The present disclosure relates to systems and techniques for data integration, analysis, and visualization. More specifically, it relates to visualization of connections between events and persons, places, things, etc.
Computers enable the collection and storage of vast amounts of data in easily accessible databases. Patterns, connections, and other features of this data may provide valuable insights, but the volume of the information may present challenges for analysis. Visualizations may be used to overcome these challenges by representing aspects of the data in a visual manner, e.g., in a graph or diagram. Visualizations of a large data set may be substantially more intuitive and useful than, e.g., a textual representation of the underlying data or a set of statistics drawn from the data.
Like other aspects of large-scale data analysis, producing visualizations may be challenging when the input data is not uniformly structured. Inconsistent structure is particularly common in data drawn from many different sources, which people are increasingly interested in analyzing. Data integration platforms have been created to combine data from different sources for the purpose of analysis, but the visualization functionality they provide may be limited.
A visualization that is useful for drawing insights from one data set may not be useful for drawing insights from another data set. Therefore, some platforms may support a variety of different visualizations. Each type of visualization may have unique limitations. For example, certain visualizations may be useful for analyzing only a few specific kinds of data. Other visualizations may be useful for trained analysts following specific lines of inquiry, but may not be useful for lay persons needing an intuitive overview of relevant information. There is a need for visualizations that overcome these limits, with broad utility and intuitive readability.
Embodiments described herein may be used to produce visualizations that depict connections between objects from an integrated data set. A visualization of this sort may be organized chronologically, and may be referred to as an “event matrix.”
In one embodiment, a system for generating visualizations of integrated data comprises at least one processor, and data storage comprising instructions executable by the processor. When executed, the instructions may cause the system to receive input data from a plurality of data sources and determine a set of objects from the input data based on an ontology comprising a plurality of object types. The system may store the objects in one or more databases. The system may also identify a first subset of the determined set of objects, wherein the first subset comprises event objects; identify a second subset of the determined set of objects, wherein the second subset of objects comprises non-event objects; and identify a set of links between objects in the first subset and objects in the second subset. In addition, the system may generate first labels corresponding to the objects in the first subset, second labels corresponding to the objects in the second subset, and indicators corresponding to links in the set of links. The system may arrange the first labels in a first spatial dimension, wherein an order of the arranged first labels is based at least in part on dates and/or times associated with the event objects in the first subset; arrange the second labels in a second spatial dimension; and present a visualization comprising the labels and the indicators. Within the visualization, each indicator may have a location corresponding in the first spatial dimension to a position of one of the first labels and corresponding in the second spatial dimension to a position of one of the second labels.
In another embodiment, a method for generating visualizations of integrated data comprises receiving input data from a plurality of sources and determining a set of objects from the input data based on an ontology comprising a plurality of object types. The method further comprises identifying a first subset of the determined set of objects (wherein at least some of the objects in the first subset are associated with dates), identifying a second subset of the determined set of objects, and identifying (by a computer system having at least one computer processor) a set of links between objects in the first subset and objects in the second subset. The method also comprises determining (by the computer system) first labels corresponding to the objects in the first subset and second labels corresponding to the objects in the second subset, and generating (by the computer system) a user interface. The user interface may comprise the first labels arranged in a first spatial dimension, based at least in part on dates associated with respective objects in the first subset. The user interface may also comprise the second labels arranged in a second spatial dimension. For each link in the set of links, the user interface may further comprise an indicator positioned at a location corresponding in the first spatial dimension to a first label associated with the respective link and corresponding in the second spatial dimension to a second label associated with the respective link. As noted above, this method may be performed using one or more computer processors.
In another embodiment, non-transitory computer storage may comprise instructions for causing a computer system to generate visualizations of integrated data, as follows. The storage may comprise instructions for receiving input data from a plurality of data sources and determining a set of objects from the input data based on an ontology comprising a plurality of object types. Further instructions may be included for identifying a first subset of the determined set of objects (wherein at least some of the objects of the first subset are associated with dates), identifying a second subset of the determined set of objects, and identifying a set of links between objects in the first subset and objects in the second subset. Instructions may also be provided for determining first labels corresponding to the objects in the first subset, second labels corresponding to the objects in the second subset, and indicators corresponding to links in the set of links. In addition, instructions may be provided for arranging the first labels in a first spatial dimension and arranging the second labels in a second spatial dimension. The arrangement of the first labels may be based in part on the dates associated with the objects in the first subset. Finally, the computer storage may include instructions for presenting a visualization comprising the labels and the indicators, wherein each of the indicators has a location corresponding in the first spatial dimension to a position of one of the first labels and corresponding in the second spatial dimension to a position of one of the second labels.
Overview
Data integration platforms may support data with widely varying form and content. Accordingly, visualizations that require overly specific inputs may have limited utility on such platforms. However, certain features may be common enough in integrated data sets that a visualization can rely on them without substantially constraining its usefulness.
Common features of integrated data sets include connections between various pieces of data. In general, integrated data sets are integrated for a reason. Specifically, data from multiple sources is likely to be integrated because a person believes that various pieces of the data are somehow related. In other words, the person believes that connections exist within the data. Such connections may be identified explicitly with the help of the integration platform.
In addition to connections, integrated data sets commonly include date and time information (referred to hereafter as “dates” for the sake of brevity). The prevalence of dates in integrated data sets may be a result of the fact that these data sets often record occurrences in the real world. Real-world occurrences necessarily happen on particular dates, and dates are easy to ascertain automatically at the time of an occurrence. Therefore, records of real-world occurrences, and the integrated data sets that contain such records, routinely include dates.
Dates also provide a useful basis for organization. They provide a frame of reference that all people are familiar with. As a result, a visualization that is organized chronologically accordingly to a sequence of dates many be simple to understand, even for people who lack specialized training or prior familiarity with the subject matter being visualized.
An event matrix is a visualization that may be organized chronologically and used to present connections between objects from an integrated data set. It may be generated from any set of data objects with dates and connections. Because of its organization and minimal input requirements, the event matrix is broadly useful and intuitively readable.
The event matrix may be useful in part because it facilitates recognition of correlations and indirect connections between several objects. For example, while Person 1 and Person 2 are not directly connected in
The connections that are represented by indicators in the event matrix may be stored as links within an integrated data set. As described below, these links may be part of an ontology that includes various link types. In some cases, the existence of a particular link may be specified explicitly within a source of input data. In other cases, the integration platform may be configured to infer the existence of particular links based on a set of rules, which may be customizable. The integration platform may also make inferences in order to determine when the same object is involved in multiple relationships across multiple data sources. For example, if a person listed in a database of payment records and a person listed in a database of flight records both share the same name and date of birth, the integration platform may infer that they are the same person. Then, if the integration platform creates a link for one of the payment records and a link for one of the flight records, it may associate both link objects with the same person object. This way, all links involving the same person (or other entity) may be consolidated, and among other things, displayed in the same area of the event matrix.
