This invention relates to the field of reaction systems. More particularly, this invention relates to an evaporator and concentrator in a reactor and loading fluidic system.
Micro-fluidics are used to manipulate fluids in channels with cross-sectional height and width that typically range from 1 to 500 micrometers or microns. Fluids are moved in volumes of nanoliters or microliters. “Lab-on-a-chip” technology has used micro-fluidics to perform chemical reactions and analyses at very high speeds while consuming small amounts of starting materials. Various chemical reactions require conditions such as high pressure and high temperatures, which may be difficult to achieve safely using conventional techniques, and micro-fluidic systems use miniaturized reactors, mixers, heat exchangers, and other processing elements for performing such chemical reactions on a miniature scale with less difficulty and more safety. Such systems are useful for reactions such as pharmaceutical or laboratory reactions where very small and accurate amounts of chemicals are necessary to successfully arrive at a desired product. Furthermore, use of micro-fluidic systems increases efficiency by reducing diffusion times and the need for excess reagents.
Applications for micro-fluidic systems are generally broad, but commercial success has been slow to develop in part because micro-fluidic devices are difficult and costly to produce. Another significant hurdle in micro-fluidics is addressing the macroscale to microscale interface. Other considerable problems include clogging of the systems, fouling of the reagent in the system, and supplying new reagent once the previous supply is depleted, clogged, or fouled. Furthermore, waste accumulations and air bubbles interfere with proper micro-fluidic system operation. Thus, there is a need for a low cost solution for micro-fluidic systems. Preferably, but not necessarily, such solution would allow easy replacement of reagent once its supply is depleted, clogged, or fouled, and allow for remotely flushing waste and air bubbles from a micro-fluidic system in order to minimize losses of costly reagent. Additionally, many reactions and mixtures require condensing and evaporation techniques that are difficult to perform on a micro- or nanoscale. As used herein, micro-fluidic and microscale are meant to describe fluidic elements that have micro-sized capillaries for transporting fluid. Such capillaries would have effective interior diameters from about 1 micron to about 500 microns. Usually a micro-fluidic element will have an interior diameter of more than 100 microns, and for many applications an inside diameter of 200 microns is a good size.
The above and other needs are met by an evaporator and concentrator in a reactor and loading system. In one embodiment, a micro-fluidic evaporator evaporates a target from a liquid solution. The evaporator has a vial with an interior volume and a first and second end. Liquid solution is disposed in the vial and extends from the second end toward the first end. The evaporator has a gas source capable of accelerating evaporation of the target and a first micro-fluidic pathway extending from the gas source to an exhaust point near the second end of the vial. The first micro-fluidic pathway inputs the gas at the exhaust point from the gas source at an input rate such that the gas effervesces through the liquid solution without substantial splashing and without exploding the liquid solution. This results in an accelerated evaporation of the target from the liquid solution producing the evaporated gas. A second fluidic pathway extends from near the first end of the vial to a location external to the vial and moves the evaporated target from the interior volume of the vial to a location external to the vial.
In some embodiments, the evaporator has a third fluidic pathway extending from the gas source to a sweep exhaust point located within the vial and adjacent to the solution but not in the solution. The third fluidic pathway inputs gas into the vial adjacent to the solution for sweeping the evaporated target through the second fluidic pathway and out of the vial. In some embodiments, the third fluidic pathway is concentric with the first micro-fluidic pathway such that the third fluidic pathway surrounds the first micro-fluidic pathway. In some embodiments, the gas source has a first and a second gas source, the first gas source being connected to the first micro-fluidic pathway and the second gas source being connected to the second fluidic pathway.
In some embodiments, the evaporator has an input supply line for inputting fluids into the vial and an output line extending from a point near the second end of the vial and within the vial to a location external to the vial. The output line exports fluid in the vial once the desired evaporation has occurred. In some embodiments the evaporator has a heater and in some it has a cooler for heating and cooling the vial respectively.
