Eversion apparatus and methods

Information

  • Patent Grant
  • 8029519
  • Patent Number
    8,029,519
  • Date Filed
    Thursday, September 14, 2006
    18 years ago
  • Date Issued
    Tuesday, October 4, 2011
    13 years ago
Abstract
Surgical eversion apparatus for preparing a conduit for anastomosis in a human patient includes an everting member having a loop shaped portion adapted to be inserted into an end portion of a conduit harvested from a human patient and configured to fold a portion of the conduit end portion over itself when moved proximally away from the end of the conduit and along the conduit while a portion of the conduit is held fixed relative thereto. A method of everting a graft includes positioning a graft in a support device such that an end portion of the graft extends therefrom; introducing a generally looped shaped member into the end portion of the graft extending from the support device; and moving the looped shaped member over the support device to fold at least a portion of the end portion of the graft over the support device.
Description
FIELD OF THE INVENTION

This invention relates to apparatus and methods for preparing a tubular graft for an anastomosis procedure. More particularly, the invention involves apparatus and methods for everting a graft prior to anastomosing the graft to another tubular structure such as an aorta.


BACKGROUND OF THE INVENTION

The occlusion of the arteries can lead to insufficient blood flow resulting in discomfort and risks of angina and ischemia. Significant blockage of blood flow in the coronary artery can result in damage to the myocardial tissue or death of the patient. In most cases, occlusion of the artery results from progressive long term deposits of plaque along the artery wall. While such deposits may be concentrated and occlude the artery at a particular site, the deposits are most certainly present throughout the arteries and the vascular system.


Coronary artery bypass graft (CABG) surgery is a surgical procedure performed in severe cases of coronary blockages. CABG procedures involve anastomosing an artery to a graft, such as a vascular graft, which restores the flow of blood by establishing another pathway around the occluded vasculature. During coronary artery bypass graft surgery, a vein or other conduit can be attached proximally to the patient's aorta. The other end is attached to the blocked artery, downstream from the obstruction, thus bypassing the coronary occlusion. CABG procedures can be done by placing the patient on a heart-lung machine and stopping the heart from beating or they can be done on a beating heart without a heart lung machine.


Vessel eversion apparatus have been disclosed to prepare vascular grafts for anastomosis. For example, vessel everting apparatus is described in U.S. Pat. No. 5,076,161 to Kirsch, et al. and U.S. Pat. No. 6,176,413 to Heck, et al. However, there remains a need to provide improved everting apparatus and methods.


SUMMARY OF THE INVENTION

The present invention involves improvements in anastomosis apparatus and methods for anastomosing a first tubular structure to a second tubular structure.


According to one embodiment of the invention, eversion apparatus for preparing a conduit, such as a vessel, for anastomosis in a human patient comprises an everting member having a loop shaped portion adapted to be inserted into an end portion of a conduit from a human patient and configured to fold a portion of the conduit end portion over itself when it is moved away from the conduit end and along the conduit while a portion of the conduit is held fixed relative thereto.


The eversion apparatus facilitates eversion of a vascular or nonvascular graft, for example, so that the intimal surface of the graft and the intimal surface of the target conduit, such as a vessel, can be placed in contact with one another for the anastomosis. The eversion apparatus also facilitates rapid graft eversion which can expedite the anastomosis procedure. In cases where the surgeon must complete the graft in as little time as possible due to the absence of blood flowing through a vessel such as the aorta in a CABG procedure, this can be especially advantageous. If blood flow is not promptly restored, sometimes in as little as 30 minutes, the tissues the artery supplies may experience significant damage or necrosis.


According to another embodiment of the invention, a conduit or vessel eversion system for preparing a conduit or vessel for anastomosis in a human patient comprises a conduit or vessel support device having a proximal end and a distal end; and everting apparatus comprising an everting member, the everting member having a loop shaped portion adapted to be inserted into a portion of a conduit or vessel to be prepared for an anastomosis in a human patient and evert the portion of the conduit or vessel over the conduit or vessel support device when the conduit or vessel is coupled to the support device with an end portion thereof extending from the distal end of the support device.


According to another embodiment of the invention, a method of everting a graft comprises positioning a graft in a support device such that an end portion of the graft extends therefrom; introducing a generally looped shaped member into the end portion of the graft extending from said support device; and moving the looped shaped member over the support device to fold at least a portion of the end portion of the graft over the support device


The above is a brief description of some deficiencies in the prior art and advantages of the present invention. Other features, advantages, and embodiments of the invention will be apparent to those skilled in the art from the following description, accompanying drawings, wherein, for purposes of illustration only, specific forms of the invention are set forth in detail.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of an eversion tool constructed according to the principles of the present invention;



FIG. 2 is a side elevational view of the eversion tool of FIG. 1;



FIGS. 3A and 3B are top plan views of the eversion tool of FIG. 1 where FIG. 3A shows the everting member or loop adjusted to a first diameter and FIG. 3B shows the everting member or loop adjusted to a second larger diameter;



FIGS. 4A and 4B illustrate another embodiment of the eversion tool where FIG. 4A shows the everting member or loop adjusted to a first diameter and FIG. 4B shows the everting member or loop adjusted to a second larger diameter;



FIG. 5 illustrates another embodiment of the eversion tool;



FIGS. 6A-6D schematically illustrate everting a graft vessel using the eversion tool of any one of FIGS. 1-5, where FIG. 6A illustrates presenting the distal end portion of the graft vessel in a graft support device, FIG. 6B illustrates insertion of the eversion tool in the distal end portion of the graft vessel, FIG. 6C illustrates everting the distal end portion of the graft vessel, and FIG. 6D illustrates removing the eversion tool from the everted graft and graft support device;



FIGS. 7A-7D depicts another support or anastomosis device apparatus with which the eversion tool can be used, where FIG. 7A is a partial sectional view of the support device, FIG. 7B is an enlarged partial sectional view of the apparatus of FIG. 7A taken generally along line 7B-7B; FIG. 7C shows the apparatus of FIG. 7A in a radially collapsed state with the mandrel or slide retracted allowing the arms to progressively move radially inward along the distal portion thereof; and FIG. 7D shows the apparatus of FIG. 7A in a radially expanded state with the mandrel longitudinally extended toward the distal end of the apparatus urging the arms radially outward; and



FIGS. 7E-7H illustrate everting a graft vessel using the eversion tool of any one of FIGS. 1-5, where FIG. 7E illustrates presenting the distal end portion of the graft vessel in the graft support device of FIG. 7A, FIG. 7F illustrates insertion of the eversion tool in the distal end portion of the graft vessel, FIG. 7G illustrates everting the distal end portion of the graft vessel with the eversion tool, and FIG. 7H illustrates extending piercing member through the distal end portion of the graft vessel after the eversion tool has been removed.





DETAILED DESCRIPTION OF THE INVENTION

Before the present invention is described, it is to be understood that this invention is not limited to the particular embodiments or examples described herein, as such may, of course, vary. Further, when referring to the drawings, like numerals indicate like elements.


