1. Field of the Invention
The subject invention relates to a heat exchanger assembly, a method of fabricating a heat exchanger assembly, and a method of operating a heat exchanger assembly.
2. Description of the Prior Art
Conventional air conditioning systems include an evaporator for transferring heat from ambient air to evaporate a refrigerant, a compressor for compressing the refrigerant into a superheated vapor, and a condenser to condense the refrigerant back to a subcooled liquid so that it can be provided back to the evaporator through an expansion device. Known condenser assemblies include a plurality of tubes spaced apart from one another, each extending between a lower end and an upper end to define a plurality of refrigerant passages for carrying refrigerant flowing between a bottom header and a top header. A plurality of fins extend back and forth between adjacent tubes. Heat from the refrigerant is transferred to the fins and carried away by an airstream flowing through the fins. Attempts have been made to improve the efficiency of this process by using water. Specifically, transferring heat to a source of water allows for increased heat transfer.
One such heat exchanger is disclosed in WO 00/68628 to Phelps et al., which shows a hose connected to a water outlet that drips water over condenser fins. A controller is responsive to a sensed air temperature to shut off the water flow below a certain air temperature. As the temperature increases, the flow rate also increases in stepped amounts. The system is further optimized by visually inspecting the condenser to see if there is excess or insufficient water near the bottom of the unit. However, this system suffers from several disadvantages. First, air temperature is not the only factor affecting the performance of a condenser. Second, the controller only controls the unit in stepped amounts. Finally, the controller must be manually optimized based on a visual inspection, and contains no means for an automatic optimization of the water flow. Finally, the water source does not uniformly wet the condenser surface.
A similar heat exchanger is shown in U.S. Pat. No. 4,672,817 to Croce, which shows a condenser having a perforated copper tube to allow water to saturate a wicking material until it drips vertically down over an array of fins. A common disadvantage of these prior condensers is that the water flows over the fins. While this allows the fins to cool, enabling them to draw more heat away from the refrigerant, it would be advantageous to get the water closer to the tubes. That would allow the water to directly receive heat from the refrigerant.
Another heat exchanger, shown in U.S. Pat. No. 7,062,938 to Lee, shows a combination air cooled and water cooled condenser. The water cooled portion of the condenser consists of a coolant tube and a water tube running beside each other and flowing in opposite directions. In addition, the control system is responsive to condensing load and coolant pressure in addition to ambient temperature. While this arrangement places the water closer to the tubes, it is still separated from the refrigerant tube by its own tube wall. In addition, the two stage system is bulky and includes additional components, such as pumps to drive to water, that are not desired.
The subject invention provides such a heat exchanger wherein a plurality of fins extend back and forth between a plurality of apexes and between adjacent tubes, but distinguished by the apexes of the fins being spaced from the adjacent tubes to define a plurality of gaps between the apexes and adjacent tubes.
The invention provides a method of fabricating such a heat exchanger wherein a plurality of fins, extending back and forth between a plurality of apexes, are placed between adjacent tubes with a plurality of gaps defined between the fins and the adjacent tubes.
The invention also provides a method of operating such a heat exchanger including flowing water along the tubes and through a plurality of gaps defined between the fins and the tubes.
Other advantages of the present invention will be readily appreciated, as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
Referring to the Figures, wherein like numerals indicate corresponding parts throughout the several views, a heating and ventilating and air conditioning system 20 is generally shown in
A bottom water tank 38 is in fluid communication with the exterior of the lower ends of the tubes 30 for storing a supply of water. A top water tank 40 in fluid communication with the exterior of the upper ends of the tubes 30 provides additional water. The water tanks 38, 40 can be constructed of plastic and molded in segments so as to be assembled around the tubes 30 after brazing the headers 32, 34. The water tanks 38, 40 can then be bonded to the tubes 30.