As depicted in
The scope of the present disclosure is not limited to event matrices with any particular formatting or aesthetic features. Specifically, the formatting and aesthetic features of
Indicators or indications of inter-object connections may vary, and need not bear any particular similarity to the indicators of
Additional considerations and techniques relevant to the generation of event matrices are described below.
Definitions
In order to facilitate an understanding of the systems and methods discussed herein, a number of terms are defined below. The terms defined below, as well as other terms used herein, should be construed to include the provided definitions, the ordinary and customary meaning of the terms, and/or any other implied meaning for the respective terms. Thus, the definitions below do not limit the meaning of these terms, but only provide exemplary definitions.
Ontology: Stored information that provides a data model for storage of data in one or more databases. For example, the stored data may comprise definitions for object types and property types for data in a database, and how objects and properties may be related.
Database: A broad term for any data structure for storing and/or organizing data, including, but not limited to, relational databases (Oracle database, mySQL database, etc.), spreadsheets, XML files, and text file, among others.
Data Object or Object: A data container for information representing specific things in the world that have a number of definable properties. For example, a data object can represent an entity such as a person, a place, an organization, a market instrument, or other noun. A data object can represent an event that happens at a point in time or for a duration. A data object can represent a document or other unstructured data source such as an e-mail message, a news report, or a written paper or article. Each data object may be associated with a unique identifier that uniquely identifies the data object. The object's attributes (e.g. metadata about the object) may be represented in one or more properties.
Object Type: Type of a data object (e.g., Person, Event, or Document). Object types may be defined by an ontology and may be modified or updated to include additional object types. An object definition (e.g., in an ontology) may include how the object is related to other objects, such as being a sub-object type of another object type (e.g. an agent may be a sub-object type of a person object type), and the properties the object type may have.
Properties: Attributes of a data object that represent individual data items. At a minimum, each property of a data object has a property type and a value or values.
Property Type: The type of data a property is, such as a string, an integer, or a double. Property types may include complex property types, such as a series data values associated with timed ticks (e.g. a time series), etc.
Property Value: The value associated with a property, which is of the type indicated in the property type associated with the property. A property may have multiple values.
Link: A connection between two data objects, based on, for example, a relationship, an event, and/or matching properties. Links may be directional, such as one representing a payment from person A to B, or bidirectional.
Link Set: Set of multiple links that are shared between two or more data objects.
Object Centric Data Model
To provide a framework for the following discussion of specific systems and methods described herein, an example database system 210 using an ontology 205 will now be described. This description is provided for the purpose of providing an example and is not intended to limit the techniques to the example data model, the example database system, or the example database system's use of an ontology to represent information.
In one embodiment, a body of data is conceptually structured according to an object-centric data model represented by ontology 205. The conceptual data model is independent of any particular database used for durably storing one or more database(s) 209 based on the ontology 205. For example, each object of the conceptual data model may correspond to one or more rows in a relational database or an entry in Lightweight Directory Access Protocol (LDAP) database, or any combination of one or more databases.
Different types of data objects may have different property types. For example, a “Person” data object might have an “Eye Color” property type and an “Event” data object might have a “Date” property type. Each property 203 as represented by data in the database system 210 may have a property type defined by the ontology 205 used by the database 209.
Objects may be instantiated in the database 209 in accordance with the corresponding object definition for the particular object in the ontology 205. For example, a specific monetary payment (e.g., an object of type “event”) of US$30.00 (e.g., a property of type “currency”) taking place on 3/27/2009 (e.g., a property of type “date”) may be stored in the database 209 as an event object with associated currency and date properties as defined within the ontology 205.
The data objects defined in the ontology 205 may support property multiplicity. In particular, a data object 201 may be allowed to have more than one property 203 of the same property type. For example, a “Person” data object might have multiple “Address” properties or multiple “Name” properties.
Each link 202 represents a connection between two data objects 201. In one embodiment, the connection is either through a relationship, an event, or through matching properties. A relationship connection may be asymmetrical or symmetrical. For example, “Person” data object A may be connected to “Person” data object B by a “Child Of” relationship (where “Person” data object B has an asymmetric “Parent Of” relationship to “Person” data object A), a “Kin Of” symmetric relationship to “Person” data object C, and an asymmetric “Member Of” relationship to “Organization” data object X. The type of relationship between two data objects may vary depending on the types of the data objects. For example, “Person” data object A may have an “Appears In” relationship with “Document” data object Y or have a “Participate In” relationship with “Event” data object E. As an example of an event connection, two “Person” data objects may be connected by an “Airline Flight” data object representing a particular airline flight if they traveled together on that flight, or by a “Meeting” data object representing a particular meeting if they both attended that meeting. In one embodiment, when two data objects are connected by an event, they are also connected by relationships, in which each data object has a specific relationship to the event, such as, for example, an “Appears In” relationship.
As an example of a matching properties connection, two “Person” data objects representing a brother and a sister, may both have an “Address” property that indicates where they live. If the brother and the sister live in the same home, then their “Address” properties likely contain similar, if not identical property values. In one embodiment, a link between two data objects may be established based on similar or matching properties (e.g., property types and/or property values) of the data objects. These are just some examples of the types of connections that may be represented by a link and other types of connections may be represented; embodiments are not limited to any particular types of connections between data objects. For example, a document might contain references to two different objects. For example, a document may contain a reference to a payment (one object), and a person (a second object). A link between these two objects may represent a connection between these two entities through their co-occurrence within the same document.
Each data object 201 can have multiple links with another data object 201 to form a link set 204. For example, two “Person” data objects representing a husband and a wife could be linked through a “Spouse Of” relationship, a matching “Address” property, and one or more matching “Event” properties (e.g., a wedding). Each link 202 as represented by data in a database may have a link type defined by the database ontology used by the database.
In accordance with the discussion above, the example ontology 205 comprises stored information providing the data model of data stored in database 209, and the ontology is defined by one or more object types 310, one or more property types 316, and one or more link types 330. Based on information determined by the parser 302 or other mapping of source input information to object type, one or more data objects 201 may be instantiated in the database 209 based on respective determined object types 310, and each of the objects 201 has one or more properties 203 that are instantiated based on property types 316. Two data objects 201 may be connected by one or more links 202 that may be instantiated based on link types 330. The property types 316 each may comprise one or more data types 318, such as a string, number, etc. Property types 316 may be instantiated based on a base property type 320. For example, a base property type 320 may be “Locations” and a property type 316 may be “Home.”
