This invention relates to in vivo monitoring one or more solutes in a biological system using optical techniques.
Monitoring the concentration of a solute (e.g., low molecular weight carbohydrate or polyhydroxy compounds such as sugars (mannitol, sorbitol, fructose, sucrose, or glucose), alcohols (methanol, ethanol, or propanediol), and electrolytes (sodium, potassium, magnesium, calcium, or chloride ions)) in a biological system has important applications in the medical field. For example, it is important for diabetics, who have gone off insulin, to monitor their glucose level so that can remedy any serious deviation in the level before harm occurs.
Near infra-red radiation (NIR) has been used to study non-invasively the oxygen metabolism in tissue (for example, the brain, finger, or ear lobe). Using visible, NIR and infra-red (IR) radiation for medical imaging could bring several advantages. In the NIR or IR range the contrast factor between a tumor and a tissue is much larger than in the X-ray range. In addition, the visible to IR radiation is preferred over the X-ray radiation since it is non-ionizing; thus, it potentially causes fewer side effects. However, with lower energy radiation, such as visible or infra-red radiation, the radiation is strongly scattered and absorbed in biological tissue, and the migration path cannot be approximated by a straight line, making inapplicable certain aspects of cross-sectional imaging techniques.
In a general aspect, the invention features a scheme for monitoring one (or more) solute in a biological system comprising the steps of: delivering light into a biological system containing one (or more) solute, the light having a wavelength selected to be in a range wherein the one (or more) solute is substantially non-absorbing; detecting at least first and second portions of the delivered light, the first portion having traveled through the biological system along one or more paths characterized by a first average path length, and the second portion having traveled through the biological system along one or more paths characterized by a second average path length that is greater than the first average path length; and comparing the first and second portions of the delivered light to monitor concentration of the one (or more) solute in the biological system.
Embodiments of the invention may include one or more of the following features. Comparing the first and second portions of the delivered light preferably comprises obtaining a characterization of the biological system based on a linear model relating an optical characteristic of the biological system and the first and second average path lengths. The characterization that is obtained may be the slope and/or the intercept of a line determined by fitting to the linear model measured characteristics of the first and second portions of light and distances representative of the first and second path lengths. Obtaining a characterization may comprise obtaining measures of first and second optical densities of the biological system based on the first and second portions of detected light and fitting the measures of optical densities to the generally linear model. Comparing the first and second portions of the delivered light may comprise determining a measure of the concentration of one or more of the solutes based on a comparison of the characterization of the biological system against a predetermined scale.
The monitoring scheme may further comprise determining a measure of a concentration of one or more of the solutes in the biological system based on a predetermined concentration scale. Detecting the first and second portions of the delivered light preferably comprises measuring first and second intensities (I1, I2) corresponding to the intensities of the first and second portions of light, respectively.
The monitoring scheme may further comprise determining changes, over time, in the first and second intensities (I1, I2) relative to first and second reference intensities (I1,ref, I2,ref). Determining relative changes in the first and second intensities may further comprise respectively determining first and second optical densities (OD1, OD2):
Comparing the first and second portions of the delivered light may comprise using a linear model relating the first and second optical densities to distances (ρ1, ρ2) representative of the first and second average path lengths to obtain a characterization of the biological system representative of the concentration of one or more of the solutes in the biological system. The characterization that is obtained is a slope (m) may be determined by
The characterization that is obtained may be an intercept (b) determined by
The monitoring scheme may further comprise detecting a third portion of the delivered light, the third portion having traveled through the biological system along one or more paths characterized by a third average path length that is greater than the first and second average path lengths.
In another aspect, the invention features a system for monitoring one or more solutes in a biological system comprising: at least two sources of light having a wavelength selected to be in a range wherein at least one of the one or more solutes is substantially non-absorbing, a detector positioned at different distances with respect to the at least two detectors to detect at least first and second portions of the delivered light, the first portion having traveled through the biological system along one or more paths characterized by a first average path length, and the second portion having traveled through the biological system along one or more paths characterized by a second average path length that is greater than the first average path length, and a comparator adapted to compare the first and second portions of the delivered light to monitor a concentration of one or more of the solutes in the biological system.
In one embodiment of the invention, two or more continuous light sources are used and light reflectance at separated input-output distances are measured. Approximation of the exact solution for the spatially resolved reflectance at separations larger than 2.5 cm provides a linear relationship between the separation and absorbance variation with respect to a reference sample. Slope and intercept of this straight line are functions of the absorption and scattering coefficients (μa and μs′) of the measured sample. Using this technique, high measurement sensitivities for solute concentrations in a biological system can be achieved. For example, absorbency changes of approximately 0.2 milli OD are obtained for a 1 millimolar concentration change of the solute and per 1% change of the intralipid concentration.
Solutes contained in a biological system respond to migrating near-infrared and infrared light by acting primarily to scatter the applied light. The signal intensity of such migrating light is affected to a greater extent the longer the average path length migrated by the detected light. This enables us to obtain a linear relationship between an optical parameter of the biological system and at least two distances representative of average path lengths traveled by the detected light through the biological system (e.g., at least two different source detector spacing).
