This patent application is a United States national phase patent application based on PCT/KR2015/008989 filed Aug. 27, 2015 which claims the benefit of Korean Patent Application No. 10-2014-0114298 filed Aug. 29, 2014 and Korean Patent Application No. 10-2015-0120913 filed Aug. 27, 2015. The entire disclosures of the above patent applications are hereby incorporated herein by reference.
The present invention relates to an evaporator and, more specifically, to an evaporator, in which refrigerant is uniformly distributed to each area through 8-pass flow from a first area to an eighth area so as to reduce temperature variation and maximize the heat exchange efficiency with respect to outdoor air, and air is discharged to the left and right sides in a vehicle room with uniform temperature distribution so as to maintain the comfort of passengers.
In the recent automotive industry, there have been performed research and development for the improvement of fuel efficiency according to the increase of the global interest in the environment and energy. Also, in order to satisfy the various demands of users, there has been steadily performed research and development towards lightweight, compact and multi-functional automobiles as well as evaporators having increased thermal performance in a compact structure.
The evaporator is a component of an air conditioner system, in which the air introduced by an air blower is cooled by heat exchange while a liquid heat exchange medium is converted into a gas phase such that the cooled air is supplied to the inside of a vehicle.
The prior art evaporator 80, as shown in
Herein, the refrigerant, introduced through the inlet pipe 30 into the first line, sequentially passes through: a first area A1 (from the top to the bottom) extending in the lengthwise direction in the first header tank 10 to the second header tank 20 through the tubes 61; a second area A2 (from the bottom to the top) extending to the first header tank 10 through other tubes 61; a third area A3 (from the top to the bottom) extending to the second header tank 20 again through still other tubes 61; a fourth area A4 (from the bottom to the top) extending to the second line through a communication part (not shown, a predetermined area of the partition wall in the second header tank 20 is formed to be hollow) and then extending to the first header tank 10; and a fifth area A5 (from the top to the bottom) extending to the second header tank 20 again through still other tubes 61; and a sixth area A6 (from the bottom to the top) extending to the first header tank 10 again through the other tubes 61 and, after that, is discharged through the outlet pipe 40.
However, as shown in
Korean Reg. Patent No. 10-1130038 (Title of the Invention: Vehicle HVAC system using a 6-pass tube-fin type evaporator using refrigerant containing HFO 1234yf, Published: 20 Dec. 2010)
Accordingly, the present invention has been made in an effort to solve the above-mentioned problems occurring in the prior arts, and it is an objective of the present invention to provide an evaporator, comprising 8-pass flow from a first area to an eighth area so as to uniformly distribute refrigerant to the respective areas, thereby reducing temperature variation and increasing the heat exchange efficiency with respect to outdoor air, wherein air is discharged to the left and right sides in a vehicle room with uniform temperature distribution so as to maintain the comfort of passengers.
To achieve the above objectives, the present invention provides an evaporator, comprising: a first header tank and a second header tank, each of which inside is divided into a first line and a second line by a partition wall, and arranged in parallel to each other at a predetermined distance from each other; baffles provided to the inside of the first header tank and the second header tank so as to control the flow of refrigerant; and a core part including a plurality of tubes, of which both ends are respectively fixed to the first line and the second line of the first header tank and the second header tank, and fins interposed between the tubes, wherein the tubes respectively have four or more areas, provided to the first line and the second line, for movement from the first header tank to the second header tank or from the second header tank to the first header tank.
Herein, the evaporator includes an inlet pipe communicating with the first line, and an outlet pipe communicating with the second line, the both being in parallel to each other at one side of the first header tank, and the refrigerant, introduced through the inlet pipe in the first line of the tubes, sequentially passes through a first area for the movement from the first header tank to the second header tank, a second area for the movement from the second header tank to the first header tank, a third area for the movement from the first header tank to the second header tank, and a fourth area for the movement from the second header tank to the first header tank, so as to move to the second line, and sequentially passes through a fifth area for the movement from the first header tank to the second header tank, a sixth area for the movement from the second header tank to the first header tank, a seventh area for the movement from the first header tank to the second header tank, and an eighth area for the movement from the second header tank to the first header tank, so as to be discharged through the outlet pipe.