In an embodiment, a user of the system uses an object type editor 324 to create and/or modify the object types 310 and define attributes of the object types. In an embodiment, a user of the system uses a property type editor 326 to create and/or modify the property types 316 and define attributes of the property types. In an embodiment, a user of the system uses link type editor 328 to create the link types 330. Alternatively, other programs, processes, or programmatic controls may be used to create link types and property types and define attributes, and using editors is not required.
In an embodiment, creating a property type 316 using the property type editor 326 involves defining at least one parser definition using a parser editor 322. A parser definition comprises metadata that informs parser 302 how to parse input data 300 to determine whether values in the input data can be assigned to the property type 316 that is associated with the parser definition. In an embodiment, each parser definition may comprise a regular expression parser 304A or a code module parser 304B. In other embodiments, other kinds of parser definitions may be provided using scripts or other programmatic elements. Once defined, both a regular expression parser 304A and a code module parser 304B can provide input to parser 302 to control parsing of input data 300.
Using the data types defined in the ontology, input data 300 may be parsed by the parser 302 to determine which object type 310 should receive data from a record created from the input data, and which property types 316 should be assigned to data from individual field values in the input data. Based on object-property mapping 301, the parser 302 selects one of the parser definitions that is associated with a property type in the input data. The parser parses an input data field using the selected parser definition, resulting in creating new or modified data 303. The new or modified data 303 is added to the database 209 according to ontology 205 by storing values of the new or modified data in a property of the specified property type. As a result, input data 300 having varying format or syntax can be created in database 209. The ontology 205 may be modified at any time using object type editor 324, property type editor 326, and link type editor 328, or under program control without human use of an editor. Parser editor 322 enables creating multiple parser definitions that can successfully parse input data 300 having varying format or syntax and determine which property types should be used to transform input data 300 into new or modified input data 303.
The properties, objects, and the links (e.g. relationships) between the objects can be visualized using a graphical user interface (GUI). For example,
In addition to visually showing relationships between the data objects, the user interface may allow various other manipulations. For example, the objects within database 108 may be searched using a search interface 420 (e.g., text string matching of object properties), inspected (e.g., properties and associated data viewed), filtered (e.g., narrowing the universe of objects into sets and subsets by properties or relationships), and statistically aggregated (e.g., numerically summarized based on summarization criteria), among other operations and visualizations.
Example Method of Generating Event Matrix
As described earlier in this disclosure, an event matrix is a particularly useful and intuitive type of visualization for integrated data. An example of an event matrix was previously presented in
Continuing at block 506, events and non-event objects are identified from the ontology. Objects from the ontology may be identified based on selection by a user, e.g., using the interface of
At block 508, links between events and other objects are identified. These links may correspond to, e.g., link 202 of
At block 510, an event matrix user interface, configured for display on an electronic display device and/or for printing on paper, is generated. In one embodiment, the user interface includes labels associated with each identified object and link indicators indicating links between objects. The labels and indicators may be arranged at least in part on the basis of dates and/or times associated with the events. If an event has no date or time information, it may appear at the end of the event matrix.
The arranged labels and indicators may be combined with various formatting, styling, and other aesthetic features in order to form a completed event matrix, such as the matrix of
Implementation Mechanisms
According to one embodiment, the techniques described herein are implemented by one or more special-purpose computing devices. The special-purpose computing devices may be hard-wired to perform the techniques, or may include digital electronic devices such as one or more application-specific integrated circuits (ASICs) or field programmable gate arrays (FPGAs) that are persistently programmed to perform the techniques, or may include one or more general purpose hardware processors programmed to perform the techniques pursuant to program instructions in firmware, memory, other storage, or a combination. Such special-purpose computing devices may also combine custom hard-wired logic, ASICs, or FPGAs with custom programming to accomplish the techniques. The special-purpose computing devices may be desktop computer systems, server computer systems, portable computer systems, handheld devices, networking devices or any other device or combination of devices that incorporate hard-wired and/or program logic to implement the techniques.
Computing device(s) are generally controlled and coordinated by operating system software, such as iOS, Android, Chrome OS, Windows XP, Windows Vista, Windows 7, Windows 8, Windows Server, Windows CE, Unix, Linux, SunOS, Solaris, iOS, Blackberry OS, VxWorks, or other compatible operating systems. In other embodiments, the computing device may be controlled by a proprietary operating system. Conventional operating systems control and schedule computer processes for execution, perform memory management, provide file system, networking, I/O services, and provide a user interface functionality, such as a graphical user interface (“GUI”), among other things.
For example,
Computer system 600 also includes a main memory 606, such as a random access memory (RAM), cache and/or other dynamic storage devices, coupled to bus 602 for storing information and instructions to be executed by processor 604. Main memory 606 also may be used for storing temporary variables or other intermediate information during execution of instructions to be executed by processor 604. Such instructions, when stored in storage media accessible to processor 604, render computer system 600 into a special-purpose machine that is customized to perform the operations specified in the instructions.
Computer system 600 further includes a read only memory (ROM) 608 or other static storage device coupled to bus 602 for storing static information and instructions for processor 604. A storage device 610, such as a magnetic disk, optical disk, or USB thumb drive (Flash drive), etc., is provided and coupled to bus 602 for storing information and instructions.
Computer system 600 may be coupled via bus 602 to a display 612, such as a cathode ray tube (CRT) or LCD display (or touch screen), for displaying information to a computer user. An input device 614, including alphanumeric and other keys, is coupled to bus 602 for communicating information and command selections to processor 604. Another type of user input device is cursor control 616, such as a mouse, a trackball, or cursor direction keys for communicating direction information and command selections to processor 604 and for controlling cursor movement on display 612. This input device typically has two degrees of freedom in two axes, a first axis (e.g., x) and a second axis (e.g., y), that allows the device to specify positions in a plane. In some embodiments, the same direction information and command selections as cursor control may be implemented via receiving touches on a touch screen without a cursor.
Computing system 600 may include a user interface module to implement a GUI that may be stored in a mass storage device as executable software codes that are executed by the computing device(s). This and other modules may include, by way of example, components, such as software components, object-oriented software components, class components and task components, processes, functions, attributes, procedures, subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables.