Solutes include low molecular weight carbohydrates such as sucrose, glucose, mannitol, sorbitol, inositol, maltose, lactose, galactose, and glucuronic acid; and hydroxy-functionalized compounds such as alcohols (methanol, ethanol), phenols, catechols, and flavanoids (e.g., flavanones, flavones); and metabolites and metabolic precursors thereof. Solutes also include neurotransmitters such as amino acids (γ-aminobutyric acid, glycine, glutamate), choline, acetylcholine, norepinephrine, epinephrine, dopamine, serotonin, and histamines; and electrolytes (sodium, potassium, magnesium, calcium) and other soluble ions of the IA, IIA, and VIIB groups of the periodic table. Solutes are present in the interstitial spaces between cells, present within cells, or present in the blood (e.g., soluble in serum), or a combination thereof. They may be released from or taken up by cells as intra- or inter-cellular messengers, as metabolites (or byproducts), or as metabolic precursors or nutrients.
Solutes may be labelled with one or more radioisotopes of H, C, O, S, or P (e.g., 32P and tritium) or with a detectable agent (e.g., a contrast agent sensitive to a selected wavelength in the visible or infra-red range); or derivatized (e.g., deoxyglucose, or phosphoinositol). Solutes may thus be covalently linked to exogenous contrast agents; when linked to a detectable agent, either the solute or the agent may be measured or monitored according to the methods disclosed herein. For example, a wavelength may be selected such that a contrast agent is substantially non-absorbing, or a solute is substantially non-absorbing, or both.
Other features and advantages will become apparent from the following description and from the claims.
FIGS. 13(a)-(b) are a simulation of the reduced scattering coefficient, μs′, for a 0.5% Intralipid-glucose suspension (a) and a perfused liver (b).
FIGS. 14(a)-(c) are plots of time-domain experimental results of a 0.5% Intralipid-mannitol suspension measured at 830 nm.
FIGS. 15(a)-(b) are plots of experimental results, measured with the continuous-wave method, of a 0.5% Intralipid-yeast-mannitol suspension.
FIGS. 16(a)-(b) are a simulation of the reduced scattering coefficient μs′, for a perfused liver, based on equation (12), with more realistic conditions.
FIG. 16(a) is a plot of the increase of μs′ with a decrease in size of the liver cells (top scale) or with an increase in glucose concentration (bottom scale) in the perfusate.
FIG. 16(b) is a plot of the cell radius while the extracellular refractive index and the cell volume fraction are both fixed.
FIGS. 17(a)-(b) are plots showing the temperature-dependent pathlength change of a perfused rat liver for a cooling process (a) and warming-up process (b). The data were obtained by the frequency-domain method.
FIGS. 18(a)-(c) are plots of pathlength changes of a perfused rat liver with 200 mM glucose (a), 200 mM mannitol (b), and 200 mM sucrose (c), in the perfusate.
Referring to
Monitor 10 uses a continuous light method and comprises a single detector DC amplifier system. This monitoring scheme has produced results that are compatible in sensitivity to those achievable by frequency-domain and time-domain methods. The signal-to-noise level of the changes observed with continuous light is ˜0.01 milli OD at 850 nm with a 0.2 Hz bandwidth.
Referring to
The light sources deliver light into the patient's arm in sequence, which is controlled by a sequencer 15, and the delivered light migrates though a region of the patient's arm to the detector along one or more paths that can be respectively characterized by average path lengths 16, 18, 20. The distances between the light sources and the detector (ρ1, ρ2 and ρ3) are respectively representative of these average path lengths. The lamp spacings from the detector may be varied, depending, e.g., on the size of the monitored region and on intrinsic noise levels. In certain preferred embodiments, the lamps should be spaced far enough apart to take advantage of the spacing effect and thus enhance the measurement accuracy. Although, in certain applications it is preferred that the lamps be spaced from the detector by at least 2 cm to achieve a simplification in the mathematics used to derive the solute concentration.
As shown in
The three light sources are sequenced between the three sources at 20 sec. for each one. Light sequencer 15 contains three rheostats, which are adjusted to equalize the signals from the three lamps to give equal signal to noise ratios. The sequencer also contains three LED's 36, 38, 40 to indicate which lamp is sequenced. The sequencer applies not only the sequences to the three lamps but also flashes each light source on and off every half second so that a sample and hold circuit can monitor the difference between the light and dark signals. In this way, a stability of approximately 1×10−5 optical density (OD) and a noise level of 0.1 of this is obtained with a response time of 1-2 seconds. In one embodiment, sequencer 15 is an independent source for determining the frequency of lamp flashing. Lamps flash at frequency of ½ Hz or 2 flashes per second or greater. In operation, one lamp flashes, the signal is picked up by the photodetector and while the lamp is on the intensity is measured and stored on the chart recorder or in computer memory.
All the data is acquired and compared with a chart recorder 26, and the zero value established with the light-off condition. The output of amplifier 24 may alternatively be sent to an electronic display unit (e.g., an LCD display). The analog signal from amplifier 24 may be digitized in the display unit and displayed as a digital number. The signal is also sent to a comparator (e.g., a computer) for comparing the measured light intensities from different source-detector positions against a predetermined calibration scale to provide a measure of solute concentration.
The three rheostats are adjusted to ensure that the signal intensities detected from the three light sources are equal during a calibration mode, described below. Thus, abscissa of the plots shown herein correspond to the base line obtained for the scatterer only condition (i.e., equal signals from all 3 light sources). The signal obtained during the calibration mode is termed I0. The recorder gain may be increased to a desired level to obtain a desired sensitivity level, e.g., by factors of 2, 5, or 10. The measured signals are multiplied by this factor (i.e., 200, 500, 1000). Deflections of the three signals caused by changes in solute concentration are calculated as a percentage of the initial value (I0) and multiplied by 0.00434 to convert to log10 for absorbency changes of less than 10% (ΔOD). Otherwise, log10 is computed.
