The present application is based on, and claims priority from, KR Application No. 10-2007-0089014, filed Sep. 3, 2007, and PCT Application No. PCT/KR08/005013, filed Aug. 27, 2008, the disclosures of which are hereby incorporated by reference herein in their entireties.
The present invention relates to an evaporator, and more particularly, to an evaporator which can restrict a surface area of a communication hole with respect to a cross sectional area of a compartment and a surface area of a tube with respect to a surface area of a fin, thereby providing a dimensional extent for maximizing the heat exchange efficiency.
In the recent automotive industry, according as the global interest in environment and energy is increased, there has been performed research and development in the improvement of fuel efficiency. And, in order to satisfy various users' requirements, there has been also proceeded research and development in light, small and multi-functional automobiles. Also, the evaporator has been improved to realize the smaller size and to increase the heat exchange efficiency together.
The evaporator is a component of an air conditioner in which air introduced by an air blower is cooled due to heat exchange while liquid heat exchange medium is changed into a gaseous state and then the cooled air is supplied inside a vehicle.
A conventional evaporator includes first and second header tanks which forms at least one or more compartments and disposed to be parallel with each other; inlet and outlet pipes which are formed at one side of the first header tank; a baffle which is provided in the first or second header tank to control a flow of refrigerant; a core portion having a plurality of tubes of which both ends are fixedly disposed at the first and second header tanks to form a first row communicated with the inlet pipe and a second row communicated with the outlet pipe, and a plurality of fins which are interposed between the tubes; and a communication portion which has a communicating hole for communicating a part of the first and second rows.
Since the evaporator is comprised of the first and second rows, even though a flow passage of the header tank and the tube is formed properly, the flow of refrigerant is considerably changed according to a size of the communicating hole of the communication portion for communicating the first and second rows.
Further, in the evaporator, the refrigerant is flowed through the header tank and the tube, and while external air is flowed along the fin interposed between the tubes, the heat exchange is occurred between the refrigerant and the external air. Thus, if a height of the tube is high, the internal refrigerant is smoothly flowed, but since a height of the external fin is reduced and thus the flow of external air is restricted, the heat exchange performance is deteriorated. However, if the height of the tube is low, the external air can be smoothly flowed, but the flow of internal refrigerant is restricted and thus the heat exchange performance is deteriorated.
A surface temperature of the evaporator is changed according to the size and surface area of the communicating hole, and the height of the fin and tube, and temperature deviation on a surface of the core portion may be occurred.
However, in the conventional evaporator, there was provided only limitation of its shape or general dimensions, and there was never provided a detailed dimensional extent such as the surface area of the communicating hole and the number of the communicating holes considering the flow of refrigerant, and the height and the surface area of the fin and tube and a density of the fins considering a pressure drop amount of the refrigerant and the like.
An object of the present invention is to provide an evaporator with a core portion having a width of 20˜35 mm, which has a dimensional extent such as the surface area of the communicating hole, the number of the communicating holes, the height of the tube, a density of the fins and like considering the flow of refrigerant so as to minimize a difference in the surface temperature and maximize a heat radiation amount in the evaporator, thereby increasing the heat exchange efficiency.
To achieve the object of the present invention, the present invention provides an evaporator 80 comprising first and second header tanks 10 and 20 which form at least one or more compartments 11 and disposed parallely to be apart from each other in a distance; inlet and outlet pipes 30 and 40 which are respectively formed at one side of the first header tank 10; a baffle 50 which is provided in the first or second header tank 10 or 20 so as to control a flow of refrigerant and; a core portion 60 having a plurality of tubes 61 of which both ends are fixedly disposed at the first and second header tanks 10 and 20 to form a first row communicating with the inlet pipe 30 and a second row communicating with the outlet pipe 40, and a plurality of fins 62 which are interposed between the tubes 61, wherein the core portion 60 has a width Wcore of 20˜35 mm, and a communication portion 70 having a communicating hole 71 for communicating parts of the first and second rows is formed in the first header tank 10 or the second header tank 20, and a surface area A71 of the communicating hole 71 is formed to be 70˜130% of a cross sectional area A11′ of the compartment 11 of the first header tank 10 or the second header tank 20 communicating with the first row.
Preferably, the communication portion 70 has one communicating hole 71, the fin 62 has a height Hfin of 4˜7 mm, and the tube 61 has a height Htube of 2˜3 mm.
Further, the present invention provides an evaporator 80 comprising first and second header tanks 10 and 20 which form at least one or more compartments 11 and disposed parallely to be apart from each other in a distance; inlet and outlet pipes 30 and 40 which are respectively formed at one side of the first header tank 10; a baffle 50 which is provided in the first or second header tank 10 or 20 so as to control a flow of refrigerant and; a core portion 60 having a plurality of tubes 61 of which both ends are fixedly disposed at the first and second header tanks 10 and 20 to form a first row communicating with the inlet pipe 30 and a second row communicating with the outlet pipe 40, and a plurality of fins 62 which are interposed between the tubes 61, wherein the core portion 60 has a width Wcore of 20˜35 mm, and a surface area A61 of the tube 61 in the core portion 60 is formed to be 30˜50% of a surface area A62 of the fin 62, and a communication portion 70 having a communicating hole 71 for communicating parts of the first and second rows is formed in the first header tank 10 or the second header tank 20.