In general, the word “module,” as used herein, refers to logic embodied in hardware or firmware, or to a collection of software instructions, possibly having entry and exit points, written in a programming language, such as, for example, Java, Lua, C or C++. A software module may be compiled and linked into an executable program, installed in a dynamic link library, or may be written in an interpreted programming language such as, for example, BASIC, Perl, or Python. It will be appreciated that software modules may be callable from other modules or from themselves, and/or may be invoked in response to detected events or interrupts. Software modules configured for execution on computing devices may be provided on a computer readable medium, such as a compact disc, digital video disc, flash drive, magnetic disc, or any other tangible medium, or as a digital download (and may be originally stored in a compressed or installable format that requires installation, decompression or decryption prior to execution). Such software code may be stored, partially or fully, on a memory device of the executing computing device, for execution by the computing device. Software instructions may be embedded in firmware, such as an EPROM. It will be further appreciated that hardware modules may be comprised of connected logic units, such as gates and flip-flops, and/or may be comprised of programmable units, such as programmable gate arrays or processors. The modules or computing device functionality described herein are preferably implemented as software modules, but may be represented in hardware or firmware. Generally, the modules described herein refer to logical modules that may be combined with other modules or divided into sub-modules despite their physical organization or storage
Computer system 600 may implement the techniques described herein using customized hard-wired logic, one or more ASICs or FPGAs, firmware and/or program logic which in combination with the computer system causes or programs computer system 600 to be a special-purpose machine. According to one embodiment, the techniques herein are performed by computer system 600 in response to processor(s) 604 executing one or more sequences of one or more instructions contained in main memory 606. Such instructions may be read into main memory 606 from another storage medium, such as storage device 610. Execution of the sequences of instructions contained in main memory 606 causes processor(s) 604 to perform the process steps described herein. In alternative embodiments, hard-wired circuitry may be used in place of or in combination with software instructions.
The term “non-transitory media,” and similar terms, as used herein refers to any media that store data and/or instructions that cause a machine to operate in a specific fashion. Such non-transitory media may comprise non-volatile media and/or volatile media. Non-volatile media includes, for example, optical or magnetic disks, such as storage device 610. Volatile media includes dynamic memory, such as main memory 606. Common forms of non-transitory media include, for example, a floppy disk, a flexible disk, hard disk, solid state drive, magnetic tape, or any other magnetic data storage medium, a CD-ROM, any other optical data storage medium, any physical medium with patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, NVRAM, any other memory chip or cartridge, and networked versions of the same.
Non-transitory media is distinct from but may be used in conjunction with transmission media. Transmission media participates in transferring information between nontransitory media. For example, transmission media includes coaxial cables, copper wire and fiber optics, including the wires that comprise bus 602. Transmission media can also take the form of acoustic or light waves, such as those generated during radio-wave and infra-red data communications.
Various forms of media may be involved in carrying one or more sequences of one or more instructions to processor 604 for execution. For example, the instructions may initially be carried on a magnetic disk or solid state drive of a remote computer. The remote computer can load the instructions into its dynamic memory and send the instructions over a telephone line using a modem. A modem local to computer system 600 can receive the data on the telephone line and use an infra-red transmitter to convert the data to an infra-red signal. An infra-red detector can receive the data carried in the infra-red signal and appropriate circuitry can place the data on bus 602. Bus 602 carries the data to main memory 606, from which processor 604 retrieves and executes the instructions. The instructions received by main memory 606 may optionally be stored on storage device 610 either before or after execution by processor 604.
Computer system 600 also includes a communication interface 618 coupled to bus 602. Communication interface 618 provides a two-way data communication coupling to a network link 620 that is connected to a local network 622. For example, communication interface 618 may be an integrated services digital network (ISDN) card, cable modem, satellite modem, or a modem to provide a data communication connection to a corresponding type of telephone line. As another example, communication interface 618 may be a local area network (LAN) card to provide a data communication connection to a compatible LAN (or WAN component to communicated with a WAN). Wireless links may also be implemented. In any such implementation, communication interface 618 sends and receives electrical, electromagnetic or optical signals that carry digital data streams representing various types of information.
Network link 620 typically provides data communication through one or more networks to other data devices. For example, network link 620 may provide a connection through local network 622 to a host computer 624 or to data equipment operated by an Internet Service Provider (ISP) 626. ISP 626 in turn provides data communication services through the world wide packet data communication network now commonly referred to as the “Internet” 628. Local network 622 and Internet 628 both use electrical, electromagnetic or optical signals that carry digital data streams. The signals through the various networks and the signals on network link 620 and through communication interface 618, which carry the digital data to and from computer system 600, are example forms of transmission media.
Computer system 600 can send messages and receive data, including program code, through the network(s), network link 620 and communication interface 618. In the Internet example, a server 630 might transmit a requested code for an application program through Internet 628, ISP 626, local network 622 and communication interface 618.
The received code may be executed by processor 604 as it is received, and/or stored in storage device 610, or other non-volatile storage for later execution.
Each of the processes, methods, and algorithms described in the preceding sections may be embodied in, and fully or partially automated by, code modules executed by one or more computer systems or computer processors comprising computer hardware. The processes and algorithms may be implemented partially or wholly in application-specific circuitry.
The various features and processes described above may be used independently of one another, or may be combined in various ways. All possible combinations and subcombinations are intended to fall within the scope of this disclosure. In addition, certain method or process blocks may be omitted in some implementations. The methods and processes described herein are also not limited to any particular sequence, and the blocks or states relating thereto can be performed in other sequences that are appropriate. For example, described blocks or states may be performed in an order other than that specifically disclosed, or multiple blocks or states may be combined in a single block or state. The example blocks or states may be performed in serial, in parallel, or in some other manner. Blocks or states may be added to or removed from the disclosed example embodiments. The example systems and components described herein may be configured differently than described. For example, elements may be added to, removed from, or rearranged compared to the disclosed example embodiments.
Conditional language, such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment.
Any process descriptions, elements, or blocks in the flow diagrams described herein and/or depicted in the attached figures should be understood as potentially representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or steps in the process. Alternate implementations are included within the scope of the embodiments described herein in which elements or functions may be deleted, executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved, as would be understood by those skilled in the art.
It should be emphasized that many variations and modifications may be made to the above-described embodiments, the elements of which are to be understood as being among other acceptable examples. All such modifications and variations are intended to be included herein within the scope of this disclosure. The foregoing description details certain embodiments of the invention. It will be appreciated, however, that no matter how detailed the foregoing appears in text, the invention can be practiced in many ways. As is also stated above, it should be noted that the use of particular terminology when describing certain features or aspects of the invention should not be taken to imply that the terminology is being re-defined herein to be restricted to including any specific characteristics of the features or aspects of the invention with which that terminology is associated. The scope of the invention should therefore be construed in accordance with the appended claims and any equivalents thereof.