A wicking coating 42 lines the parallel sides of the tubes 30 and wicks water from the top and bottom water tanks 40, 38 to the parallel sides of the tubes 30 by capillary action. According to the exemplary embodiments, the wicking coating 42 is formed from sintered metallic particles each having a particle diameter of approximately between 70 to 90 microns. The particles are layered on the tubes 30 to a thickness of approximately between 3 to 5 times the particle diameter, and the coating has a porosity of approximately between 40% to 60%. More specifically, the porosity of the exemplary embodiments is approximately 50%. It is known in the art that the brazing process, as discussed above, may reduce the porosity of the sintered metal coating. This can be compensated for, however, by forming a coating that is more porous than desired so that the final coating will have the desired properties.
A plurality of fins 44 extend back and forth in a zig-zag pattern between a plurality of apexes 46. The fins 44 are located between the exterior parallel sides of adjacent tubes 30 and extend horizontally between the front and back closure. The apexes 46 of the fins 44 are secured to the parallel sides by a connector, and a plurality of gaps are defined between the fins 44 and the parallel sides for fluid communication along the exterior of the parallel sides in the longitudinal direction through the fins 44. The wicking coating 42 extends through the gaps to wick water into the gaps for heat transfer between the tubes 30 and the fins 44. This provides for uniform distribution of the water throughout the tube 30 exterior surface. Heat from the refrigerant flowing through the tubes 30 evaporates the water into vapor. A blower 48, shown in
According to a first exemplary embodiment, shown in
According to a second exemplary embodiment, shown in
Alternatively, the fins 44 could be formed without the notches 52, such as the fins 44 of
A plurality of valves 56, as shown in
A heat transfer calculator 62 is also provided for calculating the heat transfer rate {dot over (q)} based on thermodynamic properties of the specific refrigerant as well as the design constraints of the heat exchanger. Specifically, the temperature of the refrigerant entering and exiting the plurality of refrigerant passages, Tri and Tro, are determined according to the amount of cooling desired through the evaporator 22. Thus, the amount of heat transfer through the condenser 26 is equivalent to the amount of heat absorbed during the isothermal evaporation in the evaporator 22 plus the heat added by the compressor 24. The thermodynamic properties of the refrigerant are determined according to the states at which the refrigerant exists during the process. As previously discussed, the refrigerant enters the tubes 30 as a superheated vapor, and therefore has a gaseous isobaric specific heat cpg. The gaseous refrigerant cools across a desuperheating fraction λg which is the fraction of the refrigerant passages where the refrigerant cools from a superheated vapor to a saturation temperature Ts. The desuperheating fraction is known from experience to be approximately 0.15. The amount of heat given off in this portion of the condenser 26 is governed by the expression λgcpg(Tri−Ts). After the refrigerant transitions to a liquid, it has a liquid isobaric specific heat cpf and cools across a subcooling fraction λf, which is the fraction of the refrigerant passages where the refrigerant cools to a subcooled liquid. The subcooling fraction is known from experience to be approximately 0.10 The amount of heat given off in this portion of the condenser 26 is governed by the expression λfcpf(Ts−Tro). However, additional heat is also given off when transitioning from a gas to a liquid, which is related to the latent heat of evaporation of the refrigerant hfgr. The expression hfgr(1−λg−λf) refers to the amount of heat given off when transitioning the refrigerant to a liquid state. The summation of these three expressions multiplied by the mass flow rate of the refrigerant {dot over (m)}r flowing through the plurality of refrigerant passages yields the total amount of heat transferred in the condenser 26 per unit time:
{dot over (q)}={dot over (m)}
r[λgcpg(Tri−Ts)+hfgr(1−λg−λf)+λfcpf(Ts−Tro)] (2)
According to a third exemplary embodiment, as shown in
A blower controller 72 is provided to control mass flow rate of air {dot over (m)}a from the blower 48 in response to the mass flow rate of water {dot over (m)}w, incoming absolute humidity ωi of the air entering the fins 44 and the outgoing absolute humidity ωo of the air exiting the fins 44 according to the equation:
According to the third exemplary embodiment, the controllers 60, 72 and the heat transfer calculator 62 are separate processors in electrical communication with one another. For example, the heat transfer calculator 62 is a separate hardware component in electrical communication with the actuator controller 60. The controllers 60, 72 are separate hardware components in electrical communications with each other and with the respective parts that they control. The controllers 60, 72 are in electrical communication with a master controller that is also in communication with other components of the system 20.