The apparatus, systems, and methods described herein can be used to connect or anastomose tubular structures or conduits together. The tubular structures can be vascular or nonvascular structures. Thus, the apparatus, systems, and methods described herein can be used in connection with coronary artery bypass grafting procedures during which a vascular conduit or graft structure, such as a vein (e.g., a saphenous vein), artery (e.g., an internal mammary artery), or an artificial conduit or graft structure, is anastomosed to an aorta, the example target structure. They also can be used in connection with the anastomosis of internal mammary arteries to coronary arteries, and saphenous veins to coronary, femoral or popliteal arteries. The apparatus, systems, and methods described herein also can be used in connection with connecting other body lumens including nonvascular lumens, which can include, but are not intended to be limited to, the bile duct, the urethra, the urinary bladder, intestines, esophagus, stomach, and bowel.


The ideal anastomotic connection can be created when the component vessels are arranged in a situation that provides intima-to-intima contact. Standard suturing techniques provide some degree of this attribute, but there are inconsistencies owing to, for example, variation in operator technique and vessel preparation. To ensure providing exposure of the graft vessel intima, the vessel can be everted (or cuffed). This involves manipulation of the vessel to turn a defined section inside-out to expose the internal lumen and intimal surface. This everted section can also be utilized to create a seal (or gasket) between the graft and the native vessel. The everted section can be used to form the interface at the anastomotic site that also provides a medium for desired tissue healing. One difficulty of vessel eversion arises when attempting to manually manipulate the tissue to create the everted section or cuff. As the tissue is semi-elastic, it has a tendency to resist manual eversion.


The invention involves graft or vessel everting apparatus, systems and methods to prepare grafts and vessels for anastomosis and assist with the anastomosis. The eversion tool or apparatus of the present invention generally comprises an everting member, which comprises a flexible or pliable member or portion. The flexible or pliable member or portion can be semi-rigid and can be generally oval or circular with a closed or nearly closed turn. In other words, the flexible or pliable member or portion can be in the form of a loop. In operation, the everting member loop is inserted into one end of a graft or vessel and then manipulated to expand the graft or vessel radially outward so that the graft or vessel can be everted or draped over a vessel holder or support device, which will be described in more detail below. The everting member loop can have variable shapes and/or diameters to accommodate variously sized vessel support devices and to facilitate ease of its removal therefrom. The eversion tool also can include a handle to support the everting member.


Referring to FIGS. 1, 2, 3A, and 3B, one embodiment of an eversion tool constructed in accordance with the principles of the present invention is shown and generally designated with reference numeral 100. Eversion tool 100 generally comprises an everting member 104, which comprises a flexible or pliable member having a portion that is in the form of a circular loop. The generally circular loop can be nearly closed or closed. It should be understood, however, the flexible and/or pliable characteristics allow the loop to be readily reshaped. One suitable material for flexible or pliable member 104 can be stainless steel wire, such as 304 series stainless steel wire, or nitinol wire. The wire typically will have a diameter ranging from about 0.002 to 0.015 inch.


In the illustrative embodiment, eversion tool 100 includes handle 102 for supporting everting member 104. As shown in the illustrative embodiments, handle 102 can be tubular. It also can have a collar at its distal end as shown in FIGS. 7E-G. The handle can be made from any suitable material such as a machined metal (e.g., stainless steel) or injection molded plastic.


In the embodiment illustrated in FIGS. 3A and 3B, everting member 104 is slidably mounted in handle 102. More specifically, the ends of a straight wire (e.g., a nitinol wire) can be brought together and inserted into the handle without platically deforming the wire. This facilitates adjustment of the size of the everting member loop extending from handle 102 by moving the ends of the wire. One can move proximally located everting member ends 104a and 104b relative to handle 102 to adjust the length of the elongated everting member portion extending from the distal end of handle 102 to adjust the loop size. In FIG. 3A, the distal ends 104a and 104b are in first position and in FIG. 3B they have been moved in a distal direction as shown with arrows to enlarge the loop diameter from a first diameter D1 to a second larger diameter D2. From the position shown in FIG. 3B, either one or both of the distal ends can be moved proximally to return the loop diameter toward or to D1 or make the loop smaller than D1.


Referring to FIGS. 4A and 4B another embodiment of the eversion tool is shown and generally designated with reference numeral 100′. Eversion tool 100′ is the same as eversion tool 100 with the exception that one portion of everting member 104 is fixedly secured to handle 102. In the example illustrated in FIGS. 4A and 4B, everting member 104b is fixedly secured to handle 102. Accordingly, one can enlarge the everting member loop diameter D1 as shown in FIG. 4A by moving or sliding everting member end 104a in a distal direction as shown with the arrow in FIG. 4B to enlarge the diameter D1 to D2. One can retract everting member end 104a to return the loop diameter toward or to D1 or reduce the loop diameter to a diameter less than D1. According to further variations, the loop can be preformed with other shapes such as oblong, oval or teardrop shapes.


Referring to FIG. 5, another embodiment of the eversion tool is shown and generally designated with reference numeral 100″. Eversion tool 100″ is the same as eversion tool 100 with the exception that two portions of everting member 104 are fixedly secured to handle 102 so that the length of the loop extending from the distal end of the handle is fixed. In the illustrative embodiment, everting member ends 104a and 104b can be fixedly secured to handle 102.


Referring to FIGS. 6A-D, operation of the eversion tool will be described in conjunction with a graft support device which is schematically shown and generally indicated with reference numeral 200. In order to assist in the understanding of the operation of the eversion tool, graft support device 200 will first be described.


Anastomosis or support device 200 is used to hold the everted graft tubular structure (e.g., graft vessel) adjacent to or in an opening formed in a target tubular structure (e.g., target vessel) to which the graft tubular structure is to be anastomosed. More specifically, the support device supports or holds the graft tubular structure in a position relative to the target tubular structure so that the graft and target tubular structure can be secured to one another with known fasteners such as sutures or surgical clips.


Anastomosis or support device 200 comprises a proximal portion and a distal portion. The distal portion has a plurality of arms (or fingers) 206 that are configured to hold the everted portion or flap “E” of a tubular graft structure “G” as shown in FIGS. 6C and 6D. Adjacent arms are configured and arranged to form spaces, such as spaces 208, suitable for receiving surgical fasteners therethrough. Support device 200 can be described as a slotted tubular member, each slot having an open distal end and a closed end. After the support device has been positioned in the desired position and fasteners passed through a desired number of the slots through graft tubular structure and the target tubular structure, the open ends allow removal of the anastomosis or support device without disrupting the fasteners.