This application claims priority to U.S. Provisional Application No. 61/798,581, entitled “EVENT MATRIX BASED ON INTEGRATED DATA,” which was filed Mar. 15, 2013 and is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5109399 | Thompson | Apr 1992 | A |
5329108 | Lamoure | Jul 1994 | A |
5632009 | Rao et al. | May 1997 | A |
5670987 | Doi et al. | Sep 1997 | A |
5845300 | Comer et al. | Dec 1998 | A |
6057757 | Arrowsmith et al. | May 2000 | A |
6091956 | Hollenberg | Jul 2000 | A |
6161098 | Wallman | Dec 2000 | A |
6219053 | Tachibana et al. | Apr 2001 | B1 |
6232971 | Haynes | May 2001 | B1 |
6247019 | Davies | Jun 2001 | B1 |
6279018 | Kudrolli et al. | Aug 2001 | B1 |
6341310 | Leshem et al. | Jan 2002 | B1 |
6369835 | Lin | Apr 2002 | B1 |
6456997 | Shukla | Sep 2002 | B1 |
6549944 | Weinberg et al. | Apr 2003 | B1 |
6581068 | Bensoussan et al. | Jun 2003 | B1 |
6594672 | Lampson et al. | Jul 2003 | B1 |
6631496 | Li et al. | Oct 2003 | B1 |
6642945 | Sharpe | Nov 2003 | B1 |
6714936 | Nevin, III | Mar 2004 | B1 |
6775675 | Nwabueze et al. | Aug 2004 | B1 |
6839745 | Dingari et al. | Jan 2005 | B1 |
6877137 | Rivette et al. | Apr 2005 | B1 |
6976210 | Silva et al. | Dec 2005 | B1 |
6985950 | Hanson et al. | Jan 2006 | B1 |
7036085 | Barros | Apr 2006 | B2 |
7043702 | Chi et al. | May 2006 | B2 |
7055110 | Kupka et al. | May 2006 | B2 |
7139800 | Bellotti et al. | Nov 2006 | B2 |
7158878 | Rasmussen et al. | Jan 2007 | B2 |
7162475 | Ackerman | Jan 2007 | B2 |
7168039 | Bertram | Jan 2007 | B2 |
7171427 | Witkowski et al. | Jan 2007 | B2 |
7269786 | Malloy et al. | Sep 2007 | B1 |
7278105 | Kitts | Oct 2007 | B1 |
7290698 | Poslinski et al. | Nov 2007 | B2 |
7333998 | Heckerman et al. | Feb 2008 | B2 |
7370047 | Gorman | May 2008 | B2 |
7379811 | Rasmussen et al. | May 2008 | B2 |
7379903 | Caballero | May 2008 | B2 |
7426654 | Adams et al. | Sep 2008 | B2 |
7454466 | Bellotti et al. | Nov 2008 | B2 |
7467375 | Tondreau et al. | Dec 2008 | B2 |
7502786 | Liu et al. | Mar 2009 | B2 |
7525422 | Bishop et al. | Apr 2009 | B2 |
7529727 | Arning et al. | May 2009 | B2 |
7558677 | Jones | Jul 2009 | B2 |
7574428 | Leiserowitz et al. | Aug 2009 | B2 |
7617232 | Gabbert et al. | Nov 2009 | B2 |
7620628 | Kapur et al. | Nov 2009 | B2 |
7627812 | Chamberlain et al. | Dec 2009 | B2 |
7634717 | Chamberlain et al. | Dec 2009 | B2 |
7703021 | Flam | Apr 2010 | B1 |
7712049 | Williams et al. | May 2010 | B2 |
7716077 | Mikurak | May 2010 | B1 |
7725547 | Albertson et al. | May 2010 | B2 |
7770100 | Chamberlain et al. | Aug 2010 | B2 |
7809703 | Balabhadrapatruni et al. | Oct 2010 | B2 |
7818658 | Chen | Oct 2010 | B2 |
7894984 | Rasmussen et al. | Feb 2011 | B2 |
7899611 | Downs et al. | Mar 2011 | B2 |
7917376 | Bellin et al. | Mar 2011 | B2 |
7920963 | Jouline et al. | Apr 2011 | B2 |
7933862 | Chamberlain et al. | Apr 2011 | B2 |
7962281 | Rasmussen et al. | Jun 2011 | B2 |
7962848 | Bertram | Jun 2011 | B2 |
8001465 | Kudrolli et al. | Aug 2011 | B2 |
8001482 | Bhattiprolu et al. | Aug 2011 | B2 |
8010545 | Stefik et al. | Aug 2011 | B2 |
8015487 | Roy et al. | Sep 2011 | B2 |
8024778 | Cash et al. | Sep 2011 | B2 |
8036632 | Cona et al. | Oct 2011 | B1 |
8103543 | Zwicky | Jan 2012 | B1 |
8134457 | Velipasalar et al. | Mar 2012 | B2 |
8145703 | Frishert et al. | Mar 2012 | B2 |
8196184 | Amirov et al. | Jun 2012 | B2 |
8214361 | Sandler et al. | Jul 2012 | B1 |
8214764 | Gemmell et al. | Jul 2012 | B2 |
8225201 | Michael | Jul 2012 | B2 |
8229947 | Fujinaga | Jul 2012 | B2 |
8230333 | Decherd et al. | Jul 2012 | B2 |
8280880 | Aymeloglu et al. | Oct 2012 | B1 |
8290942 | Jones et al. | Oct 2012 | B2 |
8301464 | Cave et al. | Oct 2012 | B1 |
8312367 | Foster | Nov 2012 | B2 |
8352881 | Champion et al. | Jan 2013 | B2 |
8368695 | Howell et al. | Feb 2013 | B2 |
8397171 | Klassen et al. | Mar 2013 | B2 |
8412707 | Mianji | Apr 2013 | B1 |
8447722 | Ahuja et al. | May 2013 | B1 |
8452790 | Mianji | May 2013 | B1 |
8463036 | Ramesh et al. | Jun 2013 | B1 |
8489331 | Kopf et al. | Jul 2013 | B2 |
8489641 | Seefeld et al. | Jul 2013 | B1 |
8498984 | Hwang et al. | Jul 2013 | B1 |
8514082 | Cova et al. | Aug 2013 | B2 |
8515207 | Chau | Aug 2013 | B2 |
8554579 | Tribble et al. | Oct 2013 | B2 |
8577911 | Stepinski et al. | Nov 2013 | B1 |
8589273 | Creeden et al. | Nov 2013 | B2 |
8620641 | Farnsworth et al. | Dec 2013 | B2 |
8689108 | Duffield et al. | Apr 2014 | B1 |
8713467 | Goldenberg et al. | Apr 2014 | B1 |
8739278 | Varghese | May 2014 | B2 |
8745516 | Mason et al. | Jun 2014 | B2 |
8781169 | Jackson et al. | Jul 2014 | B2 |
8799799 | Cervelli et al. | Aug 2014 | B1 |
8812960 | Sun et al. | Aug 2014 | B1 |
8832594 | Thompson et al. | Sep 2014 | B1 |
8868486 | Tamayo | Oct 2014 | B2 |