In another embodiment, an evaporator/concentrator system dries and concentrates a fluid containing ions. The system has a first vial with an interior volume and a first and second end and a first micro-fluidic pathway extending from outside the first vial to a point near the second end of the first vial. The system also has a second fluidic pathway extending from near the first end of the first vial to a location external to the first vial and a third fluidic pathway extending from a gas source to near the first end of the first vial for inputting a gas from the gas source into the first vial and out the second fluidic pathway to provide a gas sweep of the interior of the first vial. The system has an ion exchange cartridge for capturing ions and an input line for the first vial connected from the ion exchange cartridge to the first vial. A target fluid vial stores a target fluid containing target ions and provides the target fluid containing the target ions to the ion exchange cartridge. A capturing fluid vial stores a capturing fluid and provides the capturing fluid to the ion exchange cartridge.
A pump and switch valve connects the target fluid vial to the ion exchange cartridge and is configurable for pumping the target fluid from the target fluid vial through the pump and switch valve, through the ion exchange cartridge and into the first vial. The ion exchange cartridge operates to capture the target ions as the target fluid flows through the ion cartridge. The pump and switch valve also pumps the supply fluid from the first vial through the first micro-fluidic pathway and out of the first vial. Then the pump and switch valve pumps the capturing fluid from the capturing fluid vial, through the pump and switch valve and through the ion exchange cartridge into the first vial. The capturing fluid captures the target ions in the ion exchange cartridge so that the vial contains capturing fluid with target ions. Finally, the pump and switch valve connects the first micro-fluidic pathway to the gas source so that the gas flows through the first micro-fluidic pathway and effervesces the ion containing fluid and causing the water in the fluid to evaporate resulting in a concentrated ion fluid in the first vial.
In some embodiments a second vial stores a supply of anhydrous combining fluid and the pump and switch valve supplies at least some of the anhydrous combining fluid to the first vial for combining with the concentrated ion fluid to produce an anhydrous product solution. In some embodiments, the system has a dry product vial connected to the pump and switch valve for receiving the anhydrous product solution from the first vial and pumping the anhydrous product solution from the first vial to the dry product vial. In some embodiments, the dry product vial has radiation shielding.
In another embodiment, a micro-fluidic system has a pump and switch valve system that pumps fluid through the system and includes micro-fluidic tubes. The system also has a micro-fluidic concentrator including a concentrator vial for containing fluid and having a low point within the vial, the vial being configured so that the fluid flows to and collects at the low point. The concentrator also has a micro-fluidic tube extending from outside the vial to the low point in the vial to supply evaporation gas to the vial to evaporate water from fluid in the vial and thereby concentrate the fluid and withdrawing fluid from the low point in the vial. The concentrator has a sweep gas input port for supplying sweep gas into the vial at a location remote from the low point, a gas supply for supplying gases to the sweep gas input port and the micro-fluidic tube, an exhaust port in the concentrator vial for allowing gases to escape the concentrator vial, and an input port for supplying fluid to the concentrator vial. The system also has a micro-fluidic element including a micro-fluidic pathway that performs a micro-fluidic function. The pump and switch valve system pumps fluids to and from the micro-fluidic element and the micro-fluidic concentrator.
In some embodiments, the micro-fluidic element of the system is a reactor and at least two reagents are supplied by the pump and switch valve system so that the reagents are reacted in the micro-fluidic reactor and concentrated in the micro-fluidic concentrator or vice-versa. In other embodiments, the micro-fluidic element of the system is a coil of micro-fluidic tubing holding fluids and functioning as a fluid supply source and in other embodiments functioning as a reactor.
