Evolution of antiviral resistance mutations and their biological and biophysical implications

Information

  • Research Project
  • 10242909
  • ApplicationId
    10242909
  • Core Project Number
    U54AI150472
  • Full Project Number
    5U54AI150472-11
  • Serial Number
    150472
  • FOA Number
    RFA-GM-17-003
  • Sub Project Id
    7331
  • Project Start Date
    9/1/2012 - 11 years ago
  • Project End Date
    9/2/2020 - 3 years ago
  • Program Officer Name
  • Budget Start Date
    9/1/2021 - 2 years ago
  • Budget End Date
    8/31/2022 - a year ago
  • Fiscal Year
    2021
  • Support Year
    11
  • Suffix
  • Award Notice Date
    9/13/2021 - 2 years ago

Evolution of antiviral resistance mutations and their biological and biophysical implications

ABSTRACT HIV-1 under antiretroviral treatment selects for genetically-linked mutations that are correlated due to constraints on protein structural stability and function, which contribute to fitness. Project 5 studies are concerned with analyzing pairs (or higher-order) patterns of antiretroviral resistance mutations and their combined biophysical, biochemical, and structural effects on drug-resistance and viral fitness. During the past funding period, new statistical methods were developed to identify correlative mutational patterns present in genetically unlinked Gag and protease deep sequencing data. Potts Hamiltonian probabilistic models were constructed from protease sequence alignments to identify mutational patterns that lead to drug-resistance. To extend the past findings, it is proposed to identify genetically-linked patterns of antiretroviral resistance mutations from full-length, individual viruses from clade B or non-clade B HIV-infected patients during antiretroviral treatment. To investigate structural constraints in HIV proteins that influence selection of resistance mutations, Potts models of protein sequence covariation will be developed utilizing sequence and structural data. The combination of a novel full-length sequencing approach and virology expertise by Torbett will be complemented by bioinformatics and modeling expertise of Levy to serve the following specific aims: 1) Identify genetically-linked drug-resistance mutations (pairs or higher order) from HIV in longitudinal patient samples utilizing Multi-read Barcode-Assisted Single Molecule Sequencing (MrBASMS). Covariant mutations will be functionally and structurally characterized using previously described biochemical, biophysical and virological assays to validate their role in the rise of drug resistance. 2) Both full-length, from 1), and HIV sequence data from databases and structural information will be utilized to construct Potts models of drug naïve and drug-experienced protease, reverse transcriptase, integrase and Gag. Potts models will be used to investigate the effects of epistatic mutational combinations on fitness, as well as predict HIV protein residues at risk for drug-resistance mutation development. These studies will provide critical insight into HIV genetic barriers that must be overcome to develop resistance to multiple inhibitor combinations. The MrBASMS sequencing of HIV quasispecies from longitudinal patient samples will be led by Torbett and Sarafianos, along with outside collaborator Routh (UTMB). The biochemical, structural and virological validation of mutational covariants will be led by Torbett, Sarafianos and Levy, along with assistance from Core 2. Levy will develop Potts models from HIV sequence data and protein structural information obtained from Projects 1, 2, and Core 1.

IC Name
NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES
  • Activity
    U54
  • Administering IC
    AI
  • Application Type
    5
  • Direct Cost Amount
    805578
  • Indirect Cost Amount
    370031
  • Total Cost
  • Sub Project Total Cost
    1175609
  • ARRA Funded
    False
  • CFDA Code
  • Ed Inst. Type
  • Funding ICs
    NIAID:1175609\
  • Funding Mechanism
    RESEARCH CENTERS
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    SEATTLE CHILDREN'S HOSPITAL
  • Organization Department
  • Organization DUNS
    048682157
  • Organization City
    SEATTLE
  • Organization State
    WA
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    981053901
  • Organization District
    UNITED STATES