This invention relates to magnetic cards, devices and payment systems.
According to example embodiments, a device may include a dynamic magnetic stripe communications device. According to some example embodiments, the dynamic magnetic stripe communications device may include at least one coil and an exchange coupled amorphous material. According to other example embodiments, the device may include a display. According to still other example embodiments, the device may include a read-head detector. According to yet other example embodiments the device may include a button. According to still yet other example embodiments, the device may include a light emitting diode. According to further example embodiments, the exchange coupled amorphous material may include magnetically hard crystallites embedded in a soft magnetic amorphous matrix. According to still further example embodiments, the exchange coupled amorphous material may include at least one crystalline surface layer. According to yet further example embodiments, the device may include a plurality of exchange coupled amorphous material ribbons. According to still yet further example embodiments, the exchange coupled amorphous material may be a soft magnetic material. According to at least some example embodiments, the exchange coupled amorphous material may be at least part of a material ribbon, and the material ribbon may be part of a layer of material ribbons. According to at least one example embodiment, the exchange coupled amorphous material may be at least part of a material ribbon, and the device may include a plurality of stacked ribbons.
The principles and advantages of the present invention can be more clearly understood from the following detailed description considered in conjunction with the following drawings, in which the same reference numerals denote the same structural elements throughout, and in which:
Amorphous magnetic materials may combine good soft magnetic properties and low core loss.
Compositions may include T70-90X10-30 at %, where T may represent any combination of transition magnetic metals (e.g., Fe, Co and/or Ni), X may refer to metalloid elements (e.g., Si and/or B) and/or refractory metals (e.g., Nb, Mo, Zr, Hf, Cu and/or the like). Non-magnetic elements may improve glass formation and stabilization of an amorphous structure.
Amorphous soft magnetic ribbons may be prepared by a melt-spinning technique. A rotating disk may be cooled internally by water and/or liquid nitrogen. A thin stream of liquid may be dripped on to the disk and cooled, causing rapid solidification. The high and/or increased cooling rates may be on the order of about 104-107 Kelvins per second (K/s). Such cooling rates may result in amorphous microstructures with reduced atomic long-range order (e.g., no long range order), and may exhibit a short-range order (e.g., only a short range order) with a structural correlation length of the order of atomic distances. Further, such cooling rates may limit ribbon thickness to values below about 50 μm.
The soft magnetic properties of amorphous ribbons may be explained using a random anisotropy model. In the model, magnetic anisotropy axes randomly vary their orientation over the scale of the structural correlation length D (D˜atomic scale for amorphous materials). However, ferromagnetic exchange interactions force the magnetic moments to align in parallel, thus impeding magnetization to follow the local easy axis. Consequently the effective magnetic anisotropy may be an average over several structural units, and will be reduced in magnitude.
The magnetic properties of amorphous ribbons may be further tailored by magnetic field annealing and/or tensile stress annealing. Both may yield uniform uniaxial anisotropy. Magnetic field annealing may induce uniaxial anisotropy with its easy axis along the applied magnetic field direction during the heat treatment. The anisotropy may be formed by thermally activated directional atomic ordering along the direction of the local magnetization in order to minimize the spin orbit coupling energy. The annealing temperature may be below Curie temperature (e.g., about 200° C. to about 400° C.). The induced anisotropy constant Ku may be varied by appropriate choice of the annealing temperature and time. Under certain annealing conditions, exchange coupling effect or exchange bias behavior may be observed in amorphous ribbons.
Referring to
Exchange bias behavior may be realized by thermal-magnetic annealing under certain conditions. Absent the conditions, exchange coupling may not occur.
Referring to
The thermally-treated ribbon(s) may be premagnetized. The thermally-treated ribbon(s) may be, for example, submitted to a DC and/or AC magnetic field, such that the hard magnetic crystallites or surface crystalline layers are polarized, and the magnetizations point to the external field direction. The external field may range from about several to hundreds of Oe. The magnetic field may be generated by the magnetized hard grains or the surface layer may pin the amorphous parts in one direction, which may result in a shifted hysteresis loop.
Thermal annealing and magnetization may occur simultaneously (e.g., without premagnetization).
According to at least one example embodiment, the process may be realized by Joule heating, for example, applying electric current through the ribbon(s).
Electronic stripes may include one or more amorphous ribbons and/or layers of amorphous ribbons, for example, inside one or more coils. A layer of amorphous ribbons may include two or more ribbons provided side by side. The amorphous ribbons and/or the layers of amorphous ribbons may be stacked (e.g., in alignment to one another) and/or offset at different heights. The number of ribbons, the number of ribbons per layer, and the number of layers of ribbons, are not limited and may each be, for example, 1 to about 20 (e.g., 3 or 10). The ribbons may be about 1.5 mm to about 3.2 mm wide, and about 50 mm to about 85.60 mm long (e.g., about 76 mm long). The amorphous ribbons may have transverse uniaxial anisotropy along the width direction.