Further advantages of the invention are apparent by reference to the detailed description when considered in conjunction with the figures, which are not to scale so as to more clearly show the details, wherein like reference numbers indicate like elements throughout the several views, and wherein:
The present disclosure provides an evaporator and concentrator for concentrating fluoride ions or used to evaporate microliter to milliliter volumes of liquid solutions including intermediate and final products. Then the evaporated solutions are efficiently redissolved and the solutions are transferred to an outside system, such as a micro-fluidic system and its associated micro-fluidic reactors such as reactor 72 and reactor 84 of micro-fluidic system 10 shown in
The preferred embodiment is a cartridge based fluid loading system for microscale and nanoscale fluidic devices and uses micro-fluidics to perform chemical reactions and analyses at very high speeds while consuming small amounts of starting materials.
Referring now to
As used herein, the term spool is intended to be used in its broadest sense. Spool is intended to include both spiral and non-spiral or non-coiled configurations of tubing or other long fluidic paths. An example of such a non-spiral configuration is a serpentine configuration. The spool 40 includes a micro-fluidic pathway that is preferably microbore tubing including tubing with an inside diameter of 10 to 3000 micrometers or microns, but other forms of micro-fluidic pathways may also be used. The spool 40 is connected to a check valve 42 that allows only fluid flow out of the spool 40, not in. Ideally, the check valve 42 is connected to the output 44 of the reagent cartridge 34. The output 44 of the reagent cartridge 34 is connected to a fluidic junction 48 at input 50 of its two inputs 50 and 52. In another embodiment, the fluidic junction 48 is contained within the reagent cartridge 34 between the check valve 42 and the output 44 of the reagent cartridge 34. The terms fluidic junction and micro-fluidic junction are used interchangeably herein and refer to all types of fluidic and micro-fluidic junctions including, for example, Y-junctions, also known as tee junctions or those with two inputs and one output or X junctions, also known as cross junctions or those with two inputs and two outputs. It should be understood that the terms fluidic junction and micro-fluidic junction include not only those types of junctions listed in the examples above but all junctions with at least one input and at least one output as well as those with many inputs and/or many outputs.
The capacity volume of the reagent cartridge 34 can be varied by adjusting the diameter and length of the tubing 41 and may reach into multi-milliliter volumes or greater by using large tubing 41 diameters. Also, the cartridge back pressure is controlled by adjusting both the length and diameter of the tubing 41. Additionally, the load volumes are controlled at the sub-nanoliter level by using a small diameter tubing 41 and long length of tubing 41. The reagent cartridge 34 is capable of pressures over 5000 psi and can be configured to allow low pressure and high pressure zones. The tubing 41 of the reagent cartridge 34 is preferably constructed of fused silica glass capillary tubing. In other embodiments the tubing 41 may be plastic (including poly-carbonate plastic polymer or fluoropolymer), or metal, or could also be a machined or micro-machined channel in various substrate materials. The tubing preferably is 500 um in diameter, and the spool 40 of tubing 41 has a length of lm inside the reagent cartridge 34.