Anastomosis device or support 200 can be made from any suitable plastic or metal. For example, the device can be made from ABS plastic material or stainless steel tubing such as 304 stainless steel tubing. The length of the device typically ranges from about 25 mm to about 125 mm depending on the application. In aortic applications, it typically ranges from about 25 mm to about 70 mm. The inner diameter of the tube typically ranges from about 1 mm to about 25 mm also depending on the application. For example, the inner diameter typically can vary from about 3 mm to about 6 mm when sized for an aortic anastomosis where the tube thickness can range from 0.1 mm to 2 mm. On the other hand, the tube inner diameter can be up to about 25 mm when sized for applications concerning the bowel. The tube can have any number of slots or openings, but typically will have 4 to 12 slots cut into its side or the number of arms selected and arranged to form 4 to 12 openings. The slots or openings typically extend a length of about 2 mm to about 25 mm and have a width of about 0.2 mm to about 5 mm. In aortic applications, the slot length typically can range from about 5 mm to about 25 mm and the slot width typically can range from about 0.2 mm to 2.5 mm. The desired number of sutures or clips to be used for a particular anastomosis can determine the number of spaces or slots that the anastomosis device should have. That is the number of openings can match the number desired fasteners. However, it should be understood that the number of openings need not necessarily match the number of fasteners.


The tube can be split down the side to facilitate its placement in and removal from the tubular graft structure. Regarding the former, the split allows the tube to be compressed and deformed to fit into small openings in the target vessel. On the other hand, the split can be expanded to assist in removing the graft from the device. The tube can comprise or be made of shape memory material or alloy so that the compressed split tube returns to a shape memory tubular shape that is approximately equal to or slightly larger the opening into which it is inserted. The tube construction can provide for some elastic deformation in the radial direction if radially compressed so that its annular dimension can be decreased to some degree, which can be desirable when introducing the device into an opening formed in a vessel where the opening is slightly smaller in diameter than the diameter of device 200 in the uncompressed state. The wall thickness can be selected (e.g., reduced) to provide such elastic deformation. Other factors that can be used to achieve this effect include, but are not limited to a slot number, slit width, and material selection as would be apparent to one of skill in the art. For example, the tubular member can comprise or be made of nitinol.


Support device 200 can be cylindrical as shown in the drawings or it can have other shapes suitable for the intended purpose. For example, it can have a rectangular or oval configuration. Other construction examples include, but are not limited to, mesh tubes, wire framed constructions, or other nonsolid wall constructions.


Referring to FIG. 6A, tubular graft structure (e.g., graft vessel) “G” is passed between adjacent fingers 206 of support device 200 and the distal end thereof positioned to extend distally from the support device lumen. Alternatively, the tubular graft structure can be presented through the proximal end of support device 200 so that it passes along the length of the support device and extends from both the distal and proximal ends thereof. Eversion tool 100 or 100′ is prepared for insertion into the distal end of the tubular graft structure. This can include bending the everting member portion that extends from handle 102 so that the plane in which the everting member loop lies forms an angle of about 90 degrees with the longitudinal axis of the handle as shown in FIG. 6A. The everting member loop is adjusted to have a diameter that allows it to be readily inserted into the end of graft G. The loop diameter can be selected to be less than the inner diameter of the end of graft G as shown in FIG. 6A. The everting member loop diameter is then enlarged to mechanically expand graft G, which in this example is semi-elastic, and increase the diameter of the graft as shown in FIG. 6B. The eversion tool is then moved so that the everting member passes over the distal end of the support device, thereby mechanically draping the expanded end of the graft over the support device distal end as shown in FIG. 6C. With the graft everted over support device 200, the eversion tool can be retracted as shown in FIG. 6D. Optionally, one can detach one end of everting member 104 from handle 102 for easier removal (FIG. 6D).


When eversion tool 100″ is used with a fixed loop length, one typically does not bend the everting member to form an angle with handle 102. In this case, the loop is inserted into the graft and pulled over the graft support device as shown in FIGS. 7E-G, which will be described in detail below.



FIGS. 7A-D illustrate a support device 700 that also can be used in conjunction with eversion tool or apparatus 100, 100′, or 100″ in accordance with the principles of the present invention. Support device 700 is described in co-pending U.S. patent application Ser. Nos. 10/340,161 and 10/340,164, both of which were filed on Jan. 10, 2003 and entitled Anastomosis Apparatus and Methods.


Anastomosis or graft support device 700 generally includes a proximal portion and a distal portion, which includes a plurality of arms 706 in which piercing members 710 can be slidably mounted. More specifically, each arm forms a pathway in which a piercing member 710 is slidably mounted. Arms 706 can be tubular members (e.g., hypotubes) each having a lumen through which a piercing member 706 can slide.


Arms 706 are biased radially inward and have outer diameters that can range from 0.5 mm to 2 mm, for example, in aortic applications. In the illustrative embodiment, anastomosis apparatus 700 includes a mandrel or slide 722 for radially expanding the piercing member carrying or support arms 706.


Each arm 706 has a proximal end secured to tubular member or arm support 720 which tapers so that the annular dimension of the arms, taken collectively, progressively decreases in the distal direction when the slide 722 is in a retracted position adjacent to arm support 720 as shown in FIG. 7A. The arms can be secured in circumferentially spaced longitudinal grooves formed in arm support 720 by gluing or other suitable means. The arms also extend along longitudinal grooves formed in mandrel or slide 722. Actuator or plunger 718 extends through the device with its end secured to mandrel or slide 722 so that when the pusher is moved forwardly, it pushes the mandrel or slide 722 distally and radially expands the arms. After a graft is everted over the distal ends of the arms as will be described below, it can be desirable to radially expand the arms when graft holder or support 700 is positioned in an opening in a target tubular structure (e.g., target vessel) to which the tubular graft structure (e.g., graft vessel) is to be anatomosed. The radial expansion of the arms can enhance or form a seal between the graft and the target tubular structure (e.g., an aorta).


Referring to FIGS. 7C and 7D, apparatus or device 700 further includes piercing members 710, which are slidably mounted in arms 706. Piercing members 710 have proximal portions 710a and distal portions 710b. Piercing members 710 extend from arms 706 proximally toward cylindrical piercing member support 721 where proximal portions 710a are secured in grooves formed in cylindrical piercing member support 721. Support 721 is slidably mounted on actuator or pusher 718 and secured to cylindrical knob or finger grip 714 by fastener or screw 716 (FIG. 7B). When knob 714 is pushed forwardly in a distal direction, the piercing members are extended as shown in FIGS. 7C and 7D. Moving the knob 714 proximally retracts the piercing members as shown in FIG. 7A. Housing or tubular body 712 can have a longitudinal slot 717 through which screw 716 can slide so that knob 714 can move independently from housing 712.


The radius of curvature of the memory shaped distal portions 710b of the piercing members can vary. For example, a larger radius of curvature may be desired if the user wants to insert part of the device into the opening in the target structure or vessel to which the graft is to be anastomosed. On the other hand, a smaller radius of curvature may be desired if the user wants to tack the device down around the opening in the target structure or vessel, thereby seating the device on the outer wall and covering the opening with the graft.


Distal portions 710b have the desired memory shape to pierce the graft and vessel to which the graft is to be anastomosed when the piercing members are advanced. In the illustrative embodiment, the piercing members comprise shape memory material so that the distal portions 710b can be provided with a hook configured memory shape, which is one suitable shape for holding the graft and vessel together during the anastomosis. Thus, the piercing members can be made of nitinol wire and the distal portions provided with the desired memory shape as is known in the art so that they return to their memory shape when in an unbiased state (e.g., extended from arms 706). In other words, the shape memory alloy distal portions exhibit pseudoelastic (superelastic) behavior.