Referring to
In an alternative embodiment, the RUNMAN™ system described in International Publication No. WO 92/20273, filed May 18, 1992, which is herein incorporated by reference, may be used to detect the lamp signals migrating through the biological system. In this embodiment, the RUNMAN™ system is configured as described above and modified for single wavelength measurement (e.g., 850 nm).
As shown in
where, I0 is the calibrated initial intensity and I is the detected intensity, which varies over time in this example as shown in FIG. 2. The plots of OD versus ρ are linear for values of intralipid up to 1% (as discussed in detail below) and may show a non-linearity above that value for the largest detector light-source separation. In such a case, the smaller separations are used.
The best straight line or computer fit (e.g., by minimizing least mean square error) to the three data points for each measurement period (T0, T1) gives the slope in OD per solute concentration (usually 1 millimolar), and the extrapolation of the line to the ordinate gives the intercept. In some cases, a two-point slope is calculated (e.g., when only two sources are used, or when a data point corresponding to the largest source-detector spacing is subject to severe nonlinearity).
Similar plots of the variation of slope and intercept with solute and scatterer concentration are made, from which the final measures, namely OD per millimole solute per percent intralipid or per degree C. are computed (as described in detail below). This gives the sensitivity parameter employed in this study.
Theory
According to diffusion theory, the intensity of continuous light remitted through a semi-infinite scattering medium, such as tissue, depends on the tissue absorption and scattering properties (μa and μs′). The detected signal I(ρ), at a separation of p from the source can be given as
and A is a parameter dependent upon the refractive index of the tissue and the initial light source intensity. When the source detector separation is larger than 2 cm, this equation can be simplified as
By having a calibration model with known values of μhd a (cal) and μs′ (cal), we can compare an unknown sample to it, based on
If the unknown and calibration samples have a small difference in optical properties, the last term of Eq. (5) can be negligible. Therefore, we can define the optical density such that
where m is the slope and b is the intercept of the OD versus ρ line, given by:
where μa (cal) and μs′ (cal) are the absorption and reduced scattering coefficients of the calibrated sample and μa and μs′ are the absorption and reduced scattering coefficients of the sample to be monitored. By measuring OD versus the source detector separation, we can obtain slope (m) and intercept values (b). With the measured values of slope and intercept, we can obtain values for μa and μs′ by solving Eq. 7 as follows.
where,
Eq. (6) exhibits a linear relationship between OD and the source-detector separation (ρ). The slope and intercept of this equation are studied here by measuring OD versus ρ.
Referring to
This monitoring process is preferably implemented in hardware (e.g., an ASIC) or as a software program run on a computer or other processor.
Calibration Scale
A calibration scale for relating the slope and intercept data monitored using the above-described technique to obtain a measure of one or more solute concentrations can be derived from measurements of a simulated biological environment or actual biological tissue.
According to a recent study by Graaff et al., (R. Graaff, et al., Appl. Opt. 31(10), 1370-1376 1992), the Mie theory can be well approximated to give the following expression for the reduced scattering cross section, δs′,
where δs is the scattering cross section, g is the average cosine of the scattering angle, a is the radius of the scattering particle, λ is the wavelength of the scattered light, nin and nax are refractive indexes of the intracellular and extracellular fluid, respectively. In the case of model or cell suspension systems, nin and nax represent refractive indexes of the scattering particle and suspension solution, respectively. Three restrictions for validation of equation (10) are a) g factor has to be larger than 0.9 (g>0.9); b) the particle radius and wavelength of scattered light satisfies 5<(2πa/λ)<50;c) the refractive index relative to the surrounding medium is limited in the range of 1<nin/nax<1.1. With the use of near-infrared light, these three conditions are satisfied for scattering in living tissues and blood, (R. Graaff, et al., 1992).
In a highly multiple-scattering medium, the reduced scattering coefficient, μs′, is related to δs′ by μs′=λδs′, where λ is the total number of the scattering particles per unit volume, (A. Ishimaru, Wave Propagation and Scattering in Random Media, Academic Press, Inc. San Diego, 1978). This number density, λ, can be given as φ/vpar, where φ is the volume fraction of the particles relative to the total volume, and vpar is the volume of a single scattering particle, (B. Beauvoit et al., Biophys. J. 67, 2501-2510 1994), and can be expressed
for a spherical scatterer. Substituting δs′ by equation (10), we have
This equation is valid for sufficiently small φ (φ<0.2), such as in cell or scatterer suspensions. For φ<0.5, which is very common for scatterers in tissue and blood, the scattering particles are densely packed, and the whole solution may be viewed as a homogeneous medium with the scattering particles made of the inter-particle space. These two cases are schematically illustrated in FIGS. 12(a) and 12(b), respectively. In the limit of φ−<1, the inter-particle space disappears and μs′ should approach 0. Based on this consideration, we employ the strategy developed by Ishimaru (A. Ishimaru, 1978) and others (L. Reynolds et al., Appl. Opt. 15, 2059-2067, 1967), (J. M. Steinke et al., Appl. Opt. 27, 4027-4033, 1988) for red blood cells and give the following modified expression of μs′ for biological tissues:
Both equations (11) and (12) show that μs′ has both a refractive-index-dependent factor,
and a size-dependent factor, either
for suspensions or
for tissue.