That is, the evaporator according to the present invention has 8-pass flow from the first area to the eighth area so as to uniformly distribute the refrigerant to each of the areas, thereby reducing temperature variation. Therefore, according to the evaporator of the present invention, it is possible to maximize the heat exchange efficiency with respect to outdoor air. In addition, the air discharged to the left and right sides in a vehicle room can have uniform temperature distribution, thereby maintaining the comfort of passengers.
Furthermore, the evaporator has the plurality of tubes, of which flow paths respectively have the same flow path area and the same full circumference length and which have a hydraulic diameter in the range of 1.0 to 2.8 mm, and the core part, of which width is 150 to 300 mm. Therefore, the evaporator of the present invention has advantages of improving thermal performance while reducing temperature variation.
In addition, the number of the tubes forming the first area and the number of the tubes forming the eighth area are the same as each other, the number of the tubes forming the second area and the number of the tubes forming the seventh area are the same as each other, the number of the tubes forming the third area and the number of the tubes forming the sixth area are the same as each other, and the number of the tubes forming the fourth area and the number of the tubes forming the fifth area are the same as each other, such that the baffles are provided at the same positions so as to be symmetrical to each other in the width direction and, thus, the manufacturing process can be simplified.
Also, the first header tank and the second header tank respectively have the same number of the baffles, which are located in the first line and the second line, wherein the baffles located in the first line and the second line of the first header tank and the second header tank respectively have the same positions in the lengthwise direction, thereby further improving manufacturability.
Herein, the evaporator has the same number of tubes which form the opposite areas of the first line and the second line, wherein it is possible to form the evaporator in such a manner that the number of the tubes of the eighth area is smaller than or equal to the number of the tubes of the seventh area and the number of the tubes of the seventh area is smaller than or equal to the number of the tubes of the sixth area. In other words, according to the evaporator of the present invention, the number of the tubes forming an area, which is adjacent to an outlet, is smaller than or equal to the number of the tubes forming neighboring areas such that the concentration of the refrigerant on the area adjacent to the outlet can be prevented.
Therefore, the evaporator according to the present invention has 8-pass flow from the first area to the eighth area so as to uniformly distribute refrigerant to each of the areas, thereby reducing temperature variation and maximizing the heat exchange efficiency with respect to outdoor air, and also has an advantage of uniform temperature distribution in the air discharged to the right and left sides in a vehicle room, thereby maintaining the comfort of passengers.
Hereinafter, an evaporator having the above-mentioned features according to the preferred embodiments of the present invention will be described in detail with reference to the attached drawings.
The evaporator 1000 according to the present invention includes a first header tank 100, a second header tank 200, baffles 600, and a core part 500.
The first header tank 100 and the second header tank 200 are provided to be spaced from each other at a predetermined distance, wherein the inside of each of the first header tank 100 and the second header tank 200 is divided into a first line and a second line by a partition wall 700 and the first header tank 100 and the second header tank 200 are respectively connected to an inlet pipe 300, through which refrigerant is introduced, and an outlet pipe 400. Herein, the first line is connected to the inlet pipe 300 such that the refrigerant can be introduced through the inlet pipe 300, and the second line is connected to the outlet pipe 400 such that the refrigerant can be discharged through the outlet pipe 400. The inlet pipe 300 and the outlet pipe 400 are respectively formed in the shape of a pipe so as to be connected to one side of the first header tank 100 in parallel to each other (see
Referring to
The baffles 600 are means provided to the inside of the first header tank 100 and the second header tank 200 so as to control the flow of the refrigerant, and are formed in the shape of a plate for blocking the refrigerant in the lengthwise direction of the first header tank 100 and the second header tank 200, wherein the number of the tubes 510 for forming a first area A1 to an eighth area A8 can be adjusted by controlling the positions of the baffles 600.
The core part 500 includes the tubes 510 and fins 520 and may further include side plates at both sides so as to support the tubes 510 and the fins 520.
The tubes 510 are respectively fixed to the first line and the second line, formed by the first header tank 100 and the second header tank 200, at both ends thereof so as to form refrigerant flow paths, and the fins 520 are interposed between the tubes 510.