Referring to FIGS. 7E-G, eversion of a graft over the distal end portion of support member or apparatus 700 using any one of the eversion tools 100, 100′, or 100″ will be described. Graft structure (e.g., graft vessel) G is positioned in the graft support device or apparatus 700 with the distal end of graft structure G extending from the distal end of the support device as shown in FIG. 7E. The everting member loop of eversion tool 100 is introduced through the distal end of the graft structure and inserted into the graft lumen shown in FIG. 7F. The diameter of the everting member or loop can be increased as described above in connection with embodiments 100 and 100′ to expand or increase the diameter of the graft vessel to make it easier to evert the distal end portion of the graft structure over the distal end of the graft holding device. The everting member loop is then turned or oriented so that it can pass over the distal end portion of the support member and moved to pass over the support member distal end portion or arms 706, thereby everting graft structure G over the support member distal end portion and forming everted portion E with the intimal surface of the graft lumen exposed and facing radially outward. In this manner the graft is prepared for an anastomosis where an intima-to-intima connection can be readily achieved. The support device can be positioned in an opening formed in the target tubular structure and the piercing members extended as shown in FIG. 7H to hold the graft and target tubular structures together, while fasteners are used to secure the graft and target structures together.


More specifically, after the surgeon cuts a hole or opening in the target tubular structure or vessel (e.g., the aorta) using a scalpel and an aorta cutting device or punch, the surgeon covers the hole with either a finger or other suitable tool. The distal portion of the support device and the portion of the graft everted thereover are positioned in the vessel opening. The distal portions of the piercing members are extended and the mandrel is moved distally to expand the arms and everted graft against the tissue surrounding the opening so as to form a seal therewith. In other words, the arms can be expanded to urge the everted graft against the tissue surrounding the target vessel opening to seal the connection between the graft and target vessel. After the fasteners have been placed to connect the graft and target tubular structures, the piercing members are retracted and anastomosis device 700 pulled off of the graft and target structures. Additional fasteners or clips can be placed at the connection, if any blood appears to be seeping out from the graft and target vessel.


Any fastener can be used to secure the tubular graft and target structures together. Examples of suitable fasteners include conventional sutures and surgical clips such as the surgical clips disclosed in U.S. Pat. No. 5,972,024 to Northrup, et al., U.S. Pat. No. 6,607,541 to Gardiner, et al., U.S. Pat. No. 6,514,265 to Ho, et al., U.S. Patent Publication No. 2002-0010490 of U.S. patent application Ser. No. 09/260,623 filed Mar. 1, 1999 and entitled Tissue Connector Methods and Apparatus and U.S. patent application Ser. No. 09/090,305 filed Jun. 3, 1998 and entitled Tissue Connector Apparatus and Methods.


Variations and modifications of the devices and methods disclosed herein will be readily apparent to persons skilled in the art. As such, it should be understood that the foregoing detailed description and the accompanying illustrations, are made for purposes of clarity and understanding, and are not intended to limit the scope of the invention, which is defined by the claims appended hereto.

Claims
  • 1. A method of everting a graft comprising: i) receiving a surgical eversion apparatus including a loop defined in a single plane the loop extending from a distal end of a handle wherein a longitudinal axis of the handle lies entirely in the single plane;ii) positioning a graft in a support device such that an end portion of the graft extends therefrom;iii) introducing the loop of the surgical eversion apparatus into the end portion of the graft extending from the support device, wherein the single plane has a first angular relationship relative to an axis of the end portion upon being introduced into the end portion;iv) changing an orientation of the loop relative to the graft while the loop is within the end portion such that the single plane has a second angular relationship relative to the axis of the end portion, the second angular relationship being more perpendicular than the first angular relationship; andv) moving the loop over and around the support device such that the loop surrounds the support device to fold at least a portion of the end portion of the graft over the support device;wherein a length of a perimeter of the loop is fixed throughout steps i-v.
  • 2. The method of claim 1 wherein the graft comprises a tubular vascular graft.
  • 3. The method of claim 1, wherein the first angular relationship is more parallel than the second angular relationship.
  • 4. The method of claim 1, wherein changing an orientation of the loop includes pivoting the handle relative to the end portion.
  • 5. The method of claim 1, wherein the loop is formed by a generally looped shaped member extending from the handle and terminating at opposing, first and second ends, the method further including: detaching one of the first and second ends from the handle following the step of moving the loop over and around the support device.
  • 6. The method of claim 1, wherein the loop comprises a wire, the wire extending continuously from the distal end to form the loop immediately adjacent the distal end.
  • 7. The method of claim 1, wherein the loop defines an oval shape.
CROSS REFERENCE TO RELATED APPLICATION

This application is a divisional of U.S. patent application Ser. No. 10/646,254, filed Aug. 22, 2003, and now abandoned.