The diffusion approximation of transport theory has been widely used as the theoretical basis to describe light propagation within a highly scattering medium for a given geometry [18] (E. M. Sevick et al., Anal. Biochem. 195, 330-351, 1991) and [19] (S. R. Arridge et al., Phys. Med. Biol. 37, 1531-1560, 1992). The solution of the time-domain diffusion equation allows to calculate the mean optical pathlength, <L>, of light traveled before detection by <L>=c<t>, where c is the speed of light traveled in a mean time, <t>, in the scattering medium. In a semi-infinite, reflectance geometry, <t> can be given as
where R(ρ,t) is the reflectance of impulse light detected on the medium surface at time, t, and at distance, ρ, away from the light source. After substituting $(ρ t) in <t> and simplifying <t>, we obtain an expression relating the mean optical pathlength, <L>, to the absorption (μa) and reduced scattering (μs′) coefficients by
So <L> can be a marker to monitor a change in absorption or scattering properties in the medium under study. Further more, the first order approximation of eq. (5) is
indicating that an increase in scattering results in an increase in optical pathlength.
Volume Regulatory of Cells and Effect of Solution Composition on Nonelectrolyte-Induced Shrinkage
Depending on the species and the tissue type, the volume change of cells upon exposure to anisosmotic media is subjected to a regulation. For instance, if hepatocytes (liver calls) are suddenly exposed to a hypotonic medium, they initially swell, but within minutes they can regain almost their original volumes. This behavior has been named Regulatory Cell Volume Decrease and is governed by the activation of K+ and Cl Efflux. On the other hand, if the cells are suddenly exposed to a hypertonic medium, they initially shrink, but within minutes they attain almost their initial volumes. This behavior has been named Regulatory Cell Volume Increase and is caused by the activation of na+ and Cl influx. However, neither the Regulatory Volume Increase nor Decrease completely restore the initial cell volume, and the liver cells are left in either a slightly swollen or shrunken state. In addition, the mechanisms of the regulation of the cellular volume at the cellular (nature of ions) and at the molecular level (carriers responsible for ions efflux or influx) are different from one tissue type to another one, (D. Haussinger et al, Biochim. Biophys. Acta 1071, 331-350, 1991).
In the liver, when hepatocytes are subjected to hypertonic stress by the addition of a carbohydrate into the extracellular medium, there is either no or only a partial recovery from the shrunken state depending on the nature of the carbohydrate. For instance, the time-course of the sorbitol-induced shrinkage does not show any Regulatory Volume increase, (T. Bakker-Grunwald, Biochim. Biophys. Acta 731, 239-242 1983). In contrast, sucrose and mannitol-induced shrinkage is followed by a partial recovery of the initial volume. These discrepancies have been explained by different permeability of the hepatocyte toward the three nonelectrolytes used in the studies. The higher is the cellular permeability to the sugar, the faster is the equilibration of the osmolarity between the two compartments, and the faster is the recovery from the shrunken state (P. Haddad, et al, Am. J. Physiol. 256, G563-G569 1989), (G. Alpini et al, Am. J. Physiol. 251, C872-C882, 1986).
The layout of the components is illustrated in
In order to simulate the detection of solute in a breast, brain, or other portion of the human body, we have employed a cylindrical vessel of 10 cm in diameter and 10 cm in height, to which the optical detector is attached. The vessel is filled with distilled water to which appropriate concentrations of scatterer, for example, intralipid (0.1-2% by volume) are added. The vessel filled with a scattering medium with no solute present may be used as the calibration standard for μa and μs′. The solute is then added in increasing concentrations as solid or liquid and dissolved or mixed appropriately by the rapid motion of the stirrer bar. Dilution of the scatterer is measured by dilatometry. Thus, relationships between absorbency changes due to the solute and scatterer concentrations are obtained.
The relation between solute concentration, slope, and intercept (replotted from
These obtained values of slope and intercept are used either alone or in combination to provide a calibration scale against which subsequent measurements are compared to obtain a measure of solute concentration.
The values of slope are negative as indicated by
The sensitivity, however, varies with the scatterer concentration, and thus the experiment was repeated from 0.1%-1.5% of intralipid, and a new sensitivity constant, reduced to 1% scatterer concentration, is given in
To monitor temperature variations, the vessel containing a solute (e.g., glucose) and scatterer (e.g., intralipid) is chilled to 20° C., and the temperature is slowly ramped to 35° C. by an electric hotplate (upon rapid stirring) and the optical effects are recorded. The scatterer is stirred by a magnetic bar, and the temperature is regulated by the heater/thermostat so that temperatures between 20 and 30° C. can be employed. The temperature of the system is measured by a mercury thermometer.
Male SD strain rats, weighing 250-300 g were used. After anesthetizing a rat by intraperitoneal injection pentobarbital (50 mg/kg weight), the liver was removed and perfused by Krebs-Ringer buffer containing 2 mM glucose. The buffer was oxygenated by the gas mixture 95% oxygen and 5% carbon dioxide. The liver was placed on an array of light sources and a detector with the separation of 1-3.3 cm. After liver perfusion became stable (20-30 minutes), the perfusate was changed to others containing different concentrations of glucose or mannitol. The oxygen concentration of outflow was simultaneously measured.
