled, and considering the total evaporated water as 100%, it has been found experimentally that in the first parts about 30% of the cooling water emitted by the dispensing means evaporates, and in the last parts only 5-7%, i.e. the quantity necessary to bring the external air to saturation conditions.
It was then found that much of the water dispensed on the final parts of the exchanger is substantially unused, i.e. uselessly pumped and dispensed, while the initial parts of that exchanger need greater cooling in order to prevent situations of dry surfaces where calcareous encrustations can form.
Furthermore such water that is dispensed and does not evaporate obstructs the passage of air on the heat exchanger, with consequent fall in the efficiency of the machine.
The aim of the present invention is to provide an evaporation heat exchange device for air cooling for conditioning and climate control systems for server rooms and the like, which is capable of overcoming the above mentioned drawbacks of the conventional devices.
Within this aim, an object of the invention is to provide a device that is capable of improving the consumption of water and at the same time the performance levels of the machine in which it is installed.
Another object of the invention is to provide a device that simultaneously protects the integrity and the functionality of the exchanger.
This aim and these and other objects which will become better evident hereinafter are achieved by a heat exchange device for air cooling for conditioning and climate control systems for server rooms and the like, which comprises:
characterized in that said water dispensing means comprise a plurality of nozzles arranged side by side, or groups of nozzles, which are adapted to dispense flows of water with a flow-rate that decreases starting from said intake region for the primary air stream toward said outflow region of said heat exchanger.
Further characteristics and advantages of the invention will become better apparent from the description of a preferred, but not exclusive, embodiment of the device according to the invention, which is illustrated by way of non-limiting example in the accompanying drawings wherein:
With reference to the figures, a heat exchange device for air cooling for conditioning and climate control systems for server rooms and the like, according to the invention, is generally designated with the reference numeral 10.
The device 10 comprises:
The peculiarity of the device 10 according to the invention consists in that the water dispensing means comprise a plurality of nozzles arranged side by side, or groups of nozzles, for example the rows of nozzles 18, 19, 20, 21, 22, 23, which are adapted to dispense water with a flow-rate that decreases starting from the intake region 13 toward the outflow region 14 of the exchanger 11.
The water dispensing means, for example, comprise a plurality of rows of nozzles, each row of nozzles 18, 19, 20, 21, 22, 23 comprising a plurality of nozzles, arranged side by side and in parallel in the direction going from the intake region 13 to the outflow region 14 of the cooling panel 11.
Each row of nozzles 18, 19, 20, 21, 22 and 23 comprises a plurality of nozzles, for example six nozzles.
Each row of nozzles, from the second row 19 to the last row 23 in an order that goes from the intake region 13 to the outflow region 14 of the cooling panel 11, dispenses overall a lower flow-rate of water than the preceding row.
The first row 18 therefore dispenses overall a greater flow-rate of water than the second row 19, which in turn dispenses overall a greater flow-rate of water than the third row 20.
In order to obtain the different flow-rates from one row of nozzles to the next, in a first variation of embodiment of the invention, which is illustrative and non-limiting thereof and is shown schematically in
In order to obtain the different flow-rates from one row of nozzles to the next, in a second variation of embodiment of the invention, which is illustrative and non-limiting thereof and is shown schematically in
For example a first row 218 has seven nozzles, a second row 219 has six nozzles, a third row 220 has five nozzles and a fourth row 221 has four nozzles.
In order to obtain the different flow-rates from one row of nozzles to the next, in a third variation of embodiment of the invention, which is illustrative and non-limiting thereof and is not shown for the sake of simplicity, the rows of nozzles comprise a different number of nozzles in one row with respect to the next, with such nozzles having a flow-rate that differs from row to row.
In the present embodiment, the device 10 according to the invention is shown for the purposes of example as being inserted in a conditioning unit 30, of the type with indirect free cooling, and comprises:
The conditioning unit 30 comprises:
It should be understood that the invention can also be implemented in a conditioning unit of the direct free cooling type.
With a device 10 according to the invention, the progression of the thermal gradient 35, shown for the purposes of example in
This, as described above, can be achieved by using nozzles with different flow-rates or by using a different number of nozzles from one row to the next.
In the area where there is a marked difference in temperature (the area where warm air returning from the data center enters the system), the device uses bigger nozzles or a greater number of nozzles with respect to the area where the difference is less marked, since it is found that in the first portion of the exchanger between 25% and 30% of the total water evaporates.
Therefore, by distributing the flow-rate of water proportionally to the thermal gradient present along the exchanger, a greater quantity of water is sprayed where the air is capable of absorbing more, and less where it can absorb less.
With such a device according to the invention the following advantages are obtained:
In practice it has been found that the invention fully achieves the intended aim and objects.
In particular, with the invention an evaporation heat exchange device for air cooling for conditioning and climate control systems for server rooms and the like is provided that is capable of improving water consumption and at the same time the performance levels of the conditioning machine in which it is installed.
With the invention an evaporation heat exchange device for air cooling for conditioning and climate control systems for server rooms and the like is provided, that simultaneously protects the integrity and the functionality of the exchanger.
In fact, with the invention a device is provided that offers lower energy consumption and therefore less absorption of energy by the fans and pumps of the conditioning unit of which it is part.
What is more, with the invention a device is provided that is found to be efficient in the entire wet operation range and not only in the design phase.
Furthermore, with the invention a device is provided that makes the conditioning unit in which it is inserted more flexible in terms of possible conditions of use.
Furthermore, with the invention a device is provided that diminishes the risk of forming encrustations on the exchanger.
Furthermore, with the invention a device is provided that requires less recirculation of water and therefore less consumption of water owing to evaporation which does not produce any cooling effect.
The invention thus conceived is susceptible of numerous modifications and variations, all of which are within the scope of the appended claims. Moreover, all the details may be substituted by other, technically equivalent elements.
In practice the components and the materials employed, provided they are compatible with the specific use, and the contingent dimensions and shapes, may be any according to requirements and to the state of the art.
The disclosures in Italian Patent Application No. 102016000033465 (UA2016A002214) from which this application claims priority are incorporated herein by reference.
Number | Date | Country | Kind |
---|---|---|---|
102016000033465 | Apr 2016 | IT | national |