US Referenced Citations (560)
Number Name Date Kind
43098 Cooper Jun 1864 A
636728 Kindel Nov 1899 A
655190 Bramson Aug 1900 A
1087186 Scholfield Feb 1914 A
1167014 O'Brien Jan 1916 A
1539221 John May 1925 A
1583271 Biro May 1926 A
1625602 Gould et al. Apr 1927 A
1867624 Hoffman Jul 1932 A
2201610 Dawson May 1940 A
2240330 Flagg et al. Apr 1941 A
2256382 Dole Sep 1941 A
2264679 Ravel Dec 1941 A
2413142 Jones et al. Dec 1946 A
2430293 Howells Nov 1947 A
2505358 Gusberg et al. Apr 1950 A
2516710 Mascolo Jul 1950 A
2715486 Marcoff-Moghadam Aug 1955 A
2890519 Storz, Jr. Jun 1959 A
2940452 Smialowski Jun 1960 A
3055689 Jorgensen Sep 1962 A
3057355 Smialowski Oct 1962 A
3082426 Miles Mar 1963 A
3143742 Cromie Aug 1964 A
3150379 Brown Sep 1964 A
3180337 Smialowski Apr 1965 A
3249104 Hohnstein May 1966 A
3274658 Pile Sep 1966 A
3452742 Muller Jul 1969 A
3506012 Brown Apr 1970 A
3509882 Blake May 1970 A
3547103 Cook Dec 1970 A
3570497 Lemole Mar 1971 A
3608095 Barry Sep 1971 A
3638654 Akuba Feb 1972 A
3656185 Carpentier Apr 1972 A
RE27391 Merser Jun 1972 E
3674304 Swanson Jul 1972 A
3753438 Wood et al. Aug 1973 A
3776237 Hill et al. Dec 1973 A
3802438 Wolvek Apr 1974 A
3825009 Williams Jul 1974 A
3837345 Matar Sep 1974 A
3874388 King et al. Apr 1975 A
3875648 Bone Apr 1975 A
3905403 Smith et al. Sep 1975 A
3908662 Razgulov et al. Sep 1975 A
3910281 Kletschka et al. Oct 1975 A
3958576 Komiya May 1976 A
3976079 Samuels Aug 1976 A
3995619 Glatzer Dec 1976 A
4006747 Kronenthal et al. Feb 1977 A
4018228 Goosen Apr 1977 A
4038725 Keefe Aug 1977 A
4042979 Angell Aug 1977 A
4073179 Hickey et al. Feb 1978 A
4103690 Harris Aug 1978 A
4111206 Vishnevsky et al. Sep 1978 A
4129059 Van Eck Dec 1978 A
4140125 Smith Feb 1979 A
4170990 Baumgart et al. Oct 1979 A
4185636 Gabbay et al. Jan 1980 A
4192315 Hilzinger et al. Mar 1980 A
4214587 Sakura, Jr. Jul 1980 A
4217902 March Aug 1980 A
4222594 Skinner Sep 1980 A
4243048 Griffin Jan 1981 A
4324248 Perlin Apr 1982 A
4345601 Fukuda Aug 1982 A
4352358 Angelchik Oct 1982 A
4366819 Kaster Jan 1983 A
4396139 Hall et al. Aug 1983 A
4416266 Baucom Nov 1983 A
4456017 Miles Jun 1984 A
4465071 Samuels et al. Aug 1984 A
4470415 Wozniak Sep 1984 A
4470533 Schuler Sep 1984 A
4474181 Schenck Oct 1984 A
4485816 Krumme Dec 1984 A
4492229 Grunwald Jan 1985 A
4522207 Klieman et al. Jun 1985 A
4523592 Daniel Jun 1985 A
4532927 Miksza Aug 1985 A
4535764 Ebert Aug 1985 A
4549545 Levy Oct 1985 A
4553542 Schenck et al. Nov 1985 A
4576605 Kaidash et al. Mar 1986 A
4586502 Bedi et al. May 1986 A
4586503 Kirsch et al. May 1986 A
4593693 Schenck Jun 1986 A
4595007 Mericle Jun 1986 A
4612932 Caspar et al. Sep 1986 A
4622970 Wozniak Nov 1986 A
4624255 Schenck et al. Nov 1986 A
4637380 Orejola Jan 1987 A
4641652 Hutterer et al. Feb 1987 A
4665906 Jervis May 1987 A
4665917 Clanton et al. May 1987 A
4683895 Pohndorf Aug 1987 A
4706362 Strausburg Nov 1987 A
4719917 Barrows et al. Jan 1988 A
4719924 Crittenden et al. Jan 1988 A
4730615 Sutherland et al. Mar 1988 A
4732151 Jones Mar 1988 A
4809695 Gwathmey et al. Mar 1989 A
4820298 Leveen et al. Apr 1989 A
4844318 Kunreuther Jul 1989 A
4873975 Walsh et al. Oct 1989 A
4890615 Caspari et al. Jan 1990 A
4896668 Popoff et al. Jan 1990 A
4899744 Fujitsuka et al. Feb 1990 A
4901721 Hakki Feb 1990 A
4923461 Caspari et al. May 1990 A
4924866 Yoon May 1990 A
4926860 Stice et al. May 1990 A
4929240 Kirsch et al. May 1990 A
4930674 Barak Jun 1990 A
4932955 Merz et al. Jun 1990 A
4935027 Yoon Jun 1990 A
4950015 Nejib et al. Aug 1990 A
4950283 Dzubow et al. Aug 1990 A
4950285 Wilk Aug 1990 A
4957498 Caspari et al. Sep 1990 A
4983176 Cushman et al. Jan 1991 A
4990152 Yoon Feb 1991 A
4991567 McCuen et al. Feb 1991 A
4994069 Ritchart et al. Feb 1991 A
4997439 Chen Mar 1991 A
5002550 Li Mar 1991 A
5002562 Oberlander Mar 1991 A
5002563 Pyka et al. Mar 1991 A
5007920 Torre Apr 1991 A
5011481 Myers et al. Apr 1991 A
5020713 Kunreuther Jun 1991 A
5026379 Yoon Jun 1991 A
5032127 Frazee et al. Jul 1991 A
5035692 Lyon et al. Jul 1991 A
5035702 Taheri Jul 1991 A
5042707 Taheri Aug 1991 A
5047047 Yoon Sep 1991 A
5053047 Yoon Oct 1991 A
5064431 Gilbertson et al. Nov 1991 A
5074874 Yoon et al. Dec 1991 A
5088692 Weiler Feb 1992 A
5100418 Yoon Mar 1992 A
5100421 Christoudias Mar 1992 A
5104407 Lam et al. Apr 1992 A
5119983 Green et al. Jun 1992 A
5123913 Wilk et al. Jun 1992 A
5127413 Ebert Jul 1992 A
5129913 Ruppert Jul 1992 A
5152769 Baber Oct 1992 A
5154189 Oberlander Oct 1992 A
5158566 Pianetti Oct 1992 A
5163942 Rydell Nov 1992 A
5171250 Yoon Dec 1992 A
5171252 Friedland Dec 1992 A
5174087 Bruno Dec 1992 A
5178634 Ramos Martinez Jan 1993 A
5192294 Blake Mar 1993 A
5196022 Bilweis Mar 1993 A
5201880 Wright et al. Apr 1993 A
5207694 Broome May 1993 A
5217027 Hermens Jun 1993 A
5219358 Bendel et al. Jun 1993 A
5221259 Weldon et al. Jun 1993 A
5222961 Nakao et al. Jun 1993 A
5222976 Yoon Jun 1993 A
5234447 Kaster et al. Aug 1993 A
