This description relates to evaporators for heat transfer systems.
Heat transfer systems are used to transport heat from one location (the heat source) to another location (the heat sink). Heat transfer systems can be used in terrestrial or extraterrestrial applications. For example, heat transfer systems may be integrated by satellite equipment that operates within zero- or low-gravity environments. As another example, heat transfer systems can be used in electronic equipment, which often requires cooling during operation.
Loop Heat Pipes (LHPs) and Capillary Pumped Loops (CPLs) are passive two-phase heat transfer systems. Each includes an evaporator thermally coupled to the heat source, a condenser thermally coupled to the heat sink, fluid that flows between the evaporator and the condenser, and a fluid reservoir for expansion of the fluid. The fluid within the heat transfer system can be referred to as the working fluid. The evaporator includes a primary wick and a core that includes a fluid flow passage. Heat acquired by the evaporator is transported to and discharged by the condenser. These systems utilize capillary pressure developed in a fine-pored wick within the evaporator to promote circulation of working fluid from the evaporator to the condenser and back to the evaporator. The primary distinguishing characteristic between an LHP and a CPL is the location of the loop's reservoir, which is used to store excess fluid displaced from the loop during operation. In general, the reservoir of a CPL is located remotely from the evaporator, while the reservoir of an LHP is co-located with the evaporator.
In one general aspect, an evaporator for a heat transfer system includes a heated wall, a liquid barrier wall, a primary wick positioned between the heated wall and an inner side of the liquid barrier wall, a vapor removal channel, and a liquid flow channel. The liquid barrier wall contains working fluid on the inner side of the liquid barrier wall. The fluid flows only along the inner side of the liquid barrier wall. The vapor removal channel is located at an interface between the primary wick and the heated wall. The liquid flow channel is located between the liquid barrier wall and the primary wick.
Implementations may include one or more of the following features. For example, the evaporator may further include additional vapor removal channels located at an interface between the primary wick and the heated wall. The evaporator may also include additional liquid flow channels located between the liquid barrier wall and the primary wick.
The primary wick, the heated wall, and the liquid barrier wall may be planar.
The primary wick may have a thermal conductivity that is low enough to reduce leakage of heat from the heated wall, through the primary wick, and toward the liquid barrier wall. The heated wall may be defined so as to accommodate the vapor removal channel. The vapor removal channel may be electro-etched or machined into a heated wall.
The interface at the primary wick may be defined so as to accommodate the vapor removal channel. The vapor removal channel may be electro-etched or machined into the heated wall. The vapor removal channel may be embedded within the primary wick at the interface.
A cross-section of the vapor removal channel may be sufficient to ensure vapor flow generated at the interface between the primary wick and the heated wall without a significant pressure drop. The surface contact between the heated wall and the primary wick may be selected to provide better heat transfer from a heat source at the heated wall into the vapor removal channel. A thickness of the heated wall may be selected to ensure sufficient vaporization at the interface between the primary wick and the heated wall.
The liquid flow channel may supply the primary wick with liquid from a liquid inlet. The liquid flow channel may be configured to supply the primary wick with enough liquid to offset liquid vaporized at the interface between the primary wick and the heated wall and liquid vaporized at the liquid barrier wall.
The number of vapor removal channels may be higher than the number of liquid flow channels.
The evaporator may also include a secondary wick between the vapor removal channel and the primary wick, and a vapor vent channel at an interface between the secondary wick and the primary wick. The vapor bubbles formed within the vapor vent channel may be swept through the secondary wick and through the liquid flow channel. The vapor vent channel may deliver vapor that has vaporized within the primary wick near the liquid barrier wall away from the primary wick. The secondary wick may be a mesh screen or a slab wick.
The heated wall and the liquid barrier wall may be capable of withstanding internal pressure of the working fluid. The primary wick, the heated wall, and the liquid barrier wall may be annular and coaxial, such that the heated wall is inside the primary wick, which is inside the liquid barrier wall.
The vapor removal channel may be thermally segregated from the liquid flow channel. The liquid barrier wall may be equipped with fins that cool a liquid side of the evaporator. The liquid barrier wall may be cooled by passing liquid across an outer surface of the liquid barrier wall.
In another general aspect, a heat transfer system includes an evaporator, a condenser having a vapor inlet and a liquid outlet, a vapor line providing fluid communication between a vapor outlet of the evaporator and the vapor inlet, and a liquid return line providing fluid communication between the liquid outlet and a liquid inlet entering the evaporator. The evaporator includes a heated wall, a liquid barrier wall containing working fluid, a primary wick positioned between the heated wall and the inner side of the liquid barrier wall, a vapor removal channel located at an interface between the primary wick and the heated wall, and a liquid flow channel located between the liquid barrier wall and the primary wick. The working fluid flows only along the inner side of the liquid barrier wall. The vapor removal channels extend to the vapor outlet and the liquid flow channel receives liquid from the liquid inlet.
Implementations may include one or more of the following features. For example, the liquid barrier wall of the evaporator may be equipped with heat exchange fins. The heat transfer system may further include a reservoir in the liquid return line. The evaporator may include a secondary wick between the vapor removal channel and the primary wick, and a vapor vent channel at an interface between the secondary wick and the primary wick.
Vapor bubbles formed within the vapor vent channel may be swept through the secondary wick, through the liquid flow channel, and into the reservoir. The vapor vent channel may deliver vapor that has vaporized within the primary wick near the liquid barrier wall away from the primary wick and into the reservoir. Vapor bubbles may be vented into the reservoir from the evaporator.
The reservoir may be cold biased. The evaporator may be planar.
The evaporator may be annular such that the heated wall is inside the primary wick, which is inside the liquid barrier wall.
The liquid returning into the evaporator from the condenser may be subcooled by the condenser. An amount of subcooling produced by the condenser may balance heat leakage through the primary wick. The heat transfer system may further include a reservoir in the liquid return line. The subcooling may maintain a thermal balance within the reservoir. The liquid return line may enter the evaporator through the reservoir. The reservoir may be formed between the liquid barrier wall and the primary wick of the evaporator, as a separate vessel that communicates with the liquid inlet of the evaporator, or adjacent the liquid barrier wall of the evaporator. The reservoir may be equipped with fins that cool the reservoir.
The temperature difference between the reservoir and the primary wick near the heated wall may ensure circulation of the working fluid through the heat transfer system.
The heated wall may contact a hot side of a Stirling cooling machine.
The liquid flow channel may be fed with liquid from a reservoir located above the primary wick. The liquid barrier wall may be cold biased.
Aspects of the techniques and systems can include one or more of the following advantages.
The evaporator may be used in any two-phase heat transfer system for use in terrestrial or extraterrestrial applications. For example, the heat transfer systems can be used in electronic equipment, which often requires cooling during operation, or in laser diode applications.
The planar evaporator may be used in any heat transfer system in which the heat source is formed as a planar surface. The annular evaporator may be used in any heat transfer system in which the heat source is formed as a cylindrical surface.
The heat transfer system that uses the annular evaporator takes advantage of gravity when used in terrestrial applications, thus making an LHP suitable for mass production. In many cases, terrestrial applications dictate the orientation of the heat acquisition surfaces and the heat sink as well; the annular evaporator utilizes the advantages of the operation in gravity.