Referring again to the circular switch 24, node A is connected to a dispense line 54, which is connected to the other input 52 of the fluidic junction 48. The output 56 of the fluidic junction 48 is connected to a load line 58 with a calibrated volume. Using the load line 58 with a calibrated volume facilitates precise loading of multiple batches and minimizes reactant waste. The load line is connected to an input 62 of a second fluidic junction 64. The other input 66 of the second fluidic junction 64 is connected to a second reagent load line 68 provided by a second reagent supply system 11 similar to the system described here. The output 70 of the second fluidic junction 64 is connected to a reactor 72, which is preferably formed by a passageway such as a coiled tube 73. The reactor 72 is connected to an input 74 of a third fluidic junction 76, and the other input 78 of the third fluidic junction 76 is connected to a third reagent supply system 13. Similar to the second reagent supply system 11, the third reagent supply system 13 provides a third load line 80. The output 82 of the third fluidic junction 76 is connected to a second reactor 84, again preferably formed by a passageway such as a coiled tube 85. The second reactor 84 is connected to an output switch 88 opening to either a system output 90 or a waste output 92. The second and third reagent supply systems 11 and 13 are each constructed as shown in
The micro-fluidic system 10 is designed such that numerous combinations of micro-fluidic systems 10 may be used to achieve desired results. The combination shown in
To fill syringe 22, a syringe plunger 23 is pulled in a downward direction inside a syringe barrel 25 as indicated by the lower arrow of arrow 130 while node C is activated so that solvent 30 fills the syringe 22. To purge air bubbles from pump 20, syringe 22 is repeatedly filled and dispensed by moving the syringe plunger 23 up and down in the syringe barrel 25. Filling is accomplished as described above, and to accomplish dispensing, plunger 23 of syringe 22 is pushed in an upward direction as indicated by the upper arrow of arrow 130 to force all solvent 30 out of the syringe 22 and into node C, the solvent line 28, and the solvent container 32. As the solvent 30 moves from the solvent line 28 into the solvent container 32, air bubbles previously trapped inside syringe 22, node C, or the solvent line 28 will be forced into solvent container 32 and will rise through the solvent 30 in the solvent container 32 and dissipate into the open space 94 within the solvent container 32. However, some air bubbles may still be trapped inside the solvent line 28 or the pump 20 after one purging process. Therefore, the purging process may be repeated as necessary to remove all air bubbles from the system.
Once the air bubbles have been purged as shown in
The next phase is the load reagent phase and is demonstrated by
In order to assure that the load line is full of reagent 38a, the amount of solvent 30 pumped may be increased to a volume greater than the calibrated volume of the load line 58, resulting in a small amount of reagent 38a overflow into the first reactor 72. For example, if the volume of the load line is 90 uL, 95 uL of solvent could be pushed with the syringe 22, causing 95 uL of reagent to enter the load line. Of course, the 90 uL load line could only hold 90 uL of reagent and 5 uL would enter the first reactor. In the preferred embodiment, such excess reagent 38a is disposed of as waste either at a remote waste output as discussed above or at the waste output 92. Because trapped gas bubbles are expected at the input 36 and output 44 ends of the cartridge 40, this load process ensures that no trapped gas remains in the load line 58.
Referring to
Also on
The dispense phase, shown in
After the entire load line 58 has been cleared of reagent 38a and the reaction is complete, the product 69 of the first reaction is pushed into the third fluidic junction 76 (by continuing to depress the plunger 23 of the syringe 22 in the direction of arrow 160). Reagent 38c is also pushed from the third reagent load line 80. From there the combination of reagent 38c and product 69 is pushed into the second reactor 84 where a second reaction occurs and the product 89 of the second reaction is pushed out of the micro-fluidic system 10 through the output switch 88 and the system output 90. When all of product 89 is forced through the system output 90, the load line 58 and the two reactors 72 and 84 contain solvent, and, if desired in a particular application, it may be possible to immediately begin another batch by starting with the load reagent phase discussed above. The load line 58 could be dispensed in sequential sub-batches by dispensing only a fraction of the load line 58 for each batch.
The dispense phase shown in
The final phase is shown in
If another batch is desired, it may be necessary or desirable to perform the initialize, fill/purge, and rinse phases, but it is also possible to begin with the load reagent phase. Beginning with the load reagent phase may be preferable if it is unnecessary to cleanse the micro-fluidic system 10 of waste or residue before running another batch of product. Another factor in determining whether to skip the initialize, fill/purge, and rinse phases is whether air bubbles are present in the system and need to be removed.