5236440 Hlavacek Aug 1993 A
5242456 Nash et al. Sep 1993 A
5242457 Akopov et al. Sep 1993 A
5246443 Mai Sep 1993 A
5250053 Snyder Oct 1993 A
5258011 Drews Nov 1993 A
5261917 Hasson et al. Nov 1993 A
5269783 Sander Dec 1993 A
5269809 Hayhurst et al. Dec 1993 A
5282825 Muck et al. Feb 1994 A
5290289 Sanders et al. Mar 1994 A
5304117 Wilk Apr 1994 A
5304204 Bregen Apr 1994 A
5306296 Wright et al. Apr 1994 A
5312436 Coffey et al. May 1994 A
5314468 Ramos Martinez May 1994 A
5330503 Yoon Jul 1994 A
5334196 Scott et al. Aug 1994 A
5336233 Chen Aug 1994 A
5336239 Gimpelson Aug 1994 A
5346459 Allen Sep 1994 A
5350420 Cosgrove et al. Sep 1994 A
5353804 Kornberg et al. Oct 1994 A
5355897 Pietrafitta et al. Oct 1994 A
5356424 Buzerak et al. Oct 1994 A
5364406 Sewell Nov 1994 A
5366459 Yoon Nov 1994 A
5366462 Kaster et al. Nov 1994 A
5366479 McGarry et al. Nov 1994 A
5374268 Sander Dec 1994 A
5376096 Foster Dec 1994 A
5382259 Phelps et al. Jan 1995 A
5383904 Totakura et al. Jan 1995 A
5387227 Grice Feb 1995 A
5403331 Chesterfield Apr 1995 A
5403333 Kaster et al. Apr 1995 A
5403338 Milo Apr 1995 A
5403346 Loeser Apr 1995 A
5413584 Schulze May 1995 A
5417684 Jackson et al. May 1995 A
5417700 Egan May 1995 A
5423821 Pasque Jun 1995 A
5431666 Sauer et al. Jul 1995 A
5437680 Yoon Aug 1995 A
5437681 Meade et al. Aug 1995 A
5437685 Blasnik Aug 1995 A
5439479 Shichman et al. Aug 1995 A
5445167 Yoon et al. Aug 1995 A
5445644 Pietrafitta et al. Aug 1995 A
5450860 O'Connor Sep 1995 A
5451231 Rabenau et al. Sep 1995 A
5452733 Sterman et al. Sep 1995 A
5454834 Boebel et al. Oct 1995 A
5456246 Schmiedling et al. Oct 1995 A
5462561 Voda Oct 1995 A
5474557 Mai Dec 1995 A
5480405 Yoon Jan 1996 A
5486187 Schenck Jan 1996 A
5486197 Le et al. Jan 1996 A
5488958 Topel et al. Feb 1996 A
5496334 Klundt et al. Mar 1996 A
5499990 Schulken et al. Mar 1996 A
5500000 Feagin et al. Mar 1996 A
5519937 Soriano et al. May 1996 A
5522884 Wright Jun 1996 A
5527342 Pietrzak et al. Jun 1996 A
5533236 Tseng Jul 1996 A
5538509 Dunlap et al. Jul 1996 A
5545214 Stevens Aug 1996 A
5549619 Peters et al. Aug 1996 A
5556411 Taoda et al. Sep 1996 A
5562685 Mollenauer et al. Oct 1996 A
5569205 Hart et al. Oct 1996 A
5569274 Rapacki et al. Oct 1996 A
5569301 Granger et al. Oct 1996 A
5571119 Atala Nov 1996 A
5571175 Vanney et al. Nov 1996 A
5582616 Bolduc et al. Dec 1996 A
5582619 Ken Dec 1996 A
5584879 Reimold et al. Dec 1996 A
5586983 Sanders et al. Dec 1996 A
5591179 Edelstein Jan 1997 A
5593414 Shipp et al. Jan 1997 A
5593424 Northrup III Jan 1997 A
5597378 Jervis Jan 1997 A
5601571 Moss Feb 1997 A
5601572 Middleman et al. Feb 1997 A
5601600 Ton Feb 1997 A
5603718 Xu Feb 1997 A
5609608 Bennett et al. Mar 1997 A
5628757 Hasson May 1997 A
5630540 Blewett May 1997 A
5632752 Buelna May 1997 A
5632753 Loeser May 1997 A
5643295 Yoon Jul 1997 A
5643305 Al-Tameem Jul 1997 A
5645568 Chervitz et al. Jul 1997 A
5653716 Malo et al. Aug 1997 A
5653718 Yoon Aug 1997 A
5658312 Green et al. Aug 1997 A
5660186 Bachir Aug 1997 A
5665109 Yoon Sep 1997 A
5669918 Balazs et al. Sep 1997 A
5676670 Kim Oct 1997 A
5683417 Cooper Nov 1997 A
5690662 Chiu et al. Nov 1997 A
5695504 Gifford, III et al. Dec 1997 A
5695505 Yoon Dec 1997 A
5697913 Sierocuk et al. Dec 1997 A
5697943 Sauer et al. Dec 1997 A
5700270 Peyser et al. Dec 1997 A
5700271 Whitfield et al. Dec 1997 A
5702412 Popov et al. Dec 1997 A
5707362 Yoon Jan 1998 A
5707380 Hinchliffe Jan 1998 A
5709693 Taylor Jan 1998 A
5709695 Northrup, III Jan 1998 A
5715987 Kelley et al. Feb 1998 A
5720755 Dakov Feb 1998 A
5725539 Matern Mar 1998 A
5725542 Yoon Mar 1998 A
5728135 Bregen et al. Mar 1998 A
5732872 Bolduc et al. Mar 1998 A
5735290 Sterman et al. Apr 1998 A
5746753 Sullivan et al. May 1998 A
5755778 Kleshinski May 1998 A
5762646 Cotter Jun 1998 A
5766189 Matsumo Jun 1998 A
5769870 Salahich et al. Jun 1998 A
5779718 Green et al. Jul 1998 A
5782397 Koukline Jul 1998 A
5782844 Yoon et al. Jul 1998 A
5797920 Kim Aug 1998 A
5797933 Snow et al. Aug 1998 A
5797934 Rygaard Aug 1998 A
5797960 Stevens et al. Aug 1998 A
5799661 Boyd et al. Sep 1998 A
5799857 Robertson et al. Sep 1998 A
5810848 Hayhurst Sep 1998 A
5810851 Yoon Sep 1998 A
5810853 Yoon Sep 1998 A
5810882 Bolduc et al. Sep 1998 A
5817113 Gifford, III et al. Oct 1998 A
5820631 Nobles Oct 1998 A
5824002 Gentelia et al. Oct 1998 A
5824008 Bolduc et al. Oct 1998 A
5827265 Glinsky et al. Oct 1998 A
5827316 Young et al. Oct 1998 A
5830221 Stein et al. Nov 1998 A
5830222 Makower Nov 1998 A
5833698 Hinchliffe Nov 1998 A
5849019 Yoon Dec 1998 A
5851216 Allen Dec 1998 A
5855614 Stevens et al. Jan 1999 A
5868702 Stevens et al. Feb 1999 A
5868763 Spence et al. Feb 1999 A
5871528 Camps et al. Feb 1999 A
5879371 Gardiner et al. Mar 1999 A
5881943 Heck et al. Mar 1999 A
5882340 Yoon Mar 1999 A
5891130 Palermo et al. Apr 1999 A
5891160 Williamson, IV et al. Apr 1999 A
5893369 LeMole Apr 1999 A
5893865 Swindle et al. Apr 1999 A
5893886 Zegdi et al. Apr 1999 A