A gravity-fed hydro accumulator, as well as its special sizing together with charge amount, are features that can significantly simplify the design and improve LHP reliability. Simplification of the design, less tolerancing of parts and increasing reliability make it possible to mass-produce loop heat pipes at the cost of copper-water heat pipes currently produced in the millions each year for electronics cooling.
Other features and advantages will be apparent from the description, the drawings, and the claims.
Like reference symbols in the various drawings indicate like elements.
As discussed above, in a loop heat pipe (LHP), the reservoir is co-located with the evaporator, thus, the reservoir is thermally and hydraulically connected with the reservoir through a heat-pipe-like conduit. In this way, liquid from the reservoir can be pumped to the evaporator, thus ensuring that the primary wick of the evaporator is sufficiently wetted or “primed” during start-up. Additionally, the design of the LHP also reduces depletion of liquid from the primary wick of the evaporator during steady-state or transient operation of the evaporator within a heat transport system. Moreover, vapor and/or bubbles of non-condensable gas (NCG bubbles) vent from a core of the evaporator through the heat-pipe-like conduit into the reservoir.
Conventional LHPs require that liquid be present in the reservoir prior to start-up, that is, application of power to the evaporator of the LHP. However, if the working fluid in the LHP is in a supercritical state prior to start-up of the LHP, liquid will not be present in the reservoir prior to start-up. A supercritical state is a state in which a temperature of the LHP is above the critical temperature of the working fluid. The critical temperature of a fluid is the highest temperature at which the fluid can exhibit a liquid-vapor equilibrium. For example, the LHP may be in a supercritical state if the working fluid is a cryogenic fluid, that is, a fluid having a boiling point below −150° C., or if the working fluid is a sub-ambient fluid, that is, a fluid having a boiling point below the temperature of the environment in which the LHP is operating.
Conventional LHPs also require that liquid returning to the evaporator is subcooled, that is, cooled to a temperature that is lower than the boiling point of the working fluid. Such a constraint makes it impractical to operate LHPs at a sub-ambient temperature. For example, if the working fluid is a cryogenic fluid, the LHP is likely operating in an environment having a temperature greater than the boiling point of the fluid.
Referring to
The heat transfer system 105 includes a main evaporator 115, and a condenser 120 coupled to the main evaporator 115 by a liquid line 125 and a vapor line 130. The condenser 120 is in thermal communication with a heat sink 165, and the main evaporator 115 is in thermal communication with a heat source Qin 116. The heat transfer system 105 may also include a hot reservoir 147 coupled to the vapor line 130 for additional pressure containment, as needed. In particular, the hot reservoir 147 increases the volume of the heat transport system 100. If the working fluid is at a temperature above its critical temperature, that is, the highest temperature at which the working fluid can exhibit liquid-vapor equilibrium, its pressure is proportional to the mass in the heat transport system 100 (the charge) and inversely proportional to the volume of the system. Increasing the volume with the hot reservoir 147 lowers the fill pressure.
The main evaporator 115 includes a container 117 that houses a primary wick 140 within which a core 135 is defined. The main evaporator 115 includes a bayonet tube 142 and a secondary wick 145 within the core 135. The bayonet tube 142, the primary wick 140, and the secondary wick 145 define a liquid passage 143, a first vapor passage 144, and a second vapor passage 146. The secondary wick 145 provides phase control, that is, liquid/vapor separation in the core 135, as discussed in U.S. Pat. No. 6,889,754, issued May 10, 2005, which is incorporated herein by reference in its entirety. As shown, the main evaporator 115 has three ports: a liquid inlet 137 into the liquid passage 143, a vapor outlet 132 into the vapor line 130 from the second vapor passage 146, and a fluid outlet 139 from the liquid passage 143 (and possibly the first vapor passage 144, as discussed below). Further details on the structure of a three-port evaporator are discussed below with respect to
The priming system 110 includes a secondary or priming evaporator 150 coupled to the vapor line 130 and a reservoir 155 co-located with the secondary evaporator 150. The reservoir 155 is coupled to the core 135 of the main evaporator 115 by a secondary fluid line 160 and a secondary condenser 122. The secondary fluid line 160 couples to the fluid outlet 139 of the main evaporator 115. The priming system 110 also includes a controlled heat source Qsp 151 in thermal communication with the secondary evaporator 150.
The secondary evaporator 150 includes a container 152 that houses a primary wick 190 within which a core 185 is defined. The secondary evaporator 150 includes a bayonet tube 153 and a secondary wick 180 that extend from the core 185, through a conduit 175, and into the reservoir 155. The secondary wick 180 provides a capillary link between the reservoir 155 and the secondary evaporator 150. The bayonet tube 153, the primary wick 190, and the secondary wick 180 define a liquid passage 182 coupled to the fluid line 160, a first vapor passage 181 coupled to the reservoir 155, and a second vapor passage 183 coupled to the vapor line 130. The reservoir 155 is thermally and hydraulically coupled to the core 185 of the secondary evaporator 150 through the liquid passage 182, the secondary wick 180, and the first vapor passage 181. Vapor and/or NCG bubbles from the core 185 of the secondary evaporator 150 are swept through the first vapor passage 181 to the reservoir 155 and condensable liquid is returned to the secondary evaporator 150 through the secondary wick 180 from the reservoir 155. The primary wick 190 hydraulically links liquid within the core 185 to the heat source Qsp 151, permitting liquid at an outer surface of the primary wick 190 to evaporate and form vapor within the second vapor passage 183 when heat is applied to the secondary evaporator 150.
The reservoir 155 is cold-biased, and thus, it is cooled by a cooling source that will allow it to operate, if unheated, at a temperature that is lower than the temperature at which the heat transfer system 105 operates. In one implementation, the reservoir 155 and the secondary condenser 122 are in thermal communication with the heat sink 165 that is thermally coupled to the condenser 120. For example, the reservoir 155 can be mounted to the heat sink 165 using a shunt 170, which may be made of aluminum or any heat-conductive material. In this way, the temperature of the reservoir 155 tracks the temperature of the condenser 120.
Though not shown in
Referring also to
Meanwhile, power is applied to the priming system 110 by applying heat from the heat source Qsp 151 to the secondary evaporator 150 (step 315) to enhance or initiate circulation of fluid within the heat transfer system 105. Vapor output by the secondary evaporator 150 is pumped through the vapor line 130 and through the condenser 120 (step 320) due to capillary pressure at the interface between the primary wick 190 and the second vapor passage 183. As vapor reaches the condenser 120, it is converted to liquid (step 325). The liquid formed in the condenser 120 is pumped to the main evaporator 115 of the heat transfer system 105 (step 330). When the main evaporator 115 is at a higher temperature than the critical temperature of the fluid, the liquid entering the main evaporator 115 evaporates and cools the main evaporator 115. This process (steps 315-330) continues, causing the main evaporator 115 to reach a set point temperature (step 335), at which point the main evaporator is able to retain liquid and be wetted and to operate as a capillary pump. In one implementation, the set point temperature is the temperature to which the reservoir 155 has been cooled. In another implementation, the set point temperature is a temperature below the critical temperature of the working fluid. In a further implementation, the set point temperature is a temperature above the temperature to which the reservoir 155 has been cooled.
