Event and sport performance methods and systems

Information

  • Patent Grant
  • 6813586
  • Patent Number
    6,813,586
  • Date Filed
    Thursday, September 7, 2000
    23 years ago
  • Date Issued
    Tuesday, November 2, 2004
    19 years ago
Abstract
A digital camera system is provided to measure a moving sportsman, for example to determine peak altitude, spin ratio and airtime. A wireless triangulation system is provided to track a moving sportsman to determine metrics such as peak altitude, rotation, drop distance and airtime. A stride-rate system is provided to determine stride-rate or assist in training for sports such as roller-blading.
Description




FIELD OF THE INVENTION




The invention relates to sport performance and measuring sport performance at events like the X-GAMES.




BACKGROUND OF THE INVENTION




Skiers and other athletes in sporting activities experience speed, airtime and other factors such as spin. Persons watching such athletes cannot quantitatively appreciate the actual speed, airtime and spin, for example, because the prior art does not make such measurements in a manner suitable for either the athlete or persons watching the athlete. The invention provides features to overcome the limitations of the prior art.




SUMMARY OF THE INVENTION




In one aspect, the invention provides systems and methods to monitor and gauge airtime, altitude and spin ratios for an event with a sportsman jumping into the air. For example, the US SKI team has aerial competitions where the team jumps off a ramp and lands in water. The invention of this aspect provides for measuring the time in the air (airtime), the peak altitude, and other factors such as spin ratios (how much the body spun, or how much one part of the body spun relative to other parts or relative to the sports vehicle, e.g., the ski).











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

shows a system to assess movement of a sportsman;





FIG. 2

illustrates frame-by-frame motion of the sportsman captured by the computer of

FIG. 1

;





FIG. 3

illustrates 3D tracking of a sport enthusiast via triangulation; and





FIG. 4

shows stride-rate and training sensing units.











DETAILED DESCRIPTION OF THE DRAWINGS




In

FIG. 1

, a digital camera


12


like a SONY DCR VX1000 takes a picture of a sportsman


18


jumping off a ramp


24


. Data from the camera


12


goes to a computer


14


such as through an i-Link (IEEE 1394) or “firewire” link


15


to take digital data to the computer (those skilled in the art should appreciate that video data could alternatively be sent through the link


15


and then digitized by a frame-grabber in the computer


14


.




Data taken from the computer


14


can be analyzed in a “frame by frame” technique to decipher motion of the sportsman


18


through the frames of data (typically captured at 30 Hz or more), as shown in FIG.


2


. U.S. Pat. No. 5,798,519 provides similar processing of frame data and is thus incorporated by reference as useful for application with the invention. For example, since only the sportsman moves, the ramp


24


stays substantially fixed through the several frames of data and so it remains fixed though the sportsman moves from “start” to “stop” positions.




Altitude is determined by referencing the track


17


of the sportsman


18


relative to the object


20


. Specifically, system


10


takes an image of the object


20


with a known height and compares that to the motion of the user. Trigonometric relations provide direct correlation to the user's actual height “x” along the track. By way of example, if the object


20


were a mountain at 14,000 feet, then by trigonometry ratios we know that that peak altitude of 14,000 feet corresponds to 50 feet at the sportsman's location. Another example is that an object such as a measuring tape is placed at the same location as the sportsman's track and stored in memory in the computer


14


so that the track


17


is compared relative to an actual height stored at that location through the tape. For instance, if for example one meter at the sportsman's position corresponds to twent-five pixels of imagery (either on screen or digitally, pixel by pixel of the camera


12


), then this information correlates directly to the track


17


such that height “X” is determined.




In another embodiment, the invention of

FIG. 3

provides 3D tracking of a sport enthusiast via triangulation through an emitter attached with the enthusiast. In this embodiment, a radio beacon


58


is attached to the sportsman


60


, and antennas


62


capture the signal


58




a


from the beacon


58


; and this data is compared at the computer


64


to “time” the receipt of signal


58




a


at each antenna


62


such that the sportsman's location is known at each moment of time. This location is, over time, evaluated to determine metrics such as peak altitude, rotation of the user, drop distance and time in the air.




In another embodiment, the invention of

FIG. 4

provides for stride-rate evaluation and training for sports such as roller blading. Specifically, two sensing units


72


,


74


are attached to the vehicle (e.g., pair of roller blades


70


,


72


) as shown in FIG.


4


and these sensing units


72


,


74


are evaluated by a common data unit


76


to determine stride rate and other useful sporting performance information.




U.S. Pat. No. 5,636,146 is incorporated herein by reference.



Claims
  • 1. A method for determining peak altitude of a moving sportsman, comprising:viewing the sportsman through a digital camera; assessing frames of data provided by the digital camera to locate motion within the frames of data; and determining the peak altitude by comparing the highest point of motion by the sportsman within the frames of data to a reference object.
  • 2. A method of claim 1, further comprising the steps of sending the frames of data to a computer through a data link and evaluating the frames of data to determine motion within the frames.
  • 3. A method of claim 1, further comprising the step of capturing the frames of data at at least 30 Hz.
  • 4. A method of claim 2, further comprising the step of automatically determining a motion track of the sportsman through time.
  • 5. A method of claim 3, further comprising the step of capturing the frames of data at more than 60 Hz.
  • 6. A method of claim 4, further comprising the step of determining airtime from the track.
  • 7. A method of claim 4, further comprising the step of determining the speed of the sportsman by evaluating physical movement of the sportsman through successive frames of data.
  • 8. A method of claim 6, wherein the camera comprises a digital camcorder and wherein the link comprises a Firewire connection.
  • 9. A method of determining the airtime of a moving sportsman, comprising the steps of mounting a radio beacon on the sportsman, monitoring the location of the sportsman through triangulation to determine the location of the sportsman over time, and determining the airtime from the location over time.
  • 10. A method of claim 9, further comprising determining a peak speed of the sportsman during motion of the sportsman by evaluating the location through successive time intervals.
  • 11. A method of claim 9, further comprising determining a final speed of the sportsman just prior to a landing by determining a final speed of the sportsman just prior to the landing.
  • 12. A method of claim 9, further comprising determining the airtime of the sportsman by evaluating the motion of the sportsman through the air from a first ground location to a landing location.
RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application No. 60/152,688, filed Sep. 7, 1999, which is hereby incorporated by reference.

US Referenced Citations (8)
Number Name Date Kind
3710335 Lepley Jan 1973 A
5109425 Lawton Apr 1992 A
5404163 Kubo Apr 1995 A
5838365 Sawasaki et al. Nov 1998 A
5905848 Yano et al. May 1999 A
6157898 Marinelli Dec 2000 A
6324296 McSheery et al. Nov 2001 B1
6516284 Flentov et al. Feb 2003 B2
Provisional Applications (1)
Number Date Country
60/152688 Sep 1999 US