Precautions are necessary to ensure that the variations of the optical properties of the liver itself do not cause optical artifacts. Thus, the perfusion with solute is preceded and followed by control intervals. The lobes of the rat liver are laid upon an array of light sources and detectors similar to that indicated in
A typical trace for the perfusion with 60 mM mannitol is shown in FIG. 8. The initial phase of absorbance increase is attributed to the entry of the mannitol into the sinusoids of the liver creating osmotic gradient, which equilibrates over the next 5 minutes. Thereafter, the absorbance change is assumed to be due to the equilibration of the mannitol with liver hepatocytes. In order to ensure that no remnant effect on the liver has occurred, the perfusate without solute is restored; the liver is reperfused with crystalloid in the absence of added mannitol. In this case, a decrease of absorbance occurs due to effusion of the mannitol from the tissue spaces, and thereafter the initial base line is restored. The mannitol effect is then measured as an early phase and a late phase, with respect to the two control levels.
As shown in
Changes in absorption, scattering coefficients, and optical pathlength due to the introduction of a solute in suspensions or in rat liver tissue were shown using time-domain, frequency-domain, and continuous-wave methods. These three methods measure optical properties of highly-scattering medium, transient response of mean pathlength change, and fast response to a change in optical properties and scattering changes, respectively. Wavelengths used were in the range of 780-850 nm.
In lipid or cell suspension measurements, a cylindrical container (17 cm diameter, 10 cm height) was filled with distilled water and various concentrations of a scattering medium. Intralipid (Kabi Pharmatica, Clayton, N. Dak.), with a 20% concentration, was diluted to 0.5-2.5% (vol/vol). In the case of cell suspensions, a slurry of either 1.4% or 2.8% by weight of baker's yeast in 20 mM phosphate buffer, pH 7, was added to the lipid solution. During measurements, optical properties (absorption, reduced scattering coefficients) were altered by titration of 50 mM of solutes such as glucose and mannitol. The light source and detector, connected to a NIR detection system such as those described above, were placed 3 cm above the suspension surface or from the side of the container.
Male SD strain rats (300-350 grams) were starved 24 hours to normalize liver physiological conditions. After anesthetizing each rat with a 50 mg/kg body weight intraperitoneal injection of pentobarbital, the rat liver was removed and perfused by Krebs-Ringer buffer (2 mM glucose, oxygenated by gas mixture of 95% oxygen and 5% carbon dioxide) until perfusion became stable (20-30 min.). The perfusate was switched between buffer and buffer solutions containing different concentrations of carbohydrates. The separation between light source and detector, which were attached to the major lobes of the liver, was 1.5 cm.
In simulations, equations (12) and (13) were used for the suspension and tissue cases, respectively, to calculate changes in reduced scattering coefficient under various conditions.
A non-invasive determination of potassium effusion within the brain of an (in vivo) animal model was demonstrated. The effusion of potassium from an hypoxic rat brain was measured as a light scattering change at 816 nm, a wavelength that is relatively indifferent to the oxygenation/deoxygenation of hemoglobin. The diagram
a) Simulation Results:
Based on equation (11), the dependence of reduced scattering coefficient, μs′, of suspension models on the refractive index of scattering particles (nin) and suspension fluid (nax) can be calculated assuming that the size and the volume fraction of the scattering particles do not change. FIG. 13(a) shows μs′ values of a 0.5% Intralipid-glucose suspension as a function of added glucose concentration and corresponding refractive index of the lipid suspension, nax. The parameters used in this case are a=0.25 μm, φ=0.005, λ=800 nm, nin=1.465, and nax=1.325+2.73×10−5×[C], where [C] is the glucose concentration in MM (Maier et al. Opt. Lett. 19 (24), 2062-2064 (1994)). On the other hand, we use equation (12) to simulate μs′ changes of a perfused rat liver as a function of added glucose concentration; the results are shown in FIG. 13(b). This calculation varies only the refractive index of the extracellular fluid as nax=1.33+2.73×10−5×[C] and keeps other parameters constant (a=10.68 μm, φ=0.8, λ=800 nm, and nin=1.465) (Beauvoit et al Biophys J. 67, 2501-2510 (1994)). The initial μs′ value of 15.9 cm−1 at 0 mM glucose concentration is based on a published, experimentally-measured data (1994). This dependence of μs′ of the liver on the glucose concentration assumes that the liver cells are rigid. Both FIGS. 13(a) and 13(b) illustrate that if addition of glucose/carbohydrate in suspension models or in tissue, such as in perfused rat liver, does not change the size of the scatterers or cells, the reduced scattering coefficient, μs′, of the corresponding system decreases as the added glucose concentration increases.
b) Experimental Results in Lipid and Cell Suspension Models:
We have also used the continuous-wave method to measure solute-induced changes of optical properties in lipid/cell suspensions. A variety of solutes (electrolytes, nonelectrolytes, sugars, and alcohols) has been studied, and some of the results have been reported (Chance et al. Anal. Biochem. 227, 351-362 (1995)). The results obtained with the continuous-wave method for the suspension models are very similar to those with the time-domain method and also similar to the theoretical calculations. An example,
Correlation Between the Optical Properties of Tissue and Tissue Cell Volume
a) Simulation Results:
Since the cell volume fraction, φ, is usually greater than 0.5 for tissues, equation (12) is used in this section. We consider three situations for the simulations: 1) changes in cell size only; 2) changes both in cell size and in refractive index of the extracellular fluid; and 3) changes in cell size, cell volume fraction, and refractive index of the extracellular fluid. The fact that introducing a carbohydrate into tissue, such as a perfused rat liver, causes cell shrinkage is considered in the simulations.