If the set point temperature has been reached (step 335), the heat transport system 100 operates in a main mode (step 340) in which heat from the heat source Qin 116 that is applied to the main evaporator 115 is transferred by the heat transfer system 105. Specifically, in the main mode, the main evaporator 115 develops capillary pumping to promote circulation of the working fluid through the heat transfer system 105. Also, in the main mode, the set point temperature of the reservoir 155 is reduced. The rate at which the heat transfer system 105 cools down during the main mode depends on the cold biasing of the reservoir 155 because the temperature of the main evaporator 115 closely follows the temperature of the reservoir 155. Additionally, though not required, a heater can be used to further control or regulate the temperature of the reservoir 155 during the main mode. Furthermore, in main mode, the power applied to the secondary evaporator 150 by the heat source Qsp 151 is reduced, thus bringing the heat transfer system 105 down to a normal operating temperature for the fluid. For example, in the main mode, the heat load from the heat source Qsp 151 to the secondary evaporator 150 is kept at a value equal to or in excess of heat conditions, as defined below. In one implementation, the heat load from the heat source Qsp 151 is kept to about 5 to 10% of the heat load applied to the main evaporator 115 from the heat source Qin 116.
In this particular implementation, the main mode is triggered by the determination that the set point temperature has been reached (step 335). In other implementations, the main mode may begin at other times or due to other triggers. For example, the main mode may begin after the priming system is wet (step 310) or after the reservoir has been cold biased (step 305).
At any time during operation, the heat transfer system 105 can experience heat conditions such as those resulting from heat conduction across the primary wick 140 and parasitic heat applied to the liquid line 125. Both conditions cause formation of vapor on the liquid side of the evaporator. Specifically, heat conduction across the primary wick 140 can cause liquid in the core 135 to form vapor bubbles, which, if left within the core 135, would grow and block off liquid supply to the primary wick 140, thus causing the main evaporator 115 to fail. Parasitic heat input into the liquid line 125 (referred to as “parasitic heat gains”) can cause liquid within the liquid line 125 to form vapor.
To reduce the adverse impact of heat conditions discussed above, the priming system 110 operates at a power level Qsp 151 greater than or equal to the sum of the heat conduction and the parasitic heat gains. As mentioned above, for example, the priming system can operate at 5-10% of the power to the heat transfer system 105. In particular, fluid that includes a combination of vapor bubbles and liquid is swept out of the core 135 for discharge into the secondary fluid line 160 leading to the secondary condenser 122. In particular, vapor that forms within the core 135 travels around the bayonet tube 142 directly into the fluid outlet 139. Vapor that forms within the first vapor passage 144 makes its way into the fluid outlet 139 by either traveling through the secondary wick 145 (if the pore size of the secondary wick 145 is large enough to accommodate vapor bubbles) or through an opening at an end of the secondary wick 145 near the fluid outlet 139 that provides a clear passage from the first vapor passages 144 to the fluid outlet 139. The secondary condenser 122 condenses the bubbles in the fluid and pushes the fluid to the reservoir 155 for reintroduction into the heat transfer system 105.
Similarly, to reduce parasitic heat input to the liquid line 125, the secondary fluid line 160 and the liquid line 125 can form a coaxial configuration and the secondary fluid line 160 surrounds and insulates the liquid line 125 from surrounding heat. This implementation is discussed further below with reference to
Data from a test run is shown in
As mentioned, in one implementation, ethane may be used as the fluid in the heat transfer system 105. Although the critical temperature of ethane is 33° C., for the reasons generally described above, the heat transport system 100 can start up from a supercritical state in which the heat transport system 100 is at a temperature of 70° C. As power Qsp 450 is applied to the secondary evaporator 150, the temperatures of the condenser 120 and the reservoir 155 drop rapidly (between times 452 and 410). A trim heater can be used to control the temperature of the reservoir 155 and thus the condenser 120 to −10° C. To start up the main evaporator 115 from the supercritical temperature of 70° C., a heat load or power input Qsp of 10 W is applied to the secondary evaporator 150. Once the main evaporator 115 is primed, the power input from the heat source Qsp 151 to the secondary evaporator 150 and the power applied to and through the trim heater both may be reduced to bring the temperature of the heat transport system 100 down to a nominal operating temperature of about −50° C. For instance, during the main mode, if a power input Qin 460 of 40 W is applied to the main evaporator 115, the power input Qsp to the secondary evaporator 150 can be reduced to approximately 3 W while operating at −45° C. to mitigate the 3 W lost through heat conditions (as discussed above). As another example, the main evaporator 115 can operate with power input Qin from about 10 W to about 40 W with 5 W applied to the secondary evaporator 150 and with the temperature 405 of the reservoir 155 at approximately −45° C.
Referring to
Referring to
Referring also to
Design considerations of the heat transport system 100 include startup of the main evaporator 115 from a supercritical state, management of parasitic heat leaks, heat conduction across the primary wick 140, cold biasing of the cold reservoir 155, and pressure containment at ambient temperatures that are greater than the critical temperature of the working fluid within the heat transfer system 105. To accommodate these design considerations, the body or container (such as container 515) of the evaporator 115 or 150 can be made of extruded 6063 aluminum and the primary wicks 140 and/or 190 can be made of a fine-pored wick. In one implementation, the outer diameter of the evaporator 115 or 150 is approximately 0.625 inch and the length of the container is approximately 6 inches. The reservoir 155 may be cold-biased to an end panel of the radiator 165 using the aluminum shunt 170. Furthermore, a heater (such as a KAPTON® heater) can be attached at a side of the reservoir 155.
In one implementation, the vapor line 130 is made with smooth-walled stainless steel tubing having an outer diameter (OD) of 3/16 inch and the liquid line 125 and the secondary fluid line 160 are made of smooth-walled stainless steel tubing having an OD of ⅛ inch. The lines 125, 130, 160 may be bent in a serpentine route and plated with gold to minimize parasitic heat gains. Additionally, the lines 125, 130, 160 may be enclosed in a stainless steel box with heaters to simulate a particular environment during testing. The stainless steel box can be insulated with multi-layer insulation (MLI) to minimize heat leaks through panels of the heat sink 165.
In one implementation, the condenser 122 and the secondary fluid line 160 are made of tubing having an OD of 0.25 inch. The tubing is bonded to the panels of the heat sink 165 using, for example, epoxy. Each panel of the heat sink 165 is an 8×19-inch direct condensation, aluminum radiator that uses a 1/16-inch-thick face sheet. KAPTON® heaters can be attached to the panels of the heat sink 165, near the condenser 120 to prevent inadvertent freezing of the working fluid. During operation, temperature sensors, such as thermocouples, can be used to monitor temperatures throughout the heat transport system 100.
The heat transport system 100 may be implemented in any circumstances where the critical temperature of the working fluid of the heat transfer system 105 is below the ambient temperature at which the heat transport system 100 is operating. The heat transport system 100 can be used to cool down components that require cryogenic cooling.