Preferably, a surface area A71 of the communicating hole 71 is formed to be 70˜130% of a cross sectional area A11′ of the compartment 11 of the first header tank 10 or the second header tank 20 communicating with the first row, and a density Dfin of the fins 62 is 60˜78 FPDM (Fin Per Deci-Meter).
Further, the surface area A71 of the communicating hole is formed to be 5˜30% of a surface area A70 of the communication portion 70.
Preferably, the evaporator 80 comprises a first region A1 in which the refrigerant introduced to the first header tank 10 via the inlet pipe 30 is flowed to the second header tank 20 through the tube 61 of the first row, a second region A2 which is adjacent to the first region A1 and in which the refrigerant flowed to the second header tank 20 through the first region A1 is flowed to the first header tank 10 through the tube 61 of the first row, a third region A3 in which the refrigerant flowed through the communication portion 70 of the first header tank 10 is flowed to the second header tank 20 through the tube 61 of the second row, and a fourth region A4 in which the refrigerant flowed to the second header tank 20 through the third region A3 is flowed to the first header tank 10 through the tube 61 of the second row, and the refrigerant is discharged through the outlet pipe 40.
Preferably, the evaporator 80 comprises a first region A1 in which the refrigerant introduced to the first header tank 10 via the inlet pipe 30 is flowed to the second header tank 20 through the tube 61 of the first row, a second region A2 which is adjacent to the first region A1 and in which the refrigerant flowed to the second header tank 20 through the first region A1 is flowed to the first header tank 10 through the tube 61 of the first row, a third region A3 which is adjacent to the second region A2 and in which the refrigerant flowed to the first header tank 10 through the second region A2 is flowed to the second header tank 20 through the tube 61 of the first row, and a fourth region A4 in which the refrigerant flowed through communication portion 70 of the second header tank 20 is flowed to the first header tank 10 through the tube 61 of the second row, a fifth region A5 which is adjacent to the fourth region A4 and in which the refrigerant flowed to the first header tank 10 through the fourth region A4 is flowed to the second header tank 20 through the tube 61 of the second row, and a sixth region A6 which is adjacent to the fifth region A5 and in which the refrigerant flowed to the second header tank 20 through the fifth region A5 is flowed to the first header tank 10 through the tube 61 of the second row, and the refrigerant is discharged through the outlet pipe 40.
Therefore, by optimizing a relation between the surface area of the communication portion and the surface area of the compartment of the first header tank and dimensions for each surface area and the heights of the tube and fin, the present invention provides a dimensional extent for maximizing the heat radiation amount, reducing the maximum temperature deviation of the core portion and allowing the refrigerant and air to be smoothly flowed, thereby maximizing the heat exchange efficiency.
The above and other objects, features and advantages of the present invention will become apparent from the following description of preferred embodiments given in conjunction with the accompanying drawings, in which:
Hereinafter, the embodiments of the present invention will be described in detail with reference to accompanying drawings.
Further, a baffle 50 for controlling a flow of refrigerant and a communication portion 70 having a communicating hole 71 for communicating the first and second rows are provided in the first or second header tank 10 or 20. The core portion 60 has a width Wcore of 20˜35 mm.
The width Wcore of the core portion 60 is a side surface of the tube 61 and the fin 62 and means a width of an effective surface area in which the heat exchange medium is flowed, as shown in
As shown in
Furthermore, as shown in
In more detail, the evaporator 80 of the present invention includes the first region A1 in which the refrigerant introduced to the first header tank 10 via the inlet pipe 30 is flowed to the second header tank 20 through the tube 61 of the first row, the second region A2 which is adjacent to the first region A1 and in which the refrigerant flowed to the second header tank 20 through the first region A1 is flowed to the first header tank 10 through the tube 61 of the first row, the third region A3 in which the refrigerant flowed through the communication portion 70 of the first header tank 10 is flowed to the second header tank 20 through the tube 61 of the second row, and the fourth region A4 in which the refrigerant flowed to the second header tank 20 through the third region A3 is flowed to the first header tank 10 through the tube 61 of the second row. The refrigerant is discharged to the outlet pipe 40 through the fourth region A4 adjacent to the third region A3.
And, as shown in
As shown in
The evaporator 80 of the present invention is constructed as shown in
As shown in
In case that the heat radiation amount is low, since the heat exchange efficiency of the evaporator 80 is deteriorated, the stable air-conditioning performance cannot be expected. And as the maximum temperature deviation on the surface of evaporator 80 is increased, the temperature of the air passing through each part becomes different, and it is difficult to provide pleasant temperature to persons in a vehicle. Therefore, in order to increase the heat radiation amount and decrease the maximum temperature deviation, the evaporator 80 of the present invention is constructed so that the surface area A71 of the communicating hole 71 is 70˜130% of the cross sectional area A11′ of the compartment 11 of the first header tank 10 communicated with the first row.