FIG. 16(a) shows the simulated dependence of μs′ of a perfused rat liver on cell radius (top scale), with fixed parameters of cell volume fraction (φ=0.8), intracellular (nin=1,465), and extracellular (nax0=1.33) refractive indexes. The chosen value of nin is based on Refs. 5 and 26, and nax0 is extrapolated from Ref. 14. This calculation illustrates that a decrease only in tissue cell size results in an increase in reduced scattering coefficient, μs′, and thus in pathlength; vice visa. A decrease in cell size may be caused by a temperature increase of tissue or by an addition of a carbohydrate in tissue. FIG. 16(a) also gives the dependence of μs′ on glucose concentration (bottom scale) introduced into liver, having a relationship of a=a0−k[C], where a is the cell radius, a0=10.678 μm is the initial cell radius without any glucose addition, k=0.002 is a constant, and [C] is the glucose concentration. The k value corresponds to a factor that gives a decrease of 5% cell volume for each 100 mM glucose addition in liver.
A decrease in cell size can lead to a decrease in cell volume and thus in cell volume fraction, φ, since
Therefore, an addition of a carbohydrate to tissue can result in a decrease of φ. This occurs when tissue cells shrink but the whole tissue volume does not change significantly. However, φ # can also remain constant when the addition of a carbohydrate to tissue results in water loss in the tissue, causing the total volume, Vtotal, to decrease. To simulate more realistically μs′ change upon exposure to a carbohydrate, one considers an overall effect due to all changes in 1) cell size, 2) extracellular refractive index, and 3) cell volume fraction. The solid circles in FIG. 16(b) are calculated for the relationship between μs′ and added glucose concentration with a variable cell radius, a , and a variable extracellular refractive index, nax, but a fixed cell volume fraction, φ (=0.8). On the other hand, the open circles in FIG. 16(b) correspond to the simulation of μs′ for variable a, nax, and φ with a relationship of
where Vtotal remains constant. Except for φ, other parameters for these two traces are the same, namely, nin=1.465, nax=1.33+2.73×10−5[C], a=10.678−2×10−3[C] in μm, and λ=0.8 μm. These two circle traces show a contradictory behavior of μs′ as the carbohydrate concentration increases. After considering all effects of cell size, extracellular refractive index, and cell volume fraction, we show from the simulation data that in the addition of a solute/carbohydrate in tissue, the overall scattering of tissue can increase or decrease depending on if φ decreases or is unchanged, respectively.
b) Experimental Results in a Perfused Rat Liver:
To separate the effects of changes in cell size and in extracellular refractive index on μs′ due to a carbohydrate addition, temperature-dependent pathlength measurements were performed with the frequency-domain method (phase-modulation spectroscopy) for a perfused rat liver. In principle, if tissue temperature is lowered, K+ inside tissue cells may come out from the cells, and extracellular water may enter the cells, leading to cell swelling. It is also known that the temperature effect on the refractive index of a scattering fluid is relatively small (1994), so changes in extracellular refractive index caused by temperature can be ignored. Then, the overall μs′ value or optical pathlength of the swollen cells of a cooled tissue should decrease according to the simulation given in FIG. 16(a) above. On the other hand, if the cooled tissue is warming up, the cells will shrink, and the pathlength will increase accordingly. In the experiment, the temperature of the liver was altered by changing the temperature of the perfusate, which is contained in a thermally controlled bath. FIG. 17(a) corresponds to a cooling process of the liver from 37° C., the perfusate temperature measured in the bath, to 25° C. in about 10 minutes. A few (˜2.5) minutes after the perfusate starts to cool down, the liver starts to response, and the pathlength keeps decreasing as the liver temperature goes down until the perfusate temperature stabilizes at the setting temperature of 25° C. In contrast, FIG. 17(b) shows an increase in pathlength when the perfusate of the perfused liver is warming up from 25° C. to 37° C. The time courses for the cooling down (FIG. 17(a)) and warming up (FIG. 17(b)) processes are not necessarily the same, mainly depending on the amount of cooling source (ice) and heating power used.
To study coupled effects on μs′ due to changes in both cell size and refractive index of the extracellular fluid, several carbohydrates were added in the perfusate for the liver perfusion experiments.
The data given in
The simulation and experimental results demonstrate that the reduced scattering coefficient of tissue can be affected largely by the changes in refractive index of the extracellular fluid and in cell volume caused by osmotic stress due to carbohydrate addition to the tissue. However, in the Intralipid-yeast suspension case (FIG. 15), it seems that the effect of yeast cell variation is not very notable since the result in this case is very similar to that of the pure lipid suspension. This can be explained by two reasons: 1) the cell volume fraction relative to the whole suspension volume is very small; 2) the yeast cells have polysaccharide walls, which are much more rigid than the regular membranes of tissue cells. Thus, the cell size and cell volume fraction of yeast cells would not change significantly by the osmotic pressure caused by the carbohydrate addition in the suspension.
Addition of a solute or carbohydrate into tissue can cause both a decrease in cell volume fraction and an increase in refractive index of the extracellular fluid. These two changes contradict each other in the overall scattering behavior of the tissue. So measurements of optical pathlength changes can show which factor, cell volume change or refractive index change, plays more important role than the other. In the liver glucose perfusion presented by curve (a) in
In principle, neither the Regulatory Volume Increase nor Decrease of tissue cells can regain the initial cell volume completely. It means that the pathlength given in curves (a) and (b) of
The pathlength data for the sucrose perfusion given by curve (c) in
Detection in vivo of changes in scattering property owing to glucose intake on human subjects has been reported (Maier et al. (1994)). The measurements were performed on the thigh of the subject, and the scattering factor started to decrease a few minutes after the glucose ingestion, opposing to our results obtained in the liver glucose perfusion. This inconsistency may be due to the fact that the glucose in vivo measurement, performed on the human thigh, may include a large portion of muscle and blood, whereas the liver perfusion measurement only involves pure liver cells. Since muscle cells are absolutely non-spherical and very different from the liver cells in shape and composition, muscle cells may response to glucose quite differently from the liver cells. On the other hand, if the cell volume fraction does not change much by the glucose intake, the scattering factor will decrease mainly due to the change in extracellular refractive index. Also when blood is involved in the measurement, the coupling of uptaking process of glucose by the red blood cells and muscle cells complicates the mechanism of changes in scattering property.