Referring to
The miniaturized system 800 reduces mass, increases flexibility, and provides thermal switching capability when compared with traditional thermally switchable, vibration-isolated systems. Traditional thermally switchable, vibration-isolated systems require two flexible conductive links (FCLs), a cryogenic thermal switch (CTSW), and a conduction bar (CB) that form a loop to transfer heat from the cryogenic component to the cryogenic cooling source. In the miniaturized system 800, thermal performance is enhanced because the number of mechanical interfaces is reduced. Heat conditions at mechanical interfaces account for a large percentage of heat gains within traditional thermally switchable, vibration-isolated systems. The CB and two FCLs are replaced with the low-mass, flexible, thin-walled tubing used for the coil configurations 805 of the miniaturized system 800.
Moreover, the miniaturized system 800 can function over a wide range of heat transport distances, which permits a configuration in which the cooling source (such as the cryocooler 810) is located remotely from the cryogenic component 816. The coil configurations 805 have a low mass and low surface area, thus reducing parasitic heat gains through the lines 125 and 160. The configuration of the cooling source 810 within miniaturized system 800 facilitates integration and packaging of the system 800 and reduces vibrations on the cooling source 810, which becomes particularly important in infrared sensor applications. In one implementation, the miniaturized system 800 was tested using neon, operating at 25K to 40K.
Referring to
The heat transfer system 105 may be used in medical applications or in applications where equipment must be cooled to below-ambient temperatures. As another example, the heat transfer system 105 may be used to cool an infrared (IR) sensor, which operates at cryogenic temperatures to reduce ambient noise. The heat transfer system 105 may be used to cool a vending machine, which often houses items that preferably are chilled to sub-ambient temperatures. The heat transfer system 105 may be used to cool components, such as a display, or a hard drive of a computer, such as a laptop computer, handheld computer, or a desktop computer. The heat transfer system 105 can be used to cool one or more components in a transportation device, such as an automobile or an airplane.
Other implementations are within the scope of the following claims. For example, the condenser 120 and heat sink 165 can be designed as an integral system, such as, for example, a radiator. Similarly, the secondary condenser 122 and heat sink 165 can be formed from a radiator. The heat sink 165 can be a passive heat sink (such as a radiator) or a cryocooler that actively cools the condensers 120, 122.
In another implementation, the temperature of the reservoir 155 is controlled using a heater. In a further implementation, the reservoir 155 is heated using parasitic heat.
In another implementation, a coaxial ring of insulation is formed and placed between the liquid line 125 and the secondary fluid line 160, which surrounds the insulation ring.
Evaporator Design
Evaporators are integral components in two-phase heat transfer systems. For example, as shown above in
The evaporator 500 and the other evaporators discussed above often have a cylindrical geometry, that is, the core of the evaporator forms a cylindrical passage through which the working fluid passes. The cylindrical geometry of the evaporator is useful for cooling applications in which the heat acquisition surface is cylindrically hollow. Many cooling applications require that heat be transferred away from a heat source having a flat surface. In these sorts of applications, the evaporator can be modified to include a flat conductive saddle to match the footprint of the heat source having the flat surface. Such a design is shown, for example, in U.S. Pat. No. 6,382,309.
The cylindrical geometry of the evaporator facilitates compliance with thermodynamic constraints of LHP operation (that is, the minimization of heat leaks into the reservoir). The constraints of LHP operation stem from the amount of subcooling an LHP needs to produce for normal equilibrium operation. Additionally, the cylindrical geometry of the evaporator is relatively easy to fabricate, handle, machine, and process.
However, as will be described hereinafter, an evaporator can be designed with a planar form to more naturally attach to a flat heat source.
Planar Design
Referring to
The heated wall 1007 is in intimate contact with the primary wick 1015. The liquid barrier wall 1011 contains working fluid on the inner side of the liquid barrier wall 1011, such that the working fluid flows only along the inner side of the liquid barrier wall 1011. The liquid barrier wall 1011 closes the evaporator's envelope and helps to organize and distribute the working fluid through the liquid flow channels 1025. The vapor removal channels 1020 are located at an interface between a vaporization surface 1017 of the primary wick 1015 and the heated wall 1007. The liquid flow channels 1025 are located between the liquid barrier wall 1011 and the primary wick 1015.
The heated wall 1007 acts as a heat acquisition surface for a heat source. The heated wall 1007 is made from a heat-conductive material, such as, for example, sheet metal. Material chosen for the heated wall 1007 typically is able to withstand internal pressure of the working fluid.
The vapor removal channels 1020 are designed to balance the hydraulic resistance of the channels 1020 with the heat conduction through the heated wall 1007 into the primary wick 1015. The channels 1020 can be electro-etched, machined, or formed in a surface with any other convenient method.
The vapor removal channels 1020 are shown as grooves in the inner side of the heated wall 1007. However, the vapor removal channels 1020 can be designed and located in several different ways, depending on the design approach chosen. For example, according to other implementations, the vapor removal channels 1020 are grooved into the outer surface of the primary wick 1015 or embedded into the primary wick 1015, such that they are under the surface of the primary wick 1015. The design of the vapor removal channels 1020 is selected to increase the ease and convenience of manufacturing and to closely approximate one or more of the following guidelines.
First, the hydraulic diameter of the vapor removal channels 1020 should be sufficient to handle a vapor flow generated on the vaporization surface 1017 of the primary wick 1015 without a significant pressure drop. Second, the surface of contact between the heated wall 1007 and the primary wick 1015 should be maximized to provide efficient heat transfer from the heat source to vaporization surface 1017 of the primary wick 1015. Third, a thickness 1030 of the heated wall 1007, which is in contact with the primary wick 1015, should be minimized. As the thickness 1030 increases, vaporization at the surface 1017 of the primary wick 1015 is reduced and transport of vapor through the vapor removal channels 1020 is reduced.
The evaporator 1000 can be assembled from separate parts. Alternatively, the evaporator 1000 can be made as a single part by in-situ sintering of the primary wick 1015 between two walls having special mandrels to form channels on both sides of the wick 1015.
The primary wick 1015 provides the vaporization surface 1017 and pumps or feeds the working fluid from the liquid flow channels 1025 to the vaporization surface 1017 of the primary wick 1015.
The size and design of the primary wick 1015 involves several considerations. The thermal conductivity of the primary wick 1015 should be low enough to reduce heat leak from the vaporization surface 1017, through the primary wick 1015, and to the liquid flow channels 1025. Heat leakage can also be affected by the linear dimensions of the primary wick 1015. For this reason, the linear dimensions of the primary wick 1015 should be properly optimized to reduce heat leakage. For example, an increase in a thickness 1019 of the primary wick 1015 can reduce heat leakage. However, increased thickness 1019 can increase hydraulic resistance of the primary wick 1015 to the flow of the working fluid. In working LHP designs, hydraulic resistance of the working fluid due to the primary wick 1015 can be significant and a proper balancing of these factors is important.
The force that drives or pumps the working fluid of a heat transfer system is a temperature or pressure difference between the vapor and liquid sides of the primary wick. The pressure difference is supported by the primary wick and it is maintained by proper management of the incoming working fluid thermal balance.
The liquid returning to the evaporator from the condenser passes through a liquid return line and is slightly subcooled. The degree of subcooling offsets the heat leak through the primary wick and the heat leak from the ambient into the reservoir within the liquid return line. The subcooling of the liquid maintains a thermal balance of the reservoir. However, there exist other useful methods to maintain thermal balance of the reservoir.
