The present invention relates to automated diagnosis support, and, more particularly, to support that provides examples of similar known cases.
Healthcare diagnosis decision support systems or computer-aided diagnosis (CAD) systems are used to classify unknown tumors detected on digital images into different categories, e.g., malignant or benign. Usually, machine-learning technologies, such as decision tree and neural network, are utilized to build classifiers based on a large number of known cases with ground truth, i.e., cases for which the diagnosis has been confirmed by pathology. Once the classifier is created for accepting a set of features as inputs, the diagnosis is performed by extracting from the unknown tumor case such features for input into the classifier. The classifier output indicates the estimated nature (e.g. malignant/benign) of the unknown tumor and optionally a confidence value. As the precision of medical imaging facilities improves, this type of computer-aided diagnosis becomes more and more important as a tool for the physician.
U.S. Patent Publication 2001/0043729 A1 to Giger et al. (hereinafter “Giger”), entitled “Method, System and Computer Readable Medium for an Intelligent Search Workstation for Computer Assisted Interpretation of Medical Images,” the entire disclosure of which is hereby incorporated herein by reference, discloses use of a classifier to automatically determine a diagnosis that includes a likelihood of pathology, the device also retrieving from the database and displaying on-screen known cases or examples that have been determined to be similar to the case being diagnosed. The fetched cases are color-coded in the display to indicate whether the tumor is malignant or benign.
Similarity between the test case and a known case is assessed based on the Euclidean distance between the two cases. In particular, features deemed to be relevant to the existence/non-existence of pathology such as margin, shape, density and spiculation discernible in the image of the tumor are each assigned a dimension in n-dimensional space. The difference in value between the test and known case for each feature determines an n-dimensional scalar whose length is the Euclidean distance between the test and known cases. A predetermined number of cases, malignant or benign, having smallest Euclidean distance are selected to fill the display for viewing by the radiologist or doctor.
In assessing similarity on a one-to-one basis, however, the Giger patent publication does not account for interaction among features, and therefore delivers a less than optimum group of cases for display.
Also, displaying both malignant and benign cases interspersed side-by-side as in Giger can be confusing and limits the amount of screen area for displaying a desired number of similar cases of the same type, i.e., either malignant or benign.
The present invention has been made to address the above-noted shortcomings in the prior art. It is an object of the invention to select for display, as a complement to an automated diagnosis of a tumor as malignant or benign, images of known cases whose similarity is assessed by a one-to-many metric that provides greater similarity than can be achieved using the Euclidean distance.
In brief, a test medical, multi-featured image of a tumor is compared either to a collection of reference medical, multi-featured images of tumors determined to be malignant, or to an analogous collection of non-malignant tumor images, to identify reference images that are similar feature-wise to the test image. Reference images are selected from the designated collection to form respective groups of the selected images. A genetic algorithm is applied to alter groups, and to determine which of the groups is at a minimum distance to the test image based on the feature values of the test image and those of reference images of the group.
Details of the invention disclosed herein shall be described with the aid of the figures listed below, wherein:
As shown in
To analyze a new tumor, features are extracted by the input/output module 112 and fed to the classifier 104. The classification result can be either malignant, benign or a determined likelihood of malignancy.
Upon receiving this result, the input/output module 112 sends to the database 108 a request that includes the values for each extracted feature of the new tumor, the nature of the tumor, i.e. malignant or benign, and the number of instances wanted. If the classification result is a likelihood larger than 50%, the nature of the tumor is malignant; otherwise, it is benign. The database 108 is divided into two collections, one having only malignant cases and the other having only benign cases. If the nature of the new tumor is malignant, the collection having malignant cases is searched for similar cases; otherwise, the other collection is searched.
Once the similar cases are retrieved, the input/output module 112, displays to the user the classification result, and image of the new tumor, and images of the most similar cases.
In processing the new tumor, similar cases are retrieved from the collection that was designated, i.e., from the collection named by the classification result determined by the classifier 104 based on the new tumor.
Confining retrieval to one kind of case increases the number of cases that can be simultaneously displayed to the doctor. The increased number of cases and their single type, i.e., malignant or benign, enhances the effectiveness of a one-to-many distance metric as used to advantage in the present invention. The difficulty of finding groups of cases suitable for the one-to-many distance metric is overcome by use of a genetic algorithm as discussed in more detail below.
The retrieval, in accordance with the inventive method, first involves an initial selection of a predetermined number of cases from the designated collection. This selection may be at random, since the genetic algorithm of the present invention will, through iterative changes in the selection, deliver a final optimal group of cases no matter which cases are initially selected. A random number generator may be included in the system 100 for this purpose. Nevertheless, for faster results, the initial group of cases may be selected based on a relatively rough measure of similarity. A one-to-one metric such as Euclidean distance, for example, may be employed.
The initially selected cases are allocated into groups or “genes.” Therefore, for example, n×m selected cases may be divided into a set of n genes, each gene composed of m reference images (step 208). The number of initially selected cases is preferably based on the number of desired instances specified by the radiologist or doctor, and for which a default value may be provided. Each gene is preferably formed by concatenating the case numbers respectively corresponding to the m images of the gene (step 212). An example is shown in
Referring back to
D
2
G(T)=(T−μG)SG−1(T−μG)′
where D is the Mahalanobis distance, T is a row matrix of feature values of the test image, SG is the within-group covariance matrix, a μG is the row matrix of means of group feature values.
At the outset, the task of finding an optimal group of reference images based on Mahalanobis distance is not a straightforward problem, and a brute force approach of trying all possible combinations of the number of reference images requested is not feasible in terms of time and processing resources if the database contains a large number of known cases.
Genetic algorithms is a class of algorithms suited to solving problems for which a method of solving is unknown, but for which a proposed solution can be easily evaluated. A group of problem-solvers are recruited to each offer a respective solution to the problem. The solutions are assessed for merit, and the problem-solvers offering the best solutions are selected to pass on their genetic material to a next generation of problem-solvers so as to iteratively, over time, reach an acceptably good ultimate solution. Among the techniques utilized in genetic algorithms for passing on genetic material are random mutations and crossovers where, for example, the random fluctuations are confined to the top performing problem-solvers to, by chance, spawn even better problem-solvers. Low performers can be dropped as identified iteration to iteration. In this manner, a better and better solution evolves.
According to the invention, and referring again to
If the stopping threshold has not been met, one or more random crossovers and/or mutations may be applied to the gene(s) having the smallest Mahalanobis distance to the test image (step 228). With crossover and/or mutations, there are new genes generated and those with largest Mahalanobis distances are preferably discarded, and preferably to such an extent as to maintain a constant number of genes in the population.
Returning again to
As has been demonstrated above, the present invention provides the user with automated diagnostic decision support that includes display of known tumor cases that are more similar, and more reliable as predictors of pathology, than that afforded by the known one-to-one similarity metrics.
While there have been shown and described what are considered to be preferred embodiments of the invention, it will, of course, be understood that various modifications and changes in form or detail could readily be made without departing from the spirit of the invention. For example, the user may override a classification result to cause the system 100 to search based on the opposite result, so that the physician can first see similar malignant cases and then similar benign cases, or vice versa. It is therefore intended that the invention be not limited to the exact forms described and illustrated, but should be constructed to cover all modifications that may fall within the scope of the appended claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2005/050252 | 1/21/2005 | WO | 00 | 7/7/2006 |
Number | Date | Country | |
---|---|---|---|
60539303 | Jan 2004 | US |