The present invention relates to evaporative structures and more particularly, though not exclusively, to such structures for use in cooling the human body by means of the so-called heat pipe principle, that is to say the transfer of heat from a source to a sink by a continuous working fluid cycle which involves evaporation of the fluid at the source, transfer of the vapour to the sink, condensation of the fluid at the sink, and return of the liquid to the source.
The invention may be found to be particularly useful in reducing heat strain for those who are required to work in hot environmental conditions and/or wear personal protective equipment (PPE) such as body armour, respirators or fire-resistant, contamination-resistant or otherwise protective suits, vests, hoods or helmets, it being recognised that in general PPE adds thermal insulation to the wearer and is impermeable to water vapour meaning that it restricts loss of heat from the body by convection or evaporation of sweat, and therefore tends to increase the incidence of heat strain for the wearers of such equipment. In this respect heat strain is characterised by elevations in deep body core temperature, mean skin temperature, heart rate and sweat rate, and at high levels is known to cause thermal discomfort, impair performance and increase the risk of heat related illness.
The invention may, however, also be found more generally useful in the collection and distribution of heat for various applications requiring a conformable evaporative structure.
In GB2093981 there is proposed a conformable evaporative panel for use in human body cooling comprising a flexible reticulated, e.g. woven, structure including wicking and void continua, and an impermeable plastics film or laminate envelope surrounding the structure. The proposed working fluid is water, which is a good choice due to its high latent heat of evaporation and non-toxity. However water has a low vapour pressure which means that a substantial vacuum level needs to be maintained within the envelope for useful evaporation to occur within the required temperature range for human body cooling. The need for evacuation of the envelope has the disadvantage though that there is a danger of the woven structure collapsing into its vapour flow voids and thereby preventing operation of the heat pipe cycle. The disposition of lengths of wicking in alternate voids within the woven structure as proposed in GB2093981 also limits the area of the panel over which efficient heat transfer into the working fluid held by the wicking can take place.
In one aspect the present invention aims to overcome the drawbacks of the above-mentioned prior art and accordingly resides in a generally planar, conformable evaporative structure comprising: an envelope comprising substantially impermeable, flexible material containing: a layer of flexible wick material disposed adjacent to a major face of said envelope, adapted to hold a working fluid in liquid phase for evaporation by heat conducted through said envelope; a layer of flexible, breathable fabric adjacent to said layer of wick material; and one or more flexible rib(s) within said layer of breathable fabric, adapted to maintain pathway(s) for the flow of working fluid in vapour phase towards a condensation zone.
By “generally planar” we mean that the structure is of a form having two major faces separated by a thickness which is small compared to the dimensions of those faces. It need not necessarily be flat, however, and in some embodiments may have a built-in curvature to more readily conform to a surface from which heat is to be extracted, such as part of the human body. In any event the flexibility of its constituent parts means that it is inherently conformable to a certain degree to surfaces which are not themselves flat.
The material of the envelope in a structure according to the invention is preferably a so-called barrier film comprising multiple layers of polymer (typically polyester, polypropylene, polyamide or polyethylene) with one or more intermediate layers of metal (typically aluminium) to confer resistance to gas or vapour migration through the film. Such polymer/metal laminates are typically in the range of only 75-150 μm thick and therefore provide little resistance to heat conduction through the film. The metal in such films is included either as a foil or a plasma of small platelets deposited on top of each other onto a polymer film substrate, and we have found the latter type to be superior to the foil type in terms of resistance to damage by creasing or other deformation of the film in use of the structure. Films of this nature are also available with the addition of a felted layer on one side and such may be useful particularly when the structure is to be used for human body cooling. That is to say by providing a felted barrier film on that face of the structure which is intended to be in contact with the body, with the felt layer outermost, the felt layer will tend to absorb sweat from the body and provide a better heat conductive path into the structure.
The wick material in a structure according to the invention may be any suitable available fibrous matting or other material capable of distributing the liquid working fluid by capillary forces within the respective layer, such as those known as hydrowicks used in garment manufacture and those used in spill kits. Preferably the layer of wick material extends over substantially the whole area of one of the major faces of the envelope to maximise heat transfer into the working fluid held by that layer.
The breathable fabric in a structure according to the invention is preferably a so-called spacer fabric. Such fabrics are synthetic fibre knitted or woven three-dimensional structures which typically comprise two faces of fabric that are held apart by a network of cross-stitched filaments. This layer includes voids through which in use vapour produced from the working fluid in the wicking layer can diffuse into the pathway(s) maintained by the rib(s). It also acts to support the envelope material and reduce the risk of its puncture or creasing particularly when a barrier film is employed as indicated above and when the structure is under vacuum.