20010021936 | Bertram | Sep 2001 | A1 |
20020091707 | Keller | Jul 2002 | A1 |
20020095658 | Shulman et al. | Jul 2002 | A1 |
20020116120 | Ruiz et al. | Aug 2002 | A1 |
20020130907 | Chi et al. | Sep 2002 | A1 |
20020174201 | Ramer et al. | Nov 2002 | A1 |
20030028560 | Kudrolli et al. | Feb 2003 | A1 |
20030039948 | Donahue | Feb 2003 | A1 |
20030144868 | MacIntyre et al. | Jul 2003 | A1 |
20030163352 | Surpin et al. | Aug 2003 | A1 |
20030200217 | Ackerman | Oct 2003 | A1 |
20030225755 | Iwayama et al. | Dec 2003 | A1 |
20040064256 | Barinek et al. | Apr 2004 | A1 |
20040085318 | Hassler et al. | May 2004 | A1 |
20040095349 | Bito et al. | May 2004 | A1 |
20040143602 | Ruiz et al. | Jul 2004 | A1 |
20040163039 | Gorman | Aug 2004 | A1 |
20040181554 | Heckerman et al. | Sep 2004 | A1 |
20040260702 | Cragun et al. | Dec 2004 | A1 |
20050027705 | Sadri et al. | Feb 2005 | A1 |
20050028094 | Allyn | Feb 2005 | A1 |
20050080769 | Gemmell et al. | Apr 2005 | A1 |
20050086207 | Heuer et al. | Apr 2005 | A1 |
20050125715 | Franco et al. | Jun 2005 | A1 |
20050180330 | Shapiro | Aug 2005 | A1 |
20050182793 | Keenan et al. | Aug 2005 | A1 |
20050183005 | Denoue et al. | Aug 2005 | A1 |
20050246327 | Yeung et al. | Nov 2005 | A1 |
20050251786 | Citron et al. | Nov 2005 | A1 |
20060026120 | Carolan et al. | Feb 2006 | A1 |
20060026170 | Kreitler et al. | Feb 2006 | A1 |
20060045470 | Poslinski et al. | Mar 2006 | A1 |
20060059139 | Robinson | Mar 2006 | A1 |
20060074866 | Chamberlain et al. | Apr 2006 | A1 |
20060080619 | Carlson et al. | Apr 2006 | A1 |
20060129746 | Porter | Jun 2006 | A1 |
20060139375 | Rasmussen et al. | Jun 2006 | A1 |
20060149596 | Surpin et al. | Jul 2006 | A1 |
20060203337 | White | Sep 2006 | A1 |
20060241974 | Chao et al. | Oct 2006 | A1 |
20060271277 | Hu et al. | Nov 2006 | A1 |
20070011150 | Frank | Jan 2007 | A1 |
20070016363 | Huang et al. | Jan 2007 | A1 |
20070038962 | Fuchs et al. | Feb 2007 | A1 |
20070078832 | Ott et al. | Apr 2007 | A1 |
20070174760 | Chamberlain et al. | Jul 2007 | A1 |
20070192265 | Chopin et al. | Aug 2007 | A1 |
20070208497 | Downs et al. | Sep 2007 | A1 |
20070208498 | Barker et al. | Sep 2007 | A1 |
20070266336 | Nojima et al. | Nov 2007 | A1 |
20070294643 | Kyle | Dec 2007 | A1 |
20080040684 | Crump | Feb 2008 | A1 |
20080051989 | Welsh | Feb 2008 | A1 |
20080052142 | Bailey et al. | Feb 2008 | A1 |
20080077597 | Butler | Mar 2008 | A1 |
20080077642 | Carbone et al. | Mar 2008 | A1 |
20080104019 | Nath | May 2008 | A1 |
20080126951 | Sood et al. | May 2008 | A1 |
20080162616 | Gross et al. | Jul 2008 | A1 |
20080195417 | Surpin et al. | Aug 2008 | A1 |
20080195608 | Clover | Aug 2008 | A1 |
20080222295 | Robinson et al. | Sep 2008 | A1 |
20080255973 | El Wade et al. | Oct 2008 | A1 |
20080263468 | Cappione et al. | Oct 2008 | A1 |
20080267107 | Rosenberg | Oct 2008 | A1 |
20080276167 | Michael | Nov 2008 | A1 |
20080278311 | Grange et al. | Nov 2008 | A1 |
20080288306 | MacIntyre et al. | Nov 2008 | A1 |
20080301643 | Appleton et al. | Dec 2008 | A1 |
20090002492 | Velipasalar et al. | Jan 2009 | A1 |
20090027418 | Maru et al. | Jan 2009 | A1 |
20090030915 | Winter et al. | Jan 2009 | A1 |
20090076845 | Bellin et al. | Mar 2009 | A1 |
20090119309 | Gibson et al. | May 2009 | A1 |
20090125369 | Kloostra et al. | May 2009 | A1 |
20090125459 | Norton et al. | May 2009 | A1 |
20090132953 | Reed et al. | May 2009 | A1 |
20090144262 | White et al. | Jun 2009 | A1 |
20090164934 | Bhattiprolu et al. | Jun 2009 | A1 |
20090171939 | Athsani et al. | Jul 2009 | A1 |
20090172511 | Decherd et al. | Jul 2009 | A1 |
20090222400 | Kupershmidt et al. | Sep 2009 | A1 |
20090222760 | Halverson et al. | Sep 2009 | A1 |
20090234720 | George et al. | Sep 2009 | A1 |
20090281839 | Lynn et al. | Nov 2009 | A1 |
20090287470 | Farnsworth et al. | Nov 2009 | A1 |
20090292626 | Oxford | Nov 2009 | A1 |
20100011282 | Dollard et al. | Jan 2010 | A1 |
20100042922 | Bradateanu et al. | Feb 2010 | A1 |
20100057716 | Stefik et al. | Mar 2010 | A1 |
20100070523 | Delgo et al. | Mar 2010 | A1 |
20100070897 | Aymeloglu et al. | Mar 2010 | A1 |
20100103124 | Kruzeniski et al. | Apr 2010 | A1 |
20100122152 | Chamberlain et al. | May 2010 | A1 |
20100131457 | Heimendinger | May 2010 | A1 |
20100191563 | Schlaifer et al. | Jul 2010 | A1 |
20100198684 | Eraker et al. | Aug 2010 | A1 |
20100199225 | Coleman et al. | Aug 2010 | A1 |
20100250412 | Wagner | Sep 2010 | A1 |
20100280857 | Liu et al. | Nov 2010 | A1 |
20100293174 | Bennett et al. | Nov 2010 | A1 |
20100306713 | Geisner et al. | Dec 2010 | A1 |
20100321399 | Ellren et al. | Dec 2010 | A1 |
20100325581 | Finkelstein et al. | Dec 2010 | A1 |
20110047159 | Baid et al. | Feb 2011 | A1 |
20110060753 | Shaked et al. | Mar 2011 | A1 |