In another embodiment shown in
In another embodiment, the second and third fluidic junctions 64 and 76 (
Referring now to
A capillary tube 312 extends from the top to near the bottom 316 of a v-vial 314. In some embodiments, the capillary tube 312 has an internal diameter of less than about 100 micrometers and an outer diameter of less than about 500 micrometers. For example, the outer diameter of the capillary tube may be about 250, 363, or 500 micrometers in different embodiments respectively. A concentric gas jet 328 delivers a vapor sweep 329 inside the v-vial 314, and a microscale bubbler 313 is created at the bottom 316 of the v-vial 314 by dissemination of gas, for example nitrogen gas. The gas is fed into both the capillary tube 312 creating the microscale bubbler 313 and the concentric capillary 320 creating the vapor sweep 329 as shown in greater detail in
With continued reference to both
A cap 324 covers the v-vial and seals it from the environment in order to prevent undesired escape of input gases or evaporation gases. An input supply 322 connected to an input port 323 provides the capability to introduce solutions and solids into the v-vial 314. The input port 323, in addition to an output port 326, penetrates the cap 324 and provide pathways for introducing and removing matter to and from the v-vial 314, respectively. The output port 326, in the embodiment shown in
In this embodiment, the capillary tubing used in construction of the capillary tube 312, and in some embodiments, the output port 326, the input port 323, and the vacuum capillary 318, are made of glass and have microscale inner and outer diameters.
In one example of operation of the concentrator and evaporator 310, a solution supplied by input supply 322 is input into the v-vial 314 by input port 323. Gas, for example, nitrogen gas, is input into the v-vial 314 through capillary tube 312 and concentric capillary 320. The nitrogen gas exits the lower end of capillary tube 312, into the solution at the bottom 316 of the v-vial 314, gently foaming the solution and causing rapid evaporation of the solution. The nitrogen gas from concentric capillary 320 flows into the volume above the solution inside the v-vial 314 and sweeps the gases above the solution upwardly and out the vacuum capillary 318. A vacuum is created in the vacuum capillary 318, such that the pressure inside the v-vial 314 is greater than the pressure within the vacuum capillary 318 causing the gases within the v-vial to dissipate into the volume within the vacuum capillary 318 and be drawn out of the v-vial 314. Once the solution is evaporated to the extent desired, the remaining solution in the bottom 316 of the v-vial 314 is withdrawn from the v-vial 314 using the output port 326. Similar to the vacuum capillary 318, a vacuum may be created within the output port 326 such that the pressure within the v-vial is greater than the pressure within the output port causing the solution to be pulled into the volume of the output port 326 and exit the v-vial 314. Alternatively, or in conjunction with a created vacuum, the positive pressure within the v-vial assists the exit of remaining solution through the output port 326. Such positive pressure is created by continuing to input nitrogen through the capillary tube 312 and/or the concentric capillary 320 and stopping flow through the vacuum capillary 318.
In another example of operation of the concentrator and evaporator 310 as shown in
The [18F] fluoride ions are trapped on the surface of the resin and released using a kryptofix/potassium carbonate mixture. The cation, which is K+, is caged in the kryptofix, producing a “naked” fluoride ion that is highly reactive. [18F] fluoride ions can be captured in from about 50 microliters to about 500 microliters of solution containing approximately ten percent water. In one specific embodiment, 350 microliters of solution is used. 0.3% water content or less is necessary for desired labeling yields.
With continued reference to
Next, kryptofix carbonate is pumped from v-vial 350 through lines 352 and 340 through the ion exchange column 342. The kryptofix carbonate captures the [18F] fluoride ions and the solution is delivered to v-vial 345. Nitrogen is then supplied to the pump/switch 338 and is directed through line 346 to the bottom 316 of v-vial 345 in order to form a micro bubbler that bubbles the solution. In some embodiments heat is added by v-vial 345 assisting in the evaporation of the water from the solution. A vapor sweep 329 of nitrogen is provided to v-vial 345 through line 348 and a gas exhaust is provided by line 350. The solution is gently bubbled and the water evaporates without splashing or potential explosion. The evaporated water is removed by the vapor sweep gas through exhaust line 350. V-vial 345, in some embodiments, cools the solution once the desired amount of evaporation has occurred. Next, acetonitrile is supplied from v-vial 350 through line 352 and line 346 to v-vial 345, and the anhydrous (also referred to as “dry”), combined solution is supplied to the dry product v-vial 360 through line 358. The anhydrous combined solution may be further processed or used as the final product.