One method is an organized heat exchange between the reservoir and the environment. For evaporators having a planar design, such as those often used for terrestrial applications, the heat transfer system includes heat exchange fins on the reservoir and/or on the liquid barrier wall 1011 of the evaporator 1000. The forces of natural convection on these fins provide subcooling and reduce stress on the condenser and the reservoir of the heat transfer system.
The temperature of the reservoir or the temperature difference between the reservoir and the vaporization surface 1017 of the primary wick 1015 supports the circulation of the working fluid through the heat transfer system. Some heat transfer systems may require an additional amount of subcooling. The required amount may be greater than what the condenser can produce, even if the condenser is completely blocked.
In designing the evaporator 1000, three variables need to be managed. First, the organization and design of the liquid flow channels 1025 need to be determined. Second, the venting of the vapor from the liquid flow channels 1025 needs to be accounted for. Third, the evaporator 1000 should be designed to ensure that liquid fills the liquid flow channels 1025. These three variables are interrelated and thus should be considered and optimized together to form an effective heat transfer system.
As mentioned, it is important to obtain a proper balance between the heat leak into the liquid side of the evaporator and the pumping capabilities of the primary wick. This balancing process cannot be done independently from the optimization of the condenser, which provides subcooling, because the greater heat leak allowed in the design of the evaporator, the more subcooling needs to be produced in the condenser. The longer the condenser, the greater are the hydraulic losses in fluid lines, which may require different wick material with better pumping capabilities.
In operation, as power from a heat source is applied to the evaporator 1000, liquid from the liquid flow channels 1025 enters the primary wick 1015 and evaporates, forming vapor that is free to flow along the vapor removal channels 1020. Liquid flow into the evaporator 1000 is provided by the liquid flow channels 1025. The liquid flow channels 1025 supply the primary wick 1015 with enough liquid to replace liquid that is vaporized on the vapor side of the primary wick 1015 and to replace liquid that is vaporized on the liquid side of the primary wick 1015.
The evaporator 1000 may include a secondary wick 1040, which provides phase management on a liquid side of the evaporator 1000 and supports feeding of the primary wick 1015 in critical modes of operation (as discussed above). The secondary wick 1040 is formed between the liquid flow channels 1025 and the primary wick 1015. The secondary wick can be a mesh screen (as shown in
Heat conduction through the primary wick 1015 may initiate vaporization of the working fluid in the wrong place—on a liquid side of the evaporator 1000 near or within the liquid flow channels 1025. The vapor vent channel 1045 delivers the unwanted vapor away from the wick 1015 into the two-phase reservoir.
The fine pore structure of the primary wick 1015 can create a significant flow resistance for the liquid. Therefore, it is important to optimize the number, the geometry, and the design of the liquid flow channels 1025. The goal of this optimization is to support a uniform, or close to uniform, feeding flow to the vaporization surface 1017. Moreover, as the thickness 1019 of the primary wick 1015 is reduced, the liquid flow channels 1025 can be spaced farther apart.
The evaporator 1000 may require significant vapor pressure to operate with a particular working fluid within the evaporator 1000. Use of a working fluid with a high vapor pressure can cause several problems with pressure containment of the evaporator envelope. Traditional solutions to the pressure containment problem, such as thickening the walls of the evaporator, are not always effective. For example, in planar evaporators having a significant flat area, the walls become so thick that the temperature difference is increased and the evaporator heat conductance is degraded. Additionally, even microscopic deflection of the walls due to the pressure containment results in a loss of contact between the walls and the primary wick. Such a loss of contact impacts heat transfer through the evaporator and microscopic deflection of the walls creates difficulties with the interfaces between the evaporator and the heat source and any external cooling equipment.
Annular Design
Referring to
The evaporator 1100 includes a heated wall 1105, a liquid barrier wall 1110, a primary wick 1115 positioned between the heated wall 1105 and the inner side of the liquid barrier wall 1110, vapor removal channels 1120, and liquid flow channels 1125. The liquid barrier wall 1110 is coaxial with the primary wick 1115 and the heated wall 1105.
The heated wall 1105 is in intimate contact with the primary wick 1115. The liquid barrier wall 1110 contains working fluid on an inner side of the liquid barrier wall 1110 such that the working fluid flows only along the inner side of the liquid barrier wall 1110. The liquid barrier wall 1110 closes the evaporator's envelope and helps to organize and distribute the working fluid through the liquid flow channels 1125.
The vapor removal channels 1120 are located at an interface between a vaporization surface 1117 of the primary wick 1115 and the heated wall 1105. The liquid flow channels 1125 are located between the liquid barrier wall 1110 and the primary wick 1115. The heated wall 1105 acts as a heat acquisition surface and the vapor generated on this surface is removed by the vapor removal channels 1120.
The primary wick 1115 fills the volume between the heated wall 1105 and the liquid barrier wall 1110 of the evaporator 1100 to provide reliable reverse menisci vaporization.
The evaporator 1100 can also be equipped with heat exchange fins 1150 that contact the liquid barrier wall 1110 to cold bias the liquid barrier wall 1110. The liquid flow channels 1125 receive liquid from a liquid inlet 1155 and the vapor removal channels 1120 extend to and provide vapor to a vapor outlet 1160.
The evaporator 1100 can be used in a heat transfer system that includes an annular reservoir 1165 adjacent the primary wick 1115. The reservoir 1165 may be cold biased with the heat exchange fins 1150, which extend across the reservoir 1165. The cold biasing of the reservoir 1165 permits utilization of the entire condenser area without the need to generate subcooling at the condenser. The excessive cooling provided by cold biasing the reservoir 1165 and the evaporator 1100 compensates the parasitic heat leaks through the primary wick 1115 into the liquid side of the evaporator 1100.
In another implementation, the evaporator design can be inverted and vaporization features can be placed on an outer perimeter and the liquid return features can be placed on the inner perimeter.
The annular shape of the evaporator 1100 provides several advantages. First, pressure containment is not a problem in the annular evaporator 1100. Second, the primary wick 1115 does not need to be sintered inside, thus providing more space for a more sophisticated design of the vapor and liquid sides of the primary wick 1115.
Many terrestrial applications can incorporate an LHP with an annular evaporator 1100. The orientation of the annular evaporator in a gravity field is predetermined by the nature of application and the shape of the hot surface.
Referring also to
The condenser 1330 is constructed from smooth-wall tubing and is equipped with heat exchange fins 1332 or fin stock to intensify heat exchange on the outside of the tubing.
The evaporator 1305 includes a primary wick 1345 sandwiched between a heated wall 1350 and a liquid barrier wall 1355. The liquid barrier wall 1355 is cold biased by heat exchange fins 1360 formed along the outer surface of the wall 1355. The heat exchange fins 1360 provide adequate subcooling for the reservoir 1315 and the entire liquid side of the evaporator 1305. The heat exchange fins 1360 of the evaporator 1305 may be designed separately from the heat exchange fins 1332 of the condenser 1330.
The liquid return line 1320 extends into the reservoir 1315 located above the primary wick 1345, and vapor bubbles, if any, from the liquid return line 1320 and the vapor removal channels at the interface of the primary wick 1345 and the heated wall 1350 are vented into the reservoir 1315.