The flexible rib(s) within the layer of breathable fabric in a structure according to the invention are useful, particularly when the structure needs to be under vacuum, in resisting collapse of the structure and ensuring that a sufficient vapour flow area remains available. They are preferably in the form of open-sided tubular rib(s), by which we mean that they are generally of tubular form but have openings through the respective tubular wall through which in use vapour can diffuse into the respective pathway inside each rib. Such ribs could therefore comprise lengths of plastics tubing with a multiplicity of holes formed through their walls. In a preferred embodiment however they comprise helical coils of metal or plastics in an open form so that a helical space exists between adjacent turns along the length of the rib.
The invention also resides in a cooling system comprising one or more evaporative structures as defined above and means defining one or more associated heat sinks for condensation of said working fluid in vapour phase.
The return of condensate from the heat sink to the wick material of the evaporative structure(s) in such a system may itself be accomplished by wicking. This may however be impractical, particularly when having to work against gravity, and there may instead be a pump provided for this purpose.
In one arrangement of such a system the heat sink(s) are separate from the or each evaporative structure and the system comprises conduit means for leading working fluid in vapour phase from the evaporative structure(s) towards the heat sink(s) and conduit means for returning working fluid in liquid phase to the evaporative structure(s). In another, a heat sink is integrated with the or each evaporative structure so that condensation takes place within the structure itself. In any event there may also be a heat exchanger in communication with the or each heat sink through which heat can be released into the environment.
The working fluid in such a system when used for human body cooling is preferably water and in such case the evaporative structure(s) will in use be maintained under vacuum. However in other embodiments there may be a range of other suitable working fluids including ammonia, azeotropic mixtures of water and alcohol, or hydrofluorocarbons.
The invention also resides in a garment, or an item of PPE, incorporating or adapted for use with a system as defined above, and supporting one or more said evaporative structures so as to be in heat transferring relationship with part of the human body when worn, e.g. torso or head.
The invention will now be more particularly described, by way of example, with reference to the accompanying drawings, in which:
The working fluid in the present embodiment is water. In order to vaporise efficiently within the temperature range required for human body cooling, therefore, the interior of the system must be evacuated, typically to around ⅓ atmosphere at which water will boil at around 35° C. For this purpose the pipe 3 is equipped with a valved tee 7 through which the patch 2 can initially be charged with water and the system then evacuated by connection of a vacuum pump.
In practice the patch 2 may be one of several such patches applied at various positions around the body and connected with a common or individual heat sink(s) 4.
Description will now be directed to the structure of the evaporator patch 2. Referring to
Between the wick material 10 and the sheet 8 there is a layer of flexible spacer fabric 11, comprising a knitted three-dimensional breathable structure with two faces of fabric 11A and 11B held apart by a network of cross-stitched filaments 11C. The knitting of this layer is also controlled to produce a network of channels 12 in the structure in which are inserted flexible ribs in the form of lengths of open helical metal or plastics coils 13. The arrangement of these channels and coils in the spacer fabric is more fully shown in
Both the pipes 3 and 6 enter the patch 2 through a fitment 14 sealed between the barrier film sheets.
The presence of wicks 16 in the tubing holes is preferred to using those holes alone to distribute the condensate from the tubing 15 into the material 10. Firstly their presence ensures that the holes do not close up under the vacuum within the patch 2. Secondly they provide a useful method of balancing the water delivery process, simply by selecting the number of fibres used at each position. Similarly they avoid the risk of the patch becoming flooded with condensate which could otherwise flow unchecked though the open holes even under conditions when there is little or no demand for condensate from the material 10. By sandwiching the ends of the wicks 16 between the material 10 and the extra wicking strips 17 it is also ensured that the dispensed water droplets will not bypass the material 10 and simply fall into the spacer fabric 11 potentially leading to dry areas in the wick layer.
Turning to
In
Number | Date | Country | Kind |
---|---|---|---|
1006620.7 | Apr 2010 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2011/000604 | 4/19/2011 | WO | 00 | 10/15/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/131931 | 10/27/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4339929 | Fitzpatrick et al. | Jul 1982 | A |
5263336 | Kuramarohit | Nov 1993 | A |
5603375 | Salt | Feb 1997 | A |
6349412 | Dean | Feb 2002 | B1 |
6763671 | Klett et al. | Jul 2004 | B1 |
20070295494 | Mayer et al. | Dec 2007 | A1 |
20100011491 | Goldmann et al. | Jan 2010 | A1 |
20100031428 | Paull | Feb 2010 | A1 |
20100319381 | Hubler et al. | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
0 059 581 | Sep 1982 | EP |
0 076 079 | Apr 1983 | EP |
0 306 531 | Mar 1989 | EP |
2 093 981 | Sep 1982 | GB |
WO 9213600 | Aug 1992 | WO |
Entry |
---|
Jul. 13, 2010 British Search Report issued in Patent Application No. GB1006620.7. |
May 31, 2012 International Search Report issued in International Patent Application No. PCT/GB2011/000604. |
May 31, 2012 Written Opinion of the International Searching Authority issued in International Patent Application No. PCT/GB2011/000604. |
Number | Date | Country | |
---|---|---|---|
20130025315 A1 | Jan 2013 | US |