In the embodiment of
Referring now to
In this embodiment, a resistive heater and a peltier cooler (heater/cooler 347) are used to rapidly change the temperature in the v-vial 345. The micro bubbler is created by inputting gas through capillary tube 312, which is specifically chosen for this embodiment to have an internal diameter of about 350 micrometers and is made of glass. This configuration results in aspiration of small volumes from the v-vial 345. A multi-port valve 382 having discrete fluid pathways is used in conjunction with an aspiration line 380, which has a calibrated volume. This combination precisely draws and dispenses the entire evaporator volume. A solvent preload purges air from the system 332, and a solvent chase ensures the contents of the evaporator are delivered in a process similar to that discussed regarding
Referring now to
Next, the product from the reactor 420 is pumped back into v-vial 345 using a solvent pumped from another v-vial, for example v-vial 334. The reactor 420 product, in some embodiments, is delivered externally with respect to the system 332, by way of a capillary output (not shown). If the product is delivered back to v-vial 345, it is further processed such as by evaporation, concentration, or other reaction steps in some embodiments.
Referring now to
In this configuration, the output of the microreactor system 10 is an input for the concentrator/evaporator system 332 and vise versa. Other combinations of reactor systems 10, load system and concentrator/evaporator systems 332 are contemplated as indicated by the dashed lines 104 in
The foregoing description of preferred embodiments for this invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Obvious modifications or variations are possible in light of the above teachings. The embodiments are chosen and described in an effort to provide the best illustrations of the principles of the invention and its practical application, and to thereby enable one of ordinary skill in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the invention as determined by the appended claims when interpreted in accordance with the breadth to which they are fairly, legally, and equitably entitled.
This patent application claims priority from and is related to U.S. Provisional Patent Application Ser. No. 60/803,660 filed Jun. 1, 2006, entitled: “Evaporator and Concentrator in Reactor and Loading System”. This U.S. Provisional Patent Application is incorporated by reference in its entirety herein.
Number | Name | Date | Kind |
---|---|---|---|
4670404 | Swift et al. | Jun 1987 | A |
5387397 | Strauss et al. | Feb 1995 | A |
5423513 | Chervet et al. | Jun 1995 | A |
5614154 | Glatz et al. | Mar 1997 | A |
5808020 | Ferrieri et al. | Sep 1998 | A |
5842787 | Kopf-Sill et al. | Dec 1998 | A |
5856671 | Henion et al. | Jan 1999 | A |
5858187 | Ramsey et al. | Jan 1999 | A |
5859070 | Jackson | Jan 1999 | A |
5921678 | Desai et al. | Jul 1999 | A |
5922591 | Anderson et al. | Jul 1999 | A |
5961932 | Ghosh et al. | Oct 1999 | A |
5965092 | Chatterjee et al. | Oct 1999 | A |
5976472 | Chatterjee et al. | Nov 1999 | A |