The evaporator 1305 is attached to the hot side 1300 of the Stirling engine or any other heat-rejecting device. This attachment can be integral, in that the evaporator 1305 can be an integral part of the engine, or the attachment can be non-integral, in that the evaporator 1305 can be clamped to an outer surface of the hot side 1300. The heat transfer system 1310 is cooled by a forced convection sink, which can be provided by a simple fan 1370.
Initially, the liquid phase of the working fluid is collected in a lower part of the evaporator 1305, the liquid return line 1320, and the condenser 1330. The primary wick 1345 is wet because of the capillary forces. As soon as heat is applied (that is, the Stirling engine is turned on), the primary wick 1345 begins to generate vapor, which travels through the vapor removal channels (similar to vapor removal channels 1120 of evaporator 1100) of the evaporator 1305, through the vapor outlet of the evaporator 1305, and into the vapor line 1335.
The vapor then enters the condenser 1330 at an upper part of the condenser 1330. The condenser condenses the vapor into liquid and the liquid is collected at a lower part of the condenser 1330. The liquid is pushed into the reservoir 1315 because of the pressure difference between the reservoir 1315 and the lower part of the condenser 1330. Liquid from the reservoir 1315 enters liquid flow channels of the evaporator 1305. The liquid flow channels of the evaporator 1305 are configured like the channels 1125 of the evaporator 1100 and are properly sized and located to provide adequate liquid replacement for the liquid that vaporized. Capillary pressure created by the primary wick 1345 is sufficient to withstand the overall LHP pressure drop and to prevent vapor bubbles to travel through the primary wick 1345 toward the liquid flow channels.
The liquid flow channels of the evaporator 1305 can be replaced by a simple annulus, if the cold biasing discussed above is sufficient to compensate the increased heat leak across the primary wick 1345, which is caused by the increase in surface area of the heat exchange surface of the annulus versus the surface area of the liquid flow channels.
Referring also to
The evaporators disclosed herein can operate in any combination of materials, dimensions and arrangements, so long as they embody the features as described above. There are no restrictions other than criteria mentioned here; the evaporator can be made of any shape, size and material. The only design constraints are that the applicable materials be compatible with each other and that the working fluid be selected in consideration of structural constraints, corrosion, generation of noncondensable gases, and lifetime issues.
Other implementations are within the scope of the following claims.
This application is a divisional of U.S. patent application Ser. No. 10/676,265, filed Oct. 2, 2003, now U.S. Pat. No. 8,136,580, issued Mar. 20, 2012, which application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/415,424, filed Oct. 2, 2002, the disclosure of each of which is hereby incorporated herein in its entirety by this reference. This application is also related to U.S. patent application Ser. No. 12/650,394, filed Dec. 30, 2009, now U.S. Pat. No. 8,109,325, issued on Feb. 7, 2012, which is a continuation-in-part of U.S. patent application Ser. No. 10/676,265, filed Oct. 2, 2003, now U.S. Pat. No. 8,136,580, issued Mar. 20, 2012, and which is a divisional of U.S. patent application Ser. No. 10/694,387, filed Oct. 28, 2003, now U.S. Pat. No. 7,708,053, issued May 4, 2010, which claims the benefit of U.S. Provisional Patent Application Ser. No. 60/421,737, filed Oct. 28, 2002. This application is also related to U.S. patent application Ser. No. 12/426,001, filed Apr. 17, 2009, now U.S. Pat. No. 8,066,055, issued Nov. 29, 2011, which is a continuation of U.S. patent application Ser. No. 10/890,382, filed Jul. 14, 2004, now U.S. Pat. No. 7,549,461, issued Jun. 23, 2009, which claims the benefit of U.S. Provisional Patent Application Ser. No. 60/486,467, filed Jul. 14, 2003. This application is also related to U.S. patent application Ser. No. 11/383,740, filed May 16, 2006, now U.S. Pat. No. 7,931,072, issued Apr. 26, 2011, which is a continuation-in-part of U.S. patent application Ser. No. 10/676,265, filed Oct. 2, 2003, now U.S. Pat. No. 8,136,580, issued Mar. 20, 2012.
Number | Name | Date | Kind |
---|---|---|---|
2051723 | Kohler | Aug 1936 | A |
3490718 | Vary | Jan 1970 | A |
3613778 | Feldman | Oct 1971 | A |
3661202 | Moore | May 1972 | A |
3677336 | Moore | Jul 1972 | A |
3734173 | Moritz | May 1973 | A |
3756903 | Jones | Sep 1973 | A |
3792318 | Fries et al. | Feb 1974 | A |
3803688 | Peck | Apr 1974 | A |
3884293 | Pessolano et al. | May 1975 | A |
3948316 | Souriau | Apr 1976 | A |
4005297 | Cleaveland | Jan 1977 | A |
4046190 | Marcus et al. | Sep 1977 | A |
4087893 | Sata et al. | May 1978 | A |
4116266 | Sawata et al. | Sep 1978 | A |
4138847 | Hill | Feb 1979 | A |
4170262 | Marcus et al. | Oct 1979 | A |
4467861 | Kiseev et al. | Aug 1984 | A |
4470450 | Bizzell et al. | Sep 1984 | A |
4470451 | Alario et al. | Sep 1984 | A |
4503483 | Basiulis | Mar 1985 | A |
4515209 | Maidanik et al. | May 1985 | A |
4685512 | Edelstein et al. | Aug 1987 | A |
4765396 | Seidenberg | Aug 1988 | A |
4770238 | Owen | Sep 1988 | A |
4785875 | Meijer et al. | Nov 1988 | A |
4819719 | Grote et al. | Apr 1989 | A |
4830718 | Stauffer | May 1989 | A |
4854379 | Shaubach et al. | Aug 1989 | A |
4862708 | Basiulis | Sep 1989 | A |
4869313 | Fredley | Sep 1989 | A |
4883116 | Seidenberg et al. | Nov 1989 | A |
4890668 | Cima | Jan 1990 | A |
4898231 | Miyazaki | Feb 1990 | A |
4899810 | Fredley | Feb 1990 | A |
4934160 | Mueller | Jun 1990 | A |
5002122 | Sarraf et al. | Mar 1991 | A |
5016705 | Bahrle et al. | May 1991 | A |
5103897 | Cullimore et al. | Apr 1992 | A |
5275232 | Adkins et al. | Jan 1994 | A |