20110061013 | Bilicki et al. | Mar 2011 | A1 |
20110074811 | Hanson et al. | Mar 2011 | A1 |
20110078173 | Seligmann et al. | Mar 2011 | A1 |
20110107196 | Foster | May 2011 | A1 |
20110119100 | Ruhl et al. | May 2011 | A1 |
20110137766 | Rasmussen et al. | Jun 2011 | A1 |
20110153384 | Horne et al. | Jun 2011 | A1 |
20110167105 | Ramakrishnan et al. | Jul 2011 | A1 |
20110170799 | Carrino et al. | Jul 2011 | A1 |
20110208724 | Jones et al. | Aug 2011 | A1 |
20110291851 | Whisenant | Dec 2011 | A1 |
20110310005 | Chen et al. | Dec 2011 | A1 |
20110314007 | Dassa et al. | Dec 2011 | A1 |
20120019559 | Siler et al. | Jan 2012 | A1 |
20120036434 | Oberstein | Feb 2012 | A1 |
20120066296 | Appleton et al. | Mar 2012 | A1 |
20120079363 | Folting et al. | Mar 2012 | A1 |
20120106801 | Jackson | May 2012 | A1 |
20120131512 | Takeuchi et al. | May 2012 | A1 |
20120144335 | Abeln et al. | Jun 2012 | A1 |
20120159307 | Chung et al. | Jun 2012 | A1 |
20120196557 | Reich et al. | Aug 2012 | A1 |
20120196558 | Reich et al. | Aug 2012 | A1 |
20120208636 | Feige | Aug 2012 | A1 |
20120221511 | Gibson et al. | Aug 2012 | A1 |
20120221580 | Barney | Aug 2012 | A1 |
20120246148 | Dror | Sep 2012 | A1 |
20120290879 | Shibuya et al. | Nov 2012 | A1 |
20120323888 | Osann, Jr. | Dec 2012 | A1 |
20120330973 | Ghuneim et al. | Dec 2012 | A1 |
20130006725 | Simanek et al. | Jan 2013 | A1 |
20130046842 | Muntz et al. | Feb 2013 | A1 |
20130061169 | Pearcy et al. | Mar 2013 | A1 |
20130073377 | Heath | Mar 2013 | A1 |
20130078943 | Biage et al. | Mar 2013 | A1 |
20130097482 | Marantz et al. | Apr 2013 | A1 |
20130101159 | Chao et al. | Apr 2013 | A1 |
20130111320 | Campbell et al. | May 2013 | A1 |
20130150004 | Rosen | Jun 2013 | A1 |
20130176321 | Mitchell et al. | Jul 2013 | A1 |
20130179420 | Park et al. | Jul 2013 | A1 |
20130224696 | Wolfe et al. | Aug 2013 | A1 |
20130238616 | Rose et al. | Sep 2013 | A1 |
20130246170 | Gross et al. | Sep 2013 | A1 |
20130262527 | Hunter et al. | Oct 2013 | A1 |
20130268520 | Fisher et al. | Oct 2013 | A1 |
20130282696 | John et al. | Oct 2013 | A1 |
20130290011 | Lynn et al. | Oct 2013 | A1 |
20130290825 | Arndt et al. | Oct 2013 | A1 |
20130297619 | Chandrasekaran et al. | Nov 2013 | A1 |
20140019936 | Cohanoff | Jan 2014 | A1 |
20140032506 | Hoey et al. | Jan 2014 | A1 |
20140033010 | Richardt et al. | Jan 2014 | A1 |
20140040371 | Gurevich et al. | Feb 2014 | A1 |
20140047357 | Alfaro et al. | Feb 2014 | A1 |
20140059038 | McPherson et al. | Feb 2014 | A1 |
20140068487 | Steiger et al. | Mar 2014 | A1 |
20140095509 | Patton | Apr 2014 | A1 |
20140108380 | Gotz et al. | Apr 2014 | A1 |
20140108985 | Scott et al. | Apr 2014 | A1 |
20140157172 | Peery et al. | Jun 2014 | A1 |
20140164502 | Khodorenko et al. | Jun 2014 | A1 |
20140189536 | Lange et al. | Jul 2014 | A1 |
20140195515 | Baker et al. | Jul 2014 | A1 |
20140267295 | Sharma | Sep 2014 | A1 |
20140279824 | Tamayo | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
1 672 527 | Jun 2006 | EP |
2 551 799 | Jan 2013 | EP |
2778983 | Sep 2014 | EP |
2779082 | Sep 2014 | EP |
WO 2005104736 | Nov 2005 | WO |
WO 2009061501 | May 2009 | WO |
WO 2010000014 | Jan 2010 | WO |
WO 2010030913 | Mar 2010 | WO |
Entry |
---|
R. Alfred, “Summarizing Relational Data Using Semi-Supervised Genetic Algorithm-Based Clustering Techniques”, J. Comput. Sci., 6: 775-784, 2010. |
“A First Look: Predicting Market Demand for Food Retail using a Huff Analysis,” TRF Policy Solutions, Jul. 2012, pp. 30. |
Acklen, Laura, “Absolute Beginner's Guide to Microsoft Word 2003,” Dec. 24, 2003, pp. 15-18, 34-41, 308-316. |
Ananiev et al., “The New Modality API,” http://web.archive.org/web/20061211011958/http://java.sun.com/developer/technicalArticles/J2SE/Desktop/javase6/modality/ Jan. 2006, pp. 8. |
Bugzilla@Mozilla, “Bug 18726—[feature] Long-click means of invoking contextual menus not supported,” http://bugzilla.mozilla.org/show—bug.cgi?id=18726 printed Jun. 13, 2013 in 11 pages. |
Chen et al., “Bringing Order to the Web: Automatically Categorizing Search Results,” CHI 2000, Proceedings of the SIGCHI conference on Human Factors in Computing Systems, Apr. 1-6, 2000, The Hague, The Netherlands, pp. 145-152. |
Dramowicz, Ela, “Retail Trade Area Analysis Using the Huff Model,” Directions Magazine, Jul. 2, 2005 in 10 pages, http://www.directionsmag.com/articles/retail-trade-area-analysis-using-the-huff-model/123411. |
GIS-NET 3 Public—Department of Regional Planning. Planning & Zoning Information for Unincorporated LA County. Retrieved Oct. 2, 2013 from http://gis.planning.lacounty.gov/GIS-NET3—Public/Viewer.html. |
Griffith, Daniel A., “A Generalized Huff Model,” Geographical Analysis, Apr. 1982, vol. 14, No. 2, pp. 135-144. |