Herein, there are a plurality of the tubes 510, all of which are in the same shape. More specifically, each of the plurality of tubes 510 has the same flow path area and each of the flow paths has the same full circumference length. In addition, it is preferable that 4 or more areas, extending from the first header tank 100 to the second header tank 200 or from the second header tank 200 to the first header tank 100 in the first line and the second line, are respectively provided to the tubes 510 in the lengthwise direction. In particular, the tubes 510 are provided with the first area A1 to a fourth area A4, for transferring the refrigerant introduced through the inlet pipe 300, in the first line and a fifth area A5 to the eighth area A8 in the second line. More specifically, the first area A1 to the fourth area A4 are formed by the tubes 510 in the first line in sequence along the lengthwise direction of the first header tank 100. The first area A1 is an area, into which the refrigerant introduced through the inlet pipe 300 first flows, wherein the refrigerant introduced through the inlet pipe 300 flows in the lengthwise direction of the first header tank 100 to a portion blocked by the baffle 600 and then to the second header tank 200. A second area A2 is an area, into which the refrigerant passing through the first area A1 flows, wherein the second area A2 is formed in the vicinity of the first area A1 in the lengthwise direction of the first header tank 100 such that the refrigerant of the second header tank 200 flows to the first header tank 100. A third area A3 is an area, to which the refrigerant passing through the second area A2 flows, wherein the third area A3 is formed in the vicinity of the second area A2 in the lengthwise direction of the first header tank 100 such that the refrigerant of the first header tank 100 flows to the second header tank 200. The fourth area A4 is an area, to which the refrigerant passing through the third area A3 flows, wherein the fourth area A4 is formed in the vicinity of the third area A3 in the lengthwise direction of the first header tank 100 such that the refrigerant of the second header tank 200 flows to the first header tank 100.
Further, the fifth area A5 to a sixth area A6 are areas formed by the tubes 510 in the second line, wherein, after the refrigerant passing through the fourth area A4 flows to the second line, the refrigerant of the first header tank 100 flows to the second header tank 200. The sixth area A6 is an area, to which the refrigerant passing through the fifth area A5 flows, wherein the sixth area A6 is formed in the vicinity of the fifth area A5 in the lengthwise direction of the first header tank 100 such that the refrigerant of the second header tank 200 flows to the first header tank 100. A seventh area A7 is an area, to which the refrigerant passing through the sixth area A6 flows, wherein the seventh area A7 is formed in the vicinity of the sixth area A6 in the lengthwise direction of the first header tank 100 such that the refrigerant of the first header tank 100 flows to the second header tank 200. The eighth area A8 is an area, to which the refrigerant passing through the seventh area A7 flows, wherein the eighth area A8 is formed in the vicinity of the seventh area A7 in the lengthwise direction of the first header tank 100 such that the refrigerant of the second header tank 200 flows to the first header tank 100. The eighth area A8 is a part communicating with the outlet pipe 400 such that the refrigerant introduced through the inlet pipe 300 flows from the first area A1 to the eighth area A8 in sequence and then is discharged through the outlet pipe 400.
That is, the evaporator 1000 according to the present invention has the 8-pass flow from the first area A1 to the eighth area A8, wherein the refrigerant is uniformly distributed to each of the areas, thereby reducing temperature variation. Therefore, the evaporator 1000 according to the present invention can maximize the heat exchange efficiency with respect to the outdoor air and maintain the comfort of passengers through the uniform temperature distribution of the air discharged to the left and right sides in a vehicle room.
In particular, the evaporator 1000 according to the present invention may be formed such that the number of the tubes 510 of the eighth area A8 is smaller than or equal to the number of the tubes 510 of the seventh area A7, the number of the tubes 510 of the seventh area A7 is smaller than or equal to the number of the tubes 510 of the sixth area A6, and the number of the tubes 510 of the sixth area A6 is smaller than or equal to the number of the tubes 510 of the fifth area A5.
In the evaporator 1000 according to the present invention, the numbers of the tubes 510 forming the fifth area A5 to the eighth area A8 are limited since the areas of the second line first meet the air in the air flow direction. Therefore, the air passes through the second line first and then passes through the first line such that the temperature variation of the second line is larger than the temperature variation of the first line. Accordingly, in the case of the evaporator 1000, the air primarily cooled in the second line is cooled again in the first line. Therefore, in order to reduce the air temperature variation on the whole, it is important to release the concentration of the refrigerant in the second line.