6001229 | Ramsey | Dec 1999 | A |
6010607 | Ramsey | Jan 2000 | A |
6033546 | Ramsey | Mar 2000 | A |
6036927 | Ramsey | Mar 2000 | A |
6062261 | Jacobson et al. | May 2000 | A |
6106710 | Fischer et al. | Aug 2000 | A |
6110343 | Ramsey et al. | Aug 2000 | A |
6117396 | Demers | Sep 2000 | A |
6120666 | Jacobson et al. | Sep 2000 | A |
6139734 | Settlage et al. | Oct 2000 | A |
6180372 | Franzen | Jan 2001 | B1 |
6187206 | Bernier et al. | Feb 2001 | B1 |
6231737 | Ramsey et al. | May 2001 | B1 |
6235471 | Knapp et al. | May 2001 | B1 |
6241953 | Krijgsman | Jun 2001 | B1 |
6284525 | Mathies et al. | Sep 2001 | B1 |
6315905 | Settlage et al. | Nov 2001 | B1 |
6319476 | Victor, Jr. et al. | Nov 2001 | B1 |
6342142 | Tsutamori et al. | Jan 2002 | B1 |
6376181 | Ramsey et al. | Apr 2002 | B2 |
6409072 | Breuer et al. | Jun 2002 | B1 |
6440669 | Bass et al. | Aug 2002 | B1 |
6444461 | Knapp et al. | Sep 2002 | B1 |
6475363 | Ramsey | Nov 2002 | B1 |
6485692 | Freitag et al. | Nov 2002 | B1 |
6524456 | Ramsey et al. | Feb 2003 | B1 |
6537506 | Schwalbe et al. | Mar 2003 | B1 |
6541274 | Nagle et al. | Apr 2003 | B2 |
6555389 | Ullman et al. | Apr 2003 | B1 |
6572830 | Burdon et al. | Jun 2003 | B1 |
6620386 | Welch | Sep 2003 | B1 |
6632656 | Thomas et al. | Oct 2003 | B1 |
6706538 | Karg et al. | Mar 2004 | B1 |
6749814 | Bergh et al. | Jun 2004 | B1 |
6806087 | Kibby et al. | Oct 2004 | B2 |
6818189 | Ardis et al. | Nov 2004 | B1 |
6828143 | Bard | Dec 2004 | B1 |
6858435 | Chervet et al. | Feb 2005 | B2 |
6890493 | Bergh et al. | May 2005 | B1 |
6896855 | Kohler et al. | May 2005 | B1 |
6926313 | Renzi | Aug 2005 | B1 |
6958122 | Gidner et al. | Oct 2005 | B1 |
6977064 | Ardis et al. | Dec 2005 | B1 |
7182371 | Renzi | Feb 2007 | B1 |
7220388 | Bishop et al. | May 2007 | B2 |
7244961 | Jovanovich et al. | Jul 2007 | B2 |
7323345 | Stjernstrom | Jan 2008 | B1 |
20040022696 | Zigler et al. | Feb 2004 | A1 |
20040208794 | Karg et al. | Oct 2004 | A1 |
20040258615 | Buchanan et al. | Dec 2004 | A1 |
20050019213 | Kechagia et al. | Jan 2005 | A1 |
20050052509 | Gilligan et al. | Mar 2005 | A1 |
20050181519 | Karg et al. | Aug 2005 | A1 |
20050221373 | Enzelberger et al. | Oct 2005 | A1 |
20050226776 | Brady et al. | Oct 2005 | A1 |
20050232387 | Padgett et al. | Oct 2005 | A1 |
20060150385 | Gilligan et al. | Jul 2006 | A1 |
20060289737 | Bassmann et al. | Dec 2006 | A1 |
20070026401 | Hofmann et al. | Feb 2007 | A1 |
20070071664 | Bellos et al. | Mar 2007 | A1 |
Number | Date | Country |
---|---|---|
102005025499 | Dec 2006 | DE |
0 495 255 | Jun 1996 | EP |
9-263591 | Oct 1997 | JP |
2000-249694 | Sep 2000 | JP |
2005-065632 | Mar 2005 | JP |
2005065632 | Mar 2005 | JP |
0264094 | Sep 1988 | PL |
WO 9967656 | Dec 1999 | WO |
WO 0134660 | May 2001 | WO |
WO 0211880 | Feb 2002 | WO |
WO 03002157 | Jan 2003 | WO |
WO 03002489 | Jan 2003 | WO |
WO 03078358 | Sep 2003 | WO |
05056872 | Jun 2005 | WO |
WO 2005056872 | Jun 2005 | WO |
05082535 | Sep 2005 | WO |
WO 2005082535 | Sep 2005 | WO |
Number | Date | Country | |
---|---|---|---|
60803660 | Jun 2006 | US |