5303768 | Alario et al. | Apr 1994 | A |
5335720 | Ogushi et al. | Aug 1994 | A |
5642776 | Meyer et al. | Jul 1997 | A |
5725049 | Swanson et al. | Mar 1998 | A |
5761037 | Anderson et al. | Jun 1998 | A |
5769154 | Adkins et al. | Jun 1998 | A |
5771967 | Hyman | Jun 1998 | A |
5816313 | Baker | Oct 1998 | A |
5842513 | Maciaszek et al. | Dec 1998 | A |
5899265 | Schneider et al. | May 1999 | A |
5944092 | Van Oost | Aug 1999 | A |
5947193 | Adkins et al. | Sep 1999 | A |
5950710 | Liu | Sep 1999 | A |
5966957 | Malhammar et al. | Oct 1999 | A |
6058711 | Maciaszek et al. | May 2000 | A |
6205803 | Scaringe | Mar 2001 | B1 |
6227288 | Gluck | May 2001 | B1 |
6330907 | Ogushi et al. | Dec 2001 | B1 |
6347523 | Barrash et al. | Feb 2002 | B1 |
6378313 | Barrash | Apr 2002 | B2 |
6381135 | Prasher | Apr 2002 | B1 |
6382309 | Kroliczek et al. | May 2002 | B1 |
6397936 | Crowley | Jun 2002 | B1 |
6415627 | Pfister et al. | Jul 2002 | B1 |
6450132 | Yao et al. | Sep 2002 | B1 |
6450162 | Wang et al. | Sep 2002 | B1 |
6533029 | Phillips | Mar 2003 | B1 |
6591902 | Trent | Jul 2003 | B1 |
6596035 | Gutkowski et al. | Jul 2003 | B2 |
6615912 | Garner | Sep 2003 | B2 |
6626231 | Cluzet et al. | Sep 2003 | B2 |
6810946 | Hoang | Nov 2004 | B2 |
6840304 | Kobayashi et al. | Jan 2005 | B1 |
6863117 | Valenzuela | Mar 2005 | B2 |
6865897 | Jibb | Mar 2005 | B2 |
6889754 | Kroliczek et al. | May 2005 | B2 |
6931863 | Chen et al. | Aug 2005 | B2 |
7004240 | Kroliczek et al. | Feb 2006 | B1 |
7051794 | Luo | May 2006 | B2 |
7207178 | Steinmeyer | Apr 2007 | B2 |
7210832 | Huang | May 2007 | B2 |
7240496 | Frank et al. | Jul 2007 | B2 |
7251889 | Kroliczek et al. | Aug 2007 | B2 |
7268744 | Short, Jr. et al. | Sep 2007 | B1 |
7461688 | Huang et al. | Dec 2008 | B2 |
7487643 | Chen et al. | Feb 2009 | B2 |
7503185 | Narayanamurthy et al. | Mar 2009 | B2 |
7543629 | Chin et al. | Jun 2009 | B2 |
7549461 | Kroliczek et al. | Jun 2009 | B2 |
7661464 | Khrustalev et al. | Feb 2010 | B2 |
7708053 | Kroliczek et al. | May 2010 | B2 |
7775261 | Valenzuela | Aug 2010 | B2 |
7823629 | Rosenfeld et al. | Nov 2010 | B2 |
7827807 | Narayanamurthy et al. | Nov 2010 | B2 |
7931072 | Kroliczek et al. | Apr 2011 | B1 |
8047268 | Kroliczek et al. | Nov 2011 | B1 |
8066055 | Kroliczek et al. | Nov 2011 | B2 |
8109325 | Kroliczek et al. | Feb 2012 | B2 |
8752616 | Kroliczek et al. | Jun 2014 | B2 |
20010039802 | Barrash | Nov 2001 | A1 |
20020062648 | Ghoshal | May 2002 | A1 |
20030051857 | Cluzet et al. | Mar 2003 | A1 |
20040182550 | Kroliczek et al. | Sep 2004 | A1 |
20040206479 | Kroliczek et al. | Oct 2004 | A1 |
20050005617 | Jibb | Jan 2005 | A1 |
20050061487 | Kroliczek et al. | Mar 2005 | A1 |
20050155356 | Frank et al. | Jul 2005 | A1 |
20050160744 | Frank et al. | Jul 2005 | A1 |
20050166399 | Kroliczek et al. | Aug 2005 | A1 |
20060185825 | Chen et al. | Aug 2006 | A1 |
20070028626 | Chen | Feb 2007 | A1 |
20120017625 | Kroliczek et al. | Jan 2012 | A1 |
20130101492 | McAlister | Apr 2013 | A1 |
Number | Date | Country |
---|---|---|
19941398 | Aug 2000 | DE |
0210337 | Feb 1987 | EP |
0355921 | Jul 1994 | EP |
0700737 | Mar 1996 | EP |
0987509 | Mar 2000 | EP |
1084688 | Aug 2001 | EP |
212748 | Sep 1995 | HU |
63036862 | Mar 1988 | JP |
2000-055577 | Feb 2000 | JP |
2000241089 | Sep 2000 | JP |
2098733 | Mar 1995 | RU |
2098733 | Dec 1997 | RU |
505858 | May 1976 | SU |
1467354 | Jan 1987 | SU |
1834470 | Jul 1995 | SU |
0210661 | Feb 2002 | WO |
WO 0210661 | Feb 2002 | WO |
03054469 | Jul 2003 | WO |
2004031675 | Apr 2004 | WO |
2004040218 | May 2004 | WO |
2005043059 | May 2005 | WO |
Entry |
---|
Baumann, Jane, et al., “A methodology for enveloping reliable start-up of LHPs,” AIAA Paper 2000-2285 (AIAA Accession No. 33681), AIAA Thermophysics Conference, 34th, Denver, CO, Jun. 19-22, 2000. |
Berchowitz, D.M., et al., “Recent Advanced in Stirling Cycle Refrigeration,” 1995, 19th International Conference of Refrigeration, The Hague, The Netherlands, 8 pages. |
Berchowitz, D.M., Ph. D., “Maximized Performance of Stirling Cycle Refrigerators,” Natural working fluids '98 IIR—Gustav Lorentzen Conference: Oslo, Norway, Jun. 2-5, 1998, Fluides actifs naturels conference IIF-Gustav Lorentzen Journal: Science et technique du froid, 1998 (4) 422-429. |
Berchowitz, David M., “Free-Piston Rankine Compression and Stirling Cycle Machines for Domestic Refrigeration,” Presented at the Greenpeace Ozon Safe Conference, Washington, DC, Oct. 18-19, 1993. |
Berchowitz, David M., et al., “Design and Testing of a 40 W Free-Piston Stirling Cycle Cooling Unit,” 20th International Conference of Refrigeration, IIR/IIF, Sydney, 1999, 7 pages, Australia. |
Bienert, W.B., et al., “The Proof-of-Feasibility of Multiple Evaporator Loop Heat Pipes,” 6th European Symposium on Environmental Systems, May 1997, 6 pages, Noordwijk, NL. |
Bugby, D., et al., “Across-Gimbal and Miniaturized Cryogenic Loop Heat Pipes,” CP654, Space Technology and Applicatons International Forum—STAIF 2003, edited by M.S. El-Genk, American Institute of Physics, 2003, pp. 218-226. |
Bugby, D., et al., “Advanced Components and Techniques for Cryogenic Integration,” Environmental systems—International conference; 31st Society of Automotive Engineers New York, 2001-01-2378, Orlando, FL Jul. 2001, 9 pages. |
Bugby, D., et al., “Advanced Components and Techniques for Cryogenic Integration,” presented at 2002 Spacecraft Thermal Control Symposium by Swales Aerospace, El Segundo, CA, Mar. 2002, 14 pages. |
Bugby, D., et al., “Advanced Components for Cryogenic Integration,” Cryocoolers 12, edited by R.G. Ross, Jr., Kluwer Academic/Plenum Publishers, 2003, pp. 693-708. |
Bugby, D., et al., “Advanced Components for Cryogenic Integration,” Proceedings of the 12th International Cryocooler Conference held Jun. 18-20, 2002, in Cambridge, MA, 15 pages. |
Bugby, D., et al., “Development and Testing of a Gimbal Thermal Transport System,” Proceedings of the 11th International Cryocooler Conference held Jun. 20-22, 2000, in Keystone, Colorado, 11 pages. |