Hibbert et al., “Prediction of Shopping Behavior Using a Huff Model Within a GIS Framework,” Healthy Eating in Context Mar. 18, 2011, pp. 16. |
Huff et al., “Calibrating the Huff Model Using ArcGIS Business Analyst,” ESRI, Sep. 2008, pp. 33. |
Huff, David L., “Parameter Estimation in the Huff Model,” ESRI, ArcUser, Oct.-Dec. 2003, pp. 34-36. |
International Search Report and Written Opinion in Application No. PCT/US2009/056703, dated Mar. 15, 2010. |
Liu, Tianshun, “Combining GIS and the Huff Model to Analyze Suitable Locations for a New Asian Supermarket in the Minneapolis and St. Paul, Minnesota USA,” Papers in Resource Analysis, 2012, vol. 14, pp. 8. |
Manske, “File Saving Dialogs,” http://www.mozilla.org/editor/ui—specs/FileSaveDialogs.html, Jan. 20, 1999, pp. 7. |
Map of San Jose, CA. Retrieved Oct. 2, 2013 from http://maps.google.com. |
Map of San Jose, CA. Retrieved Oct. 2, 2013 from http://maps.bing.com. |
Map of San Jose, CA. Retrieved Oct. 2, 2013 from http://maps.yahoo.com. |
Microsoft—Developer Network, “Getting Started with VBA in Word 2010,” Apr. 2010, http://msdn.microsoft.com/en-us/library/ff604039%28v=office.14%29.aspx as printed Apr. 4, 2014 in 17 pages. |
Microsoft Office—Visio, “About connecting shapes”, http://office.microsoft.com/en-us/visio-help/about-connecting-shapes-HP085050369.aspx printed Aug. 4, 2011 in 6 pages. |
Microsoft Office—Visio, “Add and glue connectors with the Connector tool,” http://office.microsoft.com/en-us/visio-help/add-and-glue-connectors-with-the-connector-tool-HA010048532.aspx?CTT=1 printed Aug. 4, 2011 in 1 page. |
“A Quick Guide to UniProtKB Swiss-Prot & TrEMBL,” Sep. 2011, pp. 2. |
Bluttman et al., “Excel Formulas and Functions for Dummies,” 2005, Wiley Publishing, Inc., pp. 280, 284-286. |
Canese et al., “Chapter 2: PubMed: The Bibliographic Database,” The NCBI Handbook, Oct. 2002, pp. 1-10. |
Conner, Nancy, “Google Apps: The Missing Manual,” Sharing and Collaborating on Documents, May 1, 2008, pp. 93-97, 106-113 & 120-121. |
Delcher et al., “Identifying Bacterial Genes and Endosymbiont DNA with Glimmer,” BioInformatics, vol. 23, No. 6, 2007, pp. 673-679. |
Goswami, Gautam, “Quite ‘Writely’ Said!” One Brick at a Time, Aug. 21, 2005, pp. 7. |
Hansen et al., “Analyzing Social Media Networks with NodeXL: Insights from a Connected World”, Elsevier Science, Sep. 2010, Ch. 4 & 10, pp. 53-67 & 143-164. |
Kahan et al., “Annotea: An Open RDF Infrastructure for Shared WEB Annotations”, Computer Networks, 2002, vol. 39, pp. 589-608. |
Keylines.com, “An Introduction to KeyLines and Network Visualization,” Mar. 2014, http://keylines.com/wp-content/uploads/2014/03/KeyLines-White-Paper.pdf downloaded May 12, 2014 in 8 pp. |
Keylines.com, “KeyLines Datasheet,” Mar. 2014, http://keylines.com/wp-content/uploads/2014/03/KeyLines-datasheet.pdf downloaded May 12, 2014 in 2 pages. |
Keylines.com, “Visualizing Threats: Improved Cyber Security Through Network Visualization,” Apr. 2014, http://keylines.com/wp-content/uploads/2014/04/Visualizing-Threats1.pdf downloaded May 12, 2014 in 10 pages. |
Kitts, Paul, “Chapter 14: Genome Assembly and Annotation Process,” The NCBI Handbook, Oct. 2002, pp. 1-21. |
Madden, Tom, “Chapter 16: The BLAST Sequence Analysis Tool,” The NCBI Handbook, Oct. 2002, pp. 1-15. |
Manno et al., “Introducing Collaboration in Single-user Applications through the Centralized Control Architecture,” 2010, pp. 10. |
Mizrachi, Ilene, “Chapter 1: GenBank: The Nuckeotide Sequence Database,” The NCBI Handbook, Oct. 2002, pp. 1-14. |
Rouse, Margaret, “OLAP Cube,” http://searchdatamanagement.techtarget.com/definition/OLAP-cube, Apr. 28, 2012, pp. 16. |
Sigrist, et al., “PROSITE, a Protein Domain Database for Functional Characterization and Annotation,” Nucleic Acids Research, 2010, vol. 38, pp. D161-D166. |
Sirotkin et al., “Chapter 13: The Processing of Biological Sequence Data at NCBI,” The NCBI Handbook, Oct. 2002, pp. 1-11. |
“The FASTA Program Package,” fasta-36.3.4, Mar. 25, 2011, pp. 29. |
Official Communication in European Application No. EP 14158861.6 dated Jun. 16, 2014. |
Official Communication in New Zealand Application No. 622517 dated Apr. 3, 2014. |
Official Communication in New Zealand Application No. 624557 dated May 14, 2014. |
Official Communication in New Zealand Application No. 628585 dated Aug. 26, 2014. |
Official Communication in New Zealand Application No. 628263 dated Aug. 12, 2014. |
Official Communication in Great Britain Application No. 1404457.2 dated Aug. 14, 2014. |
Official Communication in New Zealand Application No. 627962 dated Aug. 5, 2014. |
Official Communication in New Zealand Application No. 628840 dated Aug. 28, 2014. |
Number | Date | Country | |
---|---|---|---|
20140267294 A1 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
61798581 | Mar 2013 | US |