In other words, according to the evaporator 1000 of the present invention, the number of the tubes 510 forming an area, which is adjacent to the outlet pipe 400, is smaller than or equal to the number of the tubes 510 forming neighboring areas thereof such that the concentration of the refrigerant on the area adjacent to the outlet pipe 400 can be prevented. Herein, since die number of the tubes 510 may be not a multiple of 4, it is possible to arrange the tubes 510 in such a manner that the number of the tubes 510 of the eighth area A8, which is nearest to the outlet, is smaller than or equal to the number of the tubes 510 of the seventh area A7, the number of the seventh area A7 is smaller than or equal to the number of the tubes 510 of the sixth area A6, and the number of the sixth area A6 is smaller than or equal to the number of the tubes 510 of the fifth area A5.
In addition, the numbers of the tubes 510 forming the opposite areas of the first line and the second line may be the same. More specifically, it is preferable that the number of the tubes 510 forming the first area A1 is the same as the number of the tubes 510 forming the eighth area A8, the numbers of the tubes 510 respectively forming the second area A2 and the seventh area A7 are the same as each other, the numbers of the tubes 510 respectively forming the third area A3 and the sixth area A6 are the same as each other, and the numbers of the tubes 510 respectively forming the fourth area A4 and the fifth area A5 are the same as each other. In other words, the numbers of the tubes 510 respectively forming the first area A1 and the eighth area A8 which are arranged in parallel to each other in the width direction are the same as each other, the numbers of the tubes 510 respectively forming the second area A2 and the seventh area A7 which are arranged in parallel to each other in the width direction are the same as each other, the numbers of the tubes 510 respectively forming the third area A3 and the sixth area A6 which are arranged in parallel to each other in the width direction are the same as each other, and the numbers of the tubes 510 respectively forming the fourth area A4 and the fifth area A5 which are arranged in parallel to each other in the width direction are the same as each other. Therefore, the evaporator 1000 according to the present invention has advantages that the same number of baffles 600 are respectively provided to the first line and the second line in the first header tank 100 and the second header tank 200 so as to control the refrigerant flow in the first header tank 100 and the second header tank 200 and the baffles 600 are provided at the same positions in the lengthwise direction in the first line and the second line, thereby simplifying manufacturing work.
Meanwhile, it is preferable that the evaporator 1000 according to the present invention has a hydraulic diameter of the tubes 510 in the range of 1.0 millimeters (mm) to 2.8 mm. The hydraulic diameter indicates 4× flow path areas (St) of the tubes (510)/full circumference length (Lt) of entire flow paths of the tubes (510).
Meanwhile,
Furthermore, the thermal performance is rapidly decreased if the hydraulic diameter of the tubes 510 is less than 1.0 mm, and the maximum temperature difference is increased if the hydraulic diameter of the tubes 510 exceeds 2.8 mm, as shown in
In addition, it is preferable that the width Wcore of the core part is formed to be in the range of 150 mm to 300 mm in the evaporator 1000 according to the present invention.
In other words, the evaporator 1000 according to the present invention has advantages that the hydraulic diameter of the tubes 510 is formed to be in the range of 1 to 2.8 mm and the width Wcore of the core part is formed to be in the range of 150 to 300 mm, thereby reducing the temperature variation and improving the thermal performance.
It should be understood that there is no intent to limit the present invention to the particular forms of the embodiments mentioned above. It should be further understood that the present invention can be applied in a various fields and various modifications can be made thereto without departing from the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
10-2014-0114298 | Aug 2014 | KR | national |
10-2015-0120913 | Aug 2015 | KR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/KR2015/008989 | 8/27/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/032255 | 3/3/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20030188857 | Kawakubo | Oct 2003 | A1 |
20030221819 | Jang | Dec 2003 | A1 |
20040256091 | Higashiyama | Dec 2004 | A1 |
20070084589 | Nishino | Apr 2007 | A1 |
20070131391 | Ichiyanagi | Jun 2007 | A1 |
20110303401 | Kamoshida | Dec 2011 | A1 |
20120096894 | Higashiyama | Apr 2012 | A1 |
20130312453 | Jeon | Nov 2013 | A1 |
20130312455 | Jeon | Nov 2013 | A1 |
Number | Date | Country |
---|---|---|
101910775 | Dec 2010 | CN |
2014513265 | May 2014 | JP |
1020050035551 | Apr 2005 | KR |
1020090048352 | May 2009 | KR |
1020100132703 | Dec 2010 | KR |
1020130130297 | Dec 2013 | KR |
1020140001537 | Jan 2014 | KR |
Number | Date | Country | |
---|---|---|---|
20170158027 A1 | Jun 2017 | US |