5895394 Kienzle et al. Apr 1999 A
5904697 Gifford, III et al. May 1999 A
5908428 Scirica et al. Jun 1999 A
5911352 Racenet et al. Jun 1999 A
5919207 Taheri Jul 1999 A
5931842 Goldsteen et al. Aug 1999 A
5941434 Green Aug 1999 A
5941442 Geiste et al. Aug 1999 A
5941888 Wallace et al. Aug 1999 A
5941908 Goldsteen et al. Aug 1999 A
5944730 Nobles et al. Aug 1999 A
5951576 Wakabayashi Sep 1999 A
5951600 Lemelson Sep 1999 A
5954735 Rygaard Sep 1999 A
5957363 Heck Sep 1999 A
5957938 Zhu et al. Sep 1999 A
5957940 Tanner et al. Sep 1999 A
5961481 Sterman et al. Oct 1999 A
5961539 Northrup, III et al. Oct 1999 A
5964772 Bolduc et al. Oct 1999 A
5964782 Lafontaine et al. Oct 1999 A
5972024 Northrup, III et al. Oct 1999 A
5976159 Bolduc et al. Nov 1999 A
5976161 Kirsch et al. Nov 1999 A
5976164 Bencini et al. Nov 1999 A
5976178 Goldsteen et al. Nov 1999 A
5984917 Fleischman et al. Nov 1999 A
5984959 Robertson et al. Nov 1999 A
5989242 Saadat et al. Nov 1999 A
5989268 Pugsley, Jr. et al. Nov 1999 A
5989276 Houser et al. Nov 1999 A
5989278 Mueller Nov 1999 A
5993468 Rygaard Nov 1999 A
5997556 Tanner Dec 1999 A
6001110 Adams Dec 1999 A
6007544 Kim Dec 1999 A
6010531 Donlon et al. Jan 2000 A
6013084 Ken et al. Jan 2000 A
6022367 Sherts Feb 2000 A
6024748 Manzo et al. Feb 2000 A
6032849 Mastri et al. Mar 2000 A
6033419 Hamblin, Jr. et al. Mar 2000 A
6036699 Andreas et al. Mar 2000 A
6036703 Evans et al. Mar 2000 A
6036710 McGarry et al. Mar 2000 A
6042607 Williamson et al. Mar 2000 A
6056751 Fenton May 2000 A
6063070 Eder May 2000 A
6066148 Rygaard May 2000 A
6074401 Gardiner et al. Jun 2000 A
6074418 Buchanan et al. Jun 2000 A
6077291 Das Jun 2000 A
6080114 Russin Jun 2000 A
6083237 Huitema et al. Jul 2000 A
6106538 Shiber Aug 2000 A
6110188 Narciso Aug 2000 A
6113611 Allen et al. Sep 2000 A
6113612 Swanson et al. Sep 2000 A
6120524 Taheri Sep 2000 A
6132438 Fleischman et al. Oct 2000 A
6139540 Rost et al. Oct 2000 A
6143004 Davis et al. Nov 2000 A
6149658 Gardiner et al. Nov 2000 A
6152935 Kammerer et al. Nov 2000 A
6152937 Peterson et al. Nov 2000 A
6159165 Ferrera et al. Dec 2000 A
6159225 Makower Dec 2000 A
6165183 Kuehn et al. Dec 2000 A
6165185 Shennib et al. Dec 2000 A
6171320 Monassevitch Jan 2001 B1
6171321 Gifford, III et al. Jan 2001 B1
6176413 Heck et al. Jan 2001 B1
6176864 Chapman Jan 2001 B1
6179840 Bowman Jan 2001 B1
6179848 Solem Jan 2001 B1
6179849 Yencho et al. Jan 2001 B1
6183512 Howanec et al. Feb 2001 B1
6190373 Palermo et al. Feb 2001 B1
6193733 Adams Feb 2001 B1
6193734 Bolduc et al. Feb 2001 B1
6197037 Hair Mar 2001 B1
6217611 Klostermeyer Apr 2001 B1
6221083 Mayer Apr 2001 B1
6241738 Dereume Jun 2001 B1
6241741 Duhaylongsod et al. Jun 2001 B1
6248117 Blatter Jun 2001 B1
6250308 Cox Jun 2001 B1
6254615 Bolduc et al. Jul 2001 B1
6269819 Oz et al. Aug 2001 B1
6280460 Bolduc et al. Aug 2001 B1
6283979 Mers Kelly et al. Sep 2001 B1
6283993 Cosgrove et al. Sep 2001 B1
6296622 Kurz et al. Oct 2001 B1
6296656 Bolduc et al. Oct 2001 B1
6306141 Jervis Oct 2001 B1
6332893 Mortier et al. Dec 2001 B1
6346074 Roth Feb 2002 B1
6346112 Adams Feb 2002 B2
6350269 Shipp et al. Feb 2002 B1
6352543 Cole Mar 2002 B1
6358258 Arcia et al. Mar 2002 B1
6361559 Houser et al. Mar 2002 B1
6368348 Gabbay Apr 2002 B1
6371964 Vargas et al. Apr 2002 B1
6387105 Gifford, III et al. May 2002 B1
6391038 Vargas et al. May 2002 B2
6402764 Hendricksen Jun 2002 B1
6406492 Lytle Jun 2002 B1
6406493 Tu et al. Jun 2002 B1
6409739 Nobles et al. Jun 2002 B1
6409758 Stobie et al. Jun 2002 B2
6416527 Berg et al. Jul 2002 B1
6418597 Deschenes et al. Jul 2002 B1
6419658 Restelli et al. Jul 2002 B1
6419681 Vargas et al. Jul 2002 B1
6419695 Gabbay Jul 2002 B1
6425900 Knodel et al. Jul 2002 B1
6428550 Vargas et al. Aug 2002 B1
6428555 Koster, Jr. Aug 2002 B1
6451048 Berg et al. Sep 2002 B1
6461320 Yencho et al. Oct 2002 B1
6475222 Berg et al. Nov 2002 B1
6478804 Vargas et al. Nov 2002 B2
6485496 Suyker et al. Nov 2002 B1
6491707 Makower et al. Dec 2002 B2
6497671 Ferrera et al. Dec 2002 B2
6497710 Yencho et al. Dec 2002 B2
6514265 Ho et al. Feb 2003 B2
6517558 Gittings et al. Feb 2003 B2
6524338 Gundry Feb 2003 B1
6533812 Swanson et al. Mar 2003 B2
6537288 Vargas et al. Mar 2003 B2
6547799 Hess et al. Apr 2003 B2
6551332 Nguyen et al. Apr 2003 B1
6562053 Schulze et al. May 2003 B2
6575985 Knight et al. Jun 2003 B2
6589255 Schulze et al. Jul 2003 B2
6607541 Gardiner et al. Aug 2003 B1
6607542 Wild Aug 2003 B1
6613059 Schaller et al. Sep 2003 B2
6629988 Weadock Oct 2003 B2
6635214 Rapacki et al. Oct 2003 B2
6641593 Schaller et al. Nov 2003 B1
6648900 Fleischman et al. Nov 2003 B2
6651670 Rapacki et al. Nov 2003 B2
6651672 Roth Nov 2003 B2
6652540 Cole et al. Nov 2003 B1
6652541 Vargas et al. Nov 2003 B1
6660015 Berg et al. Dec 2003 B1
6682540 Sancoff et al. Jan 2004 B1
6695859 Golden et al. Feb 2004 B1
6702826 Liddicoat et al. Mar 2004 B2
6709442 Miller et al. Mar 2004 B2