These results successfully demonstrate using the NIR techniques for non-invasive physiological monitoring, such as monitoring tissue swelling by detecting pathlength (i.e., scattering property) change. For example, if the pathlength increases, the cells are shrinking. If additions of solutes/carbobydrates are involved, one may encounter multiple effects due to changes in cell size and in extracellular refractive index. But by using suitable carbohydrates, such as glucose or mannitol, effects of changes in cell size of tissue can dominate so that tissue swelling can still be detectable by monitoring the pathlength change.
In summary, the theoretical and experimental results show that addition of a solute/carbohydrate in tissue affects the size of tissue cells, the cell volume fraction, and the refractive index of the extracellular fluid, and thus affects the overall tissue scattering properties. The approximated approach of the Mie theory was used to calculate the effects of osmolarity and refractive index on reduced scattering coefficient of tissues and photon diffusion theory was used to associate the reduced scattering coefficient to the optical pathlength. Experimentally, all of the three NIR techniques are capable of measuring the changes of optical properties due to an addition of a solute in tissue models and in perfused rat livers. The temperature-dependent pathlength measurements of the perfused liver confirmed the dependence of tissue scattering on the tissue cell size. The liver results obtained with three kinds of carbohydrate perfusion display different scattering aspects which are explained by changes in call size and volume fraction.
Applications
Various solute concentrations may be monitored using the monitoring scheme of the present invention.
The present invention provides is simple, cost-effective, portable scheme for monitoring the concentration of sugars (mannitol, fructose, sucrose, glucose) in a patient. Sensitivities of 1×10−4 ΔOD per mmol per percent intralipid at 25° C. have been observed. A comparison with a typical noise level of 10−5 ΔOD, suggests that the range of 8-12 mM can be detected satisfactorily.
The glucose concentration in a patient is monitoring according to this example by attaching the monitor of
Referring to
In an alternative embodiment, a processor receives the extrapolated slope and intercept values and compares these values to a predetermined stored calibration scale. The processor further implements the following steps to indicate to the patient the measured solute concentration. If the measured concentration (Csolute) is less than a first predetermined threshold concentration (Cth,1), e.g., 0-100 mMol and more preferably 50 mmol (step 102), a green signal is output (104), e.g., by lighting a green light, indicating the patient's blood glucose level is generally within normal levels. If the measured concentration is greater than Cth,1, the measured concentration is compared against a second predetermined threshold concentration (Cth,2), e g., 50-200 mMol and more preferably 120 mmol (step 106). If Csolute is less than this second threshold concentration, a yellow signal is output (108), indicating that the patient's blood glucose level has risen above normal levels and should be monitored carefully. If Csolute is greater than Cth,2, a red signal is output (110), indicating that the patient should attempt to remedy his or her condition.
The alcohol concentration in a patient may also be monitored using the scheme according to the present invention. Ethanol readily equilibrates with tissue spaces and gives a relatively small but significant signal. Accordingly, a patient (as used herein the term “patient” is used to broadly refer to a person in general whether or not the person is being treated for a medical problem) attaches the monitor of
The calibration scales are determined empirically as described above, e.g., in connection with Example 1. The threshold levels (Cth,1, Cth,2) are selected to correspond to desired criteria (e.g., legal drinking limit).
The concentration of salts (e.g., NaCl, KCl and MOPS) in a patient may also be monitored using the scheme according to the present invention. Accordingly, a patient attaches the monitor of
The calibration scales are determined empirically as described above, e.g., in connection with Example 1. The threshold levels (Cth,1, Cth,2) are selected to correspond to desired criteria, depending, e.g., on the health of the patient. For example, patient's with high blood pressure would be assigned lower threshold concentrations.
Enhanced results are achievable if the effects of solute concentrations other than that which is to be measured can be ignored. According to this example, the history of the patient is well characterized so that it can be assumed that variations in the monitored concentration level are due to variations in the solute concentration that is desired to be measured.
For example, an enhanced glucose concentration measurement of a patient is obtained using the monitor described in
In view of the low specificity in solute discrimination, especially the physiologically important ones, glucose, ethanol, mannitol, and to a lesser extent NaCl and KCl, the in vivo studies are undertaken with supplementary information of the parenteral fluids in use. In addition, the osmotic transients and indeed the osmotic state of the tissue can be of importance, especially in patients undergoing dialysis procedures. Finally, and possibly most important, is the body tissue temperature, which should be monitored in the particular tissue volume studies optically, probably by the water absorption.
At the same time, an appropriate correction for water absorption may be implemented.
Furthermore, since intensity measurements are especially sensitive to changes in the skin contact between the probe and the phantom or the probe and the body tissue makes measurements which do not depend upon intensities vastly preferable, and one of these methods is the phase modulation system, which surely would be the ultimate system for most reliable measurements. However, the relationship between the intensity signal and the phase signal is such that very high phase sensitivities are required. The absorbance limitation of 10−5 may have to be measured, which requires similar accuracies of phase determination.