Bugby, D., et al., “Development of Advanced Cryogenic Integration Solutions,” presented at the 10th International Cryocoolers Conference on May 26-28, 1998, in Monterey, CA, and published in “Cryocoolers 10,” by Ron Ross, Jr., Kluwer Academic/Plenum Publishers, NY 1999, 17 pages. |
European Search Report for Application No. EP 04 01 6584 dated May 15, 2006, 4 pages, European Patent Office, The Hague, Netherlands. |
Hoang, “Advanced Capillary Pumped Loop (A-CPL) Project Summary,” Contract No. NAS5-98103, Mar. 1994, pp. 1-37, TTH Research, Inc., Laurel, MD. |
Hoang, Triem T., “Design and Test of a Proof-of-Concept Advanced Capillary Pumped Loop,” Society of Automotive Engineers, presented at the 27th Environmental Systems International Conference, New York, 1997, Paper 972326, 6 pages. |
Hoang, Trung T., et al., “Development of an Advanced Capillary Pumped Loop,” Society of Automotive Engineers, presented at the 27th Environmental Systems International Conference, New York, 1997, Paper 972325, 6 pages. |
Janssen, Martien, et al., “Measurement and application of performance characteristics of a Free Piston Stirling Cooler,” 9th International Refrigeration and Air Conditioning Conference, Jul. 16-19, 2002, 8 pages, Purdue University, West Lafayette, IN. |
Kim, Seon-Young, et al., “The Application of Stirling Cooler to Refrigeration,” IECEC-97—Intersociety Energy Conversion Engineering Conference, 1997, Conference 32, vol. 2, pp. 1023-1026, Seoul, Korea. |
Kotlyarov, E. Yu, et al., “Methods of Increase of the Evaporators Reliability for Loop Heat Pipes and Capillary Pumped Loops,” 24th International Conference on Environmental Systems, Jun. 20-23, 1994, 15 pages, Friedrichshafen, Germany. |
Ku, J., “Recent Advances in Capillary Pumped Loop Technology,” 1997 National Heat Transfer Conference, Baltimore, MD, Aug. 10-12, 1997, AIAA 97-3870, 22 pages. |
Ku, J., et al., “A high power spacecraft thermal management system,” AIAA-1988-2702, Thermophysics, Plasmadynamics and Lasers Conference, San Antonio, TX Jun. 27-29, 1988, 12 pages. |
Ku, J., et al., “An Improved High Power Hybrid Capillary Pumped Loop,” paper submitted to SAE 19th Intersociety Conference on Environment Systems, SAE 891566, San Diego, CA, Jul. 24-27, 1989, 10 pages. |
Ku, J., et al., “Testing of a Capillary Pumped Loop with Multiple Parallel Starter Pumps,” SAE Paper No. 972329, 1997, Lake Tahoe, NV. |
Ku, J., et al., “The Hybrid Capillary Pumped Loop,” paper submitted to SAE 18th Intersociety Conference on Environmental Systems, SAE 881083, San Francisco, CA, Jul. 11-13, 1988, 11 pages. |
Ku, Jentung, “Operational Characteristics of Loop Heat Pipes,” NASA Goddard Space Flight Center; SAE Paper 99-01-2007, 29th International Conference on Environmental Systems, Denver, Colorado, Jul. 12-15, 1999; Society of Automotive Engineers, Inc. |
Kwon, Yong-Rak, et al., “Operational Characteristics of Stirling Machinery,” International Congress of Refrigeration, Aug. 17-22, 2003, 8 pages, Washington, D.C. |
McCabe, Michael E., Jr., et al., “Design and Testing of a High Power Spacecraft Thermal Management System,” National Aeronautics and Space Administration (NASA), NASA Technical Memorandum 4051, Scientific and Technical Information Division, 1988, 107 pages. |
O'Connell, et al., “Hydrogen Loop Pipe Design & Test Results,” presented at 2002 Spacecraft Thermal Control Symposium by TTH Research, El Segundo, CA, Mar. 2002, 14 pages. |
Oguz, Emre, et al., “Experimental Investigation of a Stirling Cycle Cooled Domestic Refrigerator,” 9th Proceedings of the International Refrigeration and Air Conditioning Conference at Purdue, 2002; 9th, vol. 2, pp. 777-784, West Lafayette, IN. |
PCT International Preliminary Examination Report (Application No. PCT/US03/34165) mailed Mar. 8, 2007, 4 total pages. |
PCT International Search Report (Application No. PCT/US04/35548) mailed Oct. 11, 2005, 11 total pages. |
Russian Office Action for related Russian Application No. 2005116246, issued Oct. 9, 2008, Federal Institute of Industrial Property, Moscow, Russian Federation. |
Van Oost et al., “Design and Experimental Results of the HPCPL,” ESTEC CPL-96 Workshop, Noordwijk, Netherlands, 1996, 19 pages. |
Van Oost, Stephane, et al., “Test Results of Reliable and Very High Capillary Multi-Evaporators/Condenser Loop,” 25th International Conference on Environmental Systems, Jul. 10-13, 1995, 12 pages, San Diego, CA. |
Welty, Stephen C., et al., “Energy Efficient Freezer Installation Using Natural Working Fluids and a Free Piston Stirling Cooler,” VI Congreso Iberoamericano De Aire Acondicionado Y Refrigeration, CIAR 2001, Trabajo No. 96, pp. 199-208, Aug. 15-17, 2001, Buenos Aires, AR. |
Yun, James, et al., “Development of a Cryogenic Loop Heat Pipe (CLHP) for Passive Optical Bench Cooling Applications,” 32nd International Conference on Environmental Systems (ICES-2002), Society of Automotive Engineers Paper No. 2002-01-2507, San Antonio, Texas, 2002, 9 pages. |
Yun, James, et al., “Multiple Evaporator Loop Heat Pipe,” Society of Automotive Engineers, 2000-01-2410, 30th International Conference on Environmental Systems, Jul. 10-13, 2000, 10 pages, Toulouse, FR. |
Yun, S., et al., “Design and Test Results of Multi-Evaporator Loop Heat Pipes,” SAE Paper No. 1999-01-2051, 29th International Conference on Environmental Systems, Jul. 1999, 7 pages, Denver CO. |
Number | Date | Country | |
---|---|---|---|
20120175087 A1 | Jul 2012 | US |
Number | Date | Country | |
---|---|---|---|
60415424 | Oct 2002 | US | |
60391006 | Jun 2002 | US | |
60215588 | Jun 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10676265 | Oct 2003 | US |
Child | 13421524 | US | |
Parent | 13421524 | US | |
Child | 13421524 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10602022 | Jun 2003 | US |
Child | 13421524 | US | |
Parent | 13421524 | Mar 2012 | US |
Child | 13421524 | US | |
Parent | 09896561 | Jun 2001 | US |
Child | 13421524 | US |