6712829 Schulze Mar 2004 B2
6719768 Cole et al. Apr 2004 B1
6743243 Roy et al. Jun 2004 B1
6749622 McGuckin et al. Jun 2004 B2
6776782 Schulze Aug 2004 B2
6776784 Ginn Aug 2004 B2
6776785 Yencho et al. Aug 2004 B1
6802847 Carson et al. Oct 2004 B1
6821286 Carranza et al. Nov 2004 B1
6869444 Gabbay Mar 2005 B2
6913607 Ainsworth et al. Jul 2005 B2
6918917 Nguyen et al. Jul 2005 B1
6921407 Nguyen et al. Jul 2005 B2
6926730 Nguyen et al. Aug 2005 B1
6945980 Nguyen et al. Sep 2005 B2
6955679 Hendricksen et al. Oct 2005 B1
6960221 Ho et al. Nov 2005 B2
6979337 Kato Dec 2005 B2
6979338 Loshakove et al. Dec 2005 B1
7022131 Derowe et al. Apr 2006 B1
7056330 Gayton Jun 2006 B2
7063711 Loshakove et al. Jun 2006 B1
7070618 Streeter Jul 2006 B2
7182769 Ainsworth et al. Feb 2007 B2
7220268 Blatter May 2007 B2
20010018592 Schaller et al. Aug 2001 A1
20010018593 Nguyen et al. Aug 2001 A1
20010018611 Solem et al. Aug 2001 A1
20010021856 Bolduc et al. Sep 2001 A1
20010047181 Ho et al. Nov 2001 A1
20020010490 Schaller et al. Jan 2002 A1
20020042623 Blatter et al. Apr 2002 A1
20020065527 Kato May 2002 A1
20020082614 Logan et al. Jun 2002 A1
20020099395 Acampora et al. Jul 2002 A1
20020151916 Muramatsu et al. Oct 2002 A1
20020165561 Ainsworth et al. Nov 2002 A1
20020173803 Yang et al. Nov 2002 A1
20030074012 Nguyen et al. Apr 2003 A1
20030078603 Schaller et al. Apr 2003 A1
20030083742 Spence et al. May 2003 A1
20030093118 Ho et al. May 2003 A1
20030125755 Schaller et al. Jul 2003 A1
20030191481 Nguyen et al. Oct 2003 A1
20030195531 Nguyen et al. Oct 2003 A1
20030199974 Lee et al. Oct 2003 A1
20040050393 Golden et al. Mar 2004 A1
20040068276 Golden et al. Apr 2004 A1
20040102797 Golden et al. May 2004 A1
20040111099 Nguyen et al. Jun 2004 A1
20040138685 Clague et al. Jul 2004 A1
20040176663 Edoga Sep 2004 A1
20040193259 Gabbay Sep 2004 A1
20050004582 Edoga Jan 2005 A1
20050021054 Ainsworth et al. Jan 2005 A1
20050043749 Breton et al. Feb 2005 A1
20050065601 Lee et al. Mar 2005 A1
20050070924 Schaller et al. Mar 2005 A1
20050075659 Realyvasquez et al. Apr 2005 A1
20050075667 Schaller et al. Apr 2005 A1
20050080454 Drews et al. Apr 2005 A1
20050101975 Nguyen et al. May 2005 A1
20050107871 Realyvasquez et al. May 2005 A1
20050131429 Ho et al. Jun 2005 A1
20050267572 Schoon et al. Dec 2005 A1
20060004389 Nguyen et al. Jan 2006 A1
20060253143 Edoga Nov 2006 A1
20060271081 Realyvasquez Nov 2006 A1
20060293701 Ainsworth et al. Dec 2006 A1
20070010835 Breton et al. Jan 2007 A1
20070027461 Gardiner et al. Feb 2007 A1
20070106313 Golden et al. May 2007 A1
20070142848 Ainsworth et al. Jun 2007 A1
Foreign Referenced Citations (106)
Number Date Country
0219999 Mar 1910 DE
0377052 Jun 1923 DE
2703529 Jan 1977 DE
3203410 May 1981 DE
3227984 Feb 1984 DE
3504202 Aug 1985 DE
4133800 Oct 1991 DE
4402058 Apr 1995 DE
19547617 Sep 1997 DE
19732234 Jan 1999 DE
0072232 Feb 1983 EP
0122046 Mar 1983 EP
0129441 Dec 1984 EP
0130037 Jan 1985 EP
0140557 May 1985 EP
0121362 Sep 1987 EP
0409569 Jan 1991 EP
0432692 Jun 1991 EP
0478949 Aug 1991 EP
0494636 Jul 1992 EP
0537955 Apr 1993 EP
0559429 Sep 1993 EP
0598529 May 1994 EP
0326426 Dec 1994 EP
0419597 Dec 1994 EP
0632999 Jan 1995 EP
0641546 Mar 1995 EP
0656191 Jun 1995 EP
0687446 Dec 1995 EP
0705568 Apr 1996 EP
0711532 May 1996 EP
0705569 Oct 1996 EP
0734697 Oct 1996 EP
0778005 Jun 1997 EP
0815795 Jan 1998 EP
2223410 Apr 1990 GB
07308322 Nov 1995 JP
08336544 Dec 1996 JP
10337291 Dec 1998 JP
2110222 May 1998 RU
577022 Oct 1977 SU
1186199 Oct 1985 SU
1456109 Feb 1989 SU
1560133 Apr 1990 SU
9006725 Jun 1990 WO
9009149 Aug 1990 WO
9014795 Dec 1990 WO
9107916 Jun 1991 WO
9108708 Jun 1991 WO
9117712 Nov 1991 WO
9205828 Apr 1992 WO
9212676 Aug 1992 WO
9222041 Dec 1992 WO
9301750 Feb 1993 WO
9415535 Jul 1994 WO
9415537 Jul 1994 WO
9600035 Jan 1996 WO
9606565 Mar 1996 WO
9638090 Dec 1996 WO
9712555 Apr 1997 WO
9716122 May 1997 WO
9727898 Aug 1997 WO
9728744 Aug 1997 WO
9731575 Sep 1997 WO
9732526 Sep 1997 WO
9740754 Nov 1997 WO
9742881 Nov 1997 WO
9819636 May 1998 WO
9830153 Jul 1998 WO
9842262 Oct 1998 WO
9848707 Nov 1998 WO
9852475 Nov 1998 WO
9907294 Feb 1999 WO
9912484 Mar 1999 WO
9915088 Apr 1999 WO
9937218 Jul 1999 WO
9962406 Dec 1999 WO
9962408 Dec 1999 WO
9962409 Dec 1999 WO
9962415 Dec 1999 WO
9963910 Dec 1999 WO
9965409 Dec 1999 WO
0003759 Jan 2000 WO
0015144 Mar 2000 WO
0059380 Oct 2000 WO
0060995 Oct 2000 WO
0064381 Nov 2000 WO
0074603 Dec 2000 WO
0119292 Mar 2001 WO
0126557 Apr 2001 WO
0126586 Apr 2001 WO
0128432 Apr 2001 WO
0154618 Aug 2001 WO
0174254 Oct 2001 WO
0213701 Feb 2002 WO
0213702 Feb 2002 WO
0230295 Apr 2002 WO
0230298 Apr 2002 WO
0234143 May 2002 WO
02080779 Oct 2002 WO
02080780 Oct 2002 WO
02087425 Nov 2002 WO
03053289 Jul 2003 WO
03088875 Oct 2003 WO
2005011468 Feb 2005 WO
2005058170 Jun 2005 WO
Related Publications (1)
Number Date Country
20070010835 A1 Jan 2007 US
Divisions (1)
Number Date Country
Parent 10646254 Aug 2003 US
Child 11521152 US