According to the fourth exemplary embodiment, the controllers 60, 72 and calculators 62, 66 are subcomponents of a master controller. This embodiment includes the various controllers 60, 72 and calculators 62, 66 being integrated into a housing and controlled by a single processor. It should further be noted that the controllers 60, 72 and calculators 62, 66 could alternatively be software subcomponents (i.e. a plurality of algorithms) stored in the memory of the master controller.
A method of fabricating a heat exchanger is also provided. The method includes spacing a plurality of tubes 30 apart from one another. A plurality of refrigerant passages are defined within each tube 30 extending from a lower end to an upper end. A bottom header 32 is secured to the lower ends, and a top header 34 is secured to the upper ends of the tubes 30. Both headers 32, 34 are in fluid communication with the refrigerant passages. The securing could be accomplished by any suitable method, as alluded to above, such as welding or brazing. A plurality of fins 44 extending back and forth between a plurality of apexes 46 are placed between adjacent tubes 30.
According to the first exemplary embodiment, shown in
According to the second exemplary embodiment, the fins 44 are formed from stock material by feeding the material through a progressive die to cut a plurality of notches 52 extending inwardly from the apexes 46 of the fins 44. The apexes 46 could then be brazed to the tubes 30 while brazing the headers 32, 34.
Alternatively, if the fins 44 are formed without the notches 52, the gaps can be defined by a plurality of indents formed in the tubes 30 extending inwardly toward the refrigerant passages and away from the apexes 46 of the fins 44. These indents could be formed by forming dimples on the tube 30 exterior during the extrusion process, or they could be formed by stamping the tubes 30 after the extrusion process.
A wicking coating 42 is formed along the exterior of the tubes 30 and extends through the gaps. This provides for uniform distribution of water throughout the tube 30 exterior surface. The tubes 30 of the exemplary embodiments are made by extrusion, and the wicking coating 42 can then be applied to the exterior surface of the tubes 30, for example, by flame spraying or chemical etching. The wicking coating 42 of the exemplary embodiments is formed as a sintered metal coating along the tubes 30 having a porosity approximately between 40% to 60%. According to the exemplary embodiments, the porosity is approximately 50%. The wicking coating 42 is formed from a plurality of particles each having a diameter of approximately 70 to 90 microns and layered to a thickness of approximately between 3 to 5 times the diameter of the particles. As noted earlier, the brazing process can reduce the porosity of the coating, so the coating could be formed with a higher porosity prior to brazing to compensate for the loss.
A bottom water tank 38 is secured adjacent the lower ends of the tubes 30 and a top water tank 40 is secured adjacent the upper ends of the tubes 30, both in fluid communication with the wicking coating 42 on the exterior of the tubes 30. As alluded to above, the water tanks 38, 40 can be secured to the assembly 26 after the brazing process. A valve 56 is secured to the top water tank 40 between the top water tank 40 and the fins 44, and an actuator 58 is secured to the valves 56 to selectively move the valves 56 between the open and closed positions.
A method of operating a heat exchanger is also provided as shown in
The exemplary embodiment further provides for regulating the flow of water according to equation 1. In addition, the heat transfer rate q is determined according to equation 2. The refrigerant mass flow rate {dot over (m)}r may be obtained from a mass flow meter 64, or determined according to equation 3.
In addition, air is conveyed through the plurality of fins 44 to carry the evaporated water away from the tubes 30. The necessary mass flow rate {dot over (m)}a of the air is determined according to equation 4. However, if the condenser 26 is operated without water, such as during a water shortage, the mass flow rate of air {dot over (m)}a can still be determined based on the heat transfer rate {dot over (q)}, the specific heat of the air entering the fins 44 cpa, the condenser 26 effectiveness ε, the inlet temperature of the refrigerant Tri and the dry bulb temperature of the incoming air Ti according to the equation:
To convey the air, a power input Hfan is provided to a blower 48 based on the proportionality constant gc (a universal constant equal to 32.174 lbm ft/lbfs2), the fan efficiency ηfan, the hydraulic diameter of the airflow passage of the blower 48 d, dynamic viscosity of the air μa, and the density of the air ρa according to the equation:
While the invention has been described with reference to an exemplary embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.