Other Embodiments
More than three sources may be used to obtain enhanced measurements by obtaining a greater number of data points from which to extract the linear parameters (slope and intercept).
Instead of using multiple light sources a single source may be used, which applies the light to the biological system from locations spaced from the detector by different distances. Alternatively, the single source may remain stationary and the detector may be sequentially moved to detecting positions located at different distances from the source.
The monitoring scheme described herein has a relatively small wavelength dependence. Thus, a dual wavelength method may be used for this purpose for the minimization of hemoglobin crosstalk. In this technique the hemoglobin concentration is quantified by an appropriate phase modulation spectrophotometer to provide accurate path length information at the wavelengths involved. Thus, the discrepancy of absorbance measurements at 850 nm from the hemoglobin spectrum can be assumed to be counted as pertaining to the solute measurement.
Possible variability of the light entry into the tissue and its arrival at the detector system consisting of a silicon diode or a fiber coupler (e.g., due to variable tissue contact) may be compensated for by frequency-domain methods, which may have a significant advantage for tissue contact. The use of several input-output spacings is necessary for these determinations. The different spacings sample different tissue volumes of different depths: the short spacing—shallow and the long spacing—deep tissue volumes. Thus, in cases where heterogeneous tissue is involved, the possibility that different solute levels are sampled at different input-output spacings should be compensated for.
Time-domain methods may alternatively be used. These methods sample different tissue volumes for the calculation μs′ and μa (early and late, respectively). The use of Fourier transformation from time to frequency domain may rectify this problem. In these frequency-domain devices, the high frequency waves penetrate shallowly and the low frequency deeply. Thus, dual measurements, particularly at a pair of wavelengths at which the absorption is canceled out, serve as useful means for calculating scattering factor.
Still other embodiments are within the scope of the invention. The above solutes can be monitored or their concentration can be measured by a time resolved spectroscopy (TRS) or a phase modulation spectroscopy (PMS). Suitable TRS systems are described in U.S. Pat. Nos. 5,119,815 or 5,386,827, which are both herein incorporated by reference. The TRS system employs one or more visible or infrared wavelengths sensitive (i.e., due to variation in absorption or scattering) to the measured solute directly or indirectly. The TRS system measures in vivo the values of the effective scattering coefficient (μs′) or the absorption coefficient (μa) and correlates these values to a concentration of the solute.
Alternatively, the measurements are performed using a PMS system described in U.S. Pat. Nos. 4,972,331, 5,122,974 or 5,187,672, or in International Applications PCT/US94/02764, filed Mar. 15, 1993, or PCT/US92/00463, filed Jan. 21, 1992, all of which are incorporated by reference. The PMS system employs light of one or more
This application is a continuation of U.S. application Ser. No. 08/849,203, filed on Nov. 17, 1997, now U.S. Pat. No. 6,493,565, which is a 371 of PCT/US95/15666 filed Dec. 4, 1995 which is a continuation-in-part of U.S. application Ser. No. 08/349,839 filed Dec. 2, 1994, now U.S. Pat. No. 5,782,755, which are incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4014321 | March | Mar 1977 | A |
4029085 | DeWitt et al. | Jun 1977 | A |
4223680 | Jobsis | Sep 1980 | A |
4281645 | Jobsis | Aug 1981 | A |
4321930 | Jobsis et al. | Mar 1982 | A |
4576173 | Parker et al. | Mar 1986 | A |
4655225 | Dahne et al. | Apr 1987 | A |
4700708 | New, Jr. et al. | Oct 1987 | A |
4714341 | Hamaguri et al. | Dec 1987 | A |
4773422 | Isaacson et al. | Sep 1988 | A |
4800495 | Smith | Jan 1989 | A |
4800885 | Johnson | Jan 1989 | A |
4836207 | Bursell et al. | Jun 1989 | A |
4846183 | Martin | Jul 1989 | A |
4869254 | Stone et al. | Sep 1989 | A |
4880304 | Jaeb et al. | Nov 1989 | A |
4908762 | Suzuki et al. | Mar 1990 | A |
4926867 | Kanda et al. | May 1990 | A |
4972331 | Chance | Nov 1990 | A |
5057695 | Hirao et al. | Oct 1991 | A |
5119815 | Chance | Jun 1992 | A |
5137355 | Barbour et al. | Aug 1992 | A |
5178142 | Harjunmaa et al. | Jan 1993 | A |
5190039 | Takeuchi et al. | Mar 1993 | A |
5277181 | Mendelson et al. | Jan 1994 | A |
5497769 | Gratton et al. | Mar 1996 | A |
5544651 | Wilk | Aug 1996 | A |
5551422 | Simonsen et al. | Sep 1996 | A |
5782755 | Chance et al. | Jul 1998 | A |
5845639 | Hochman et al. | Dec 1998 | A |
5853370 | Chance et al. | Dec 1998 | A |
Number | Date | Country |
---|---|---|
25 38 985 | May 1976 | DE |
43 37 570 | May 1995 | DE |
44 17 639 | Nov 1995 | DE |
0 102 816 | Mar 1984 | EP |
0 404 562 | Dec 1990 | EP |
WO 9220273 | Nov 1992 | WO |
WO 9616592 | Jun 1996 | WO |
Number | Date | Country | |
---|---|---|---|
20030166997 A1 | Sep 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 08849203 | US | |
Child | 10299598 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 08349839 | Dec 1994 | US |
Child | 08849203 | US |