As shown in
If the number of the communicating holes 71 is increased, the surface area A71 of each communicating hole 71 is reduced and a distance between the communicating holes 71 is formed, and thus it exerts a bad effect on refrigerant distribution according to the variation of the number of tubes 61 and the like exerting an effect on the communicating hole 71.
As shown in
And
As shown in
As shown in
Meanwhile, another evaporator 80 of the present invention formed as shown in
Since the tube 61 and the fin 62 respectively form flow passages of the refrigerant and air, the surface area A61 of the tube 61 and the surface area A62 of the fin 62 have a great influence on the flow of refrigerant and air. In more detail, if the surface area A61 of the tube 61 is increased, the refrigerant in the tube 61 is smoothly flowed, but since the pressure drop amount of air is excessively increased, the heat radiation amount is reduced, and if the surface area A62 of the fin 62 is increased, the flowing air is smoothly flowed, but since the space in the tube 61 is reduced and thus the pressure drop amount of refrigerant is excessively increased, the heat radiation amount is reduced.
In general, since the entire size of the evaporator 80 is previously determined, the evaporator 80 of the present invention properly adjusts the surface areas of the tube 61 and the fin 62 and thus provides a dimension of the surface area A61 of the tube 61 with respect to the surface area A62 of the fin 62 so as to maximize the heat radiation amount.
Further, it is preferable in the evaporator 80 that the surface area A71 of the communicating hole 71 is formed to be 70˜130% of the cross sectional area A11′ of the compartment 11 of the first header tank 10 communicated with the first row and the density Dfin of the fins 62 is 60˜78 FPDM (Fin Per Deci-Meter) so as to increase the heat radiation amount according to an amount of the applied refrigerant.
Herein, the FPDM means the number of fins per 10 Cm.
The proper flowing of air is influenced by the number of the fins 62 formed on the surface area A62 of the fin 62 as well as the entire surface area that the fins 62 are formed. Therefore, in the evaporator 80 of the present invention, the density Dfin of the fins 62 is 60˜78FPDM, that is, 60˜78 fins are provided per 10 Cm.
In the evaporator 80, it is preferable that the surface area A71 of the communicating hole 71 is formed to be 5˜30% of the surface area A70 of the communication portion 70
Referring to
As described above, the evaporator 80 of the present invention provides a dimensional extent for maximizing the heat radiation amount, reducing the maximum temperature deviation of the core portion 60 and allowing the refrigerant and air to be smoothly flowed, thereby maximizing the heat exchange efficiency.
In addition, as shown in
In this situation, as shown in
Those skilled in the art will appreciate that the conceptions and specific embodiments disclosed in the foregoing description may be readily utilized as a basis for modifying or designing other embodiments for carrying out the same purposes of the present invention. Those skilled in the art will also appreciate that such equivalent embodiments do not depart from the spirit and scope of the invention as set forth in the appended claims.
According to the present invention, it is possible to provide a dimensional extent for maximizing the heat radiation amount, reducing the maximum temperature deviation of the core portion and allowing the refrigerant and air to be smoothly flowed, thereby maximizing the heat exchange efficiency.
Number | Date | Country | Kind |
---|---|---|---|
10-2007-0089014 | Sep 2007 | KR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/KR2008/005013 | 8/27/2008 | WO | 00 | 3/3/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/031782 | 3/12/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20040256091 | Higashiyama | Dec 2004 | A1 |
20060011335 | Ohata et al. | Jan 2006 | A1 |
20060144577 | Higashiyama | Jul 2006 | A1 |
20070144714 | Yabe et al. | Jun 2007 | A1 |
20070215331 | Higashiyama et al. | Sep 2007 | A1 |
Number | Date | Country |
---|---|---|
1128344 | Jul 1996 | CN |
102005062423 | Jul 2006 | DE |
112005000560 | Mar 2007 | DE |
0710811 | May 1996 | EP |
08-136176 | May 1996 | JP |
2001-324290 | Nov 2001 | JP |
2001324290 | Nov 2001 | JP |
2002-372340 | Dec 2002 | JP |
2003-130581 | May 2003 | JP |
2004-020104 | Jan 2004 | JP |
2004-163036 | Oct 2004 | JP |
2005-043041 | Feb 2005 | JP |
2005-043041 | Feb 2005 | JP |
2005-265356 | Sep 2005 | JP |
2006-183962 | Jul 2006 | JP |
1998-0010322 | Apr 1998 | KR |
10-2001-00007153 | Jan 2001 | KR |
10-2006-0021444 | Mar 2006 | KR |
10-2006-0075848 | Jul 2006 | KR |
03033984 | Apr 2003 | WO |
Entry |
---|
Japanese Office Action for Japanese Application No. 2010-523942. |
Examiner's Report issued on Apr. 23, 2012 in Canadian Patent Application No. 2,698,575. |
Office Action of corresponding application No. PCT/KR2007/0089014 mailed Oct. 10, 2012. |
European Search Report for corresponding European Patent Application No. 08 793 517.7 issued on Nov. 21, 2013. |
Office Action for corresponding Japanese Patent Application No. 2012-89624 issued on Mar. 4, 2014. |
Number | Date | Country | |
---|---|---|---|
20100243223 A1 | Sep 2010 | US |