Referring to
Referring to
The presence of a strong magnetic field may cause several reading issues with some magnetic stripe readers. For example, the field variation near the ends may produce a pulse when a magnetic stripe reader passes across. This pulse may be misinterpreted as transmitted information, resulting in a reading error. Field variation along the permanent magnet length may also generate a noise signal, which may compromise the transmitted data.
According to example embodiments, an exchange coupled amorphous ribbons may not require permanent magnets, may reduce or eliminate the strong magnetic field from the electronic stripe, while providing core ribbons in a single domain state. The simplified structure of the electronic stripe may reduce production cost, and may reduce the overall thickness of the stripe to meet, for example, credit card specification (e.g., ISO 7813) and/or provide space for additional components, routing, and/or the like.
According to example embodiments, an electronic stripe track may include one or more layers of exchange coupled ribbons, placed inside one or more conducting coils (e.g., as shown in
According to some example embodiments, no permanent magnet is included to magnetize the core ribbons into a single domain state. According to some example embodiments, no permanent magnet is included to otherwise bias a signal from the one or more coils. According to some example embodiments, no permanent magnet is included in a card including exchange coupled amorphous ribbons.
Referring to
Card 600 may include one or more buttons such as buttons 630-634. Such buttons may be mechanical buttons, capacitive buttons, or a combination or mechanical and capacitive buttons. Card 600 may include button 699. Button 699 may be used, for example, to communicate information through dynamic magnetic stripe communications device 601 indicative of a user's desire to communicate details of a financial transaction to a third-party service provider. Persons skilled in the art will appreciate that pressing a button (e.g., button 699) may cause information to be communicated through device 601 when an associated read-head detector detects the presence of a read-head of a magnetic stripe reader. Button 698 may be utilized to communicate (e.g., after button 698 is pressed and after a read-head detects a read-head of a reader) information indicative of a user selection (e.g., to communicate details of a financial transaction to a different third-party service provider as may be selected by pressing button 699). Multiple buttons may be provided on a card and each button may be associated with different user selections.
Light sensor 627 may be provided, for example, to receive information from a display (e.g., a display of a mobile telephonic device or a laptop computer). Display 625 may allow a user to select (e.g., via buttons) options on the display that instruct the card to communicate (e.g., via a dynamic magnetic stripe communications device, RFID, or exposed IC chip) to use a debit account, credit account, pre-paid account, or point account for a payment transaction.
Button 698 and button 699 may each be associated with, for example, a different third party service provider feature and may be changed by a user at any time. The third party feature associated with a button may be changed by a user on a GUI provided by a device provider, remote facility provider, card issuer, processor, or any other entity. For example, a third party service provider may, on its website or application, allow a user to change the third party feature performed when the third parties' feature button is selected by a user on the user's card or other device. For example, suppose a third party service provider provides a check-in feature at particular stores and then presents the fact that the user has checked into a location on a profile page of the user. One action may be to check into the location using a payment transaction as the check-in. When a transaction is performed, a user's profile may be updated that the user has checked-into that location. When a purchase transaction is performed, a user's profile may be updated that the user has made a purchase at the check-in.
Another action may be to use a purchased product as the check-in. When a transaction is performed, a user's profile may be updated that the user has made a purchase of a particular item at the check-in. For example, a user may be provided with a GUI (e.g., on a mobile telephonic device of the user) when the user makes a purchase to identify the goods that the user has purchased. In doing so, features may be enhanced with additional information from a user after a purchase has been made.
The selection of a feature may or may not have a cost associated with it. If a cost is associated with the feature, for example, the cost may be added to a customer's statement (e.g., added to a credit or debit purchase) for a particular transaction. A fixed-fee or variable-fee (e.g., a percentage of the transaction) may then be removed from the fee charged to the user and distributed among particular parties (e.g., distributed among the card issuer and/or device provider). The remainder of the fee may be provided, for example, to the third party service provider.
A cost may be associated with a feature selection, but may not be a cost to a user. Instead, for example, the cost may be a cost to a third party service provider. The cost may be provided, for example, to other entities such as, for example, the device provider, card issuer, card processor (which may be the same, for example, as the card issuer), or any other entity (e.g., card network).
Architecture 650 may be utilized with any card. Architecture 650 may include processor 620. Processor 620 may have on-board memory for storing information (e.g., financial features). Any number of components may communicate to processor 620 and/or receive communications from processor 620. For example, one or more displays (e.g., display 640) may be coupled to processor 620. Persons skilled in the art will appreciate that components may be placed between particular components and processor 620. For example, a display driver circuit may be coupled between display 640 and processor 620.
Memory 642 may be coupled to processor 620. Memory 642 may include data, for example, that is unique to a particular card. Memory 642 may include any type of data. For example, memory 642 may store discretionary data codes associated with buttons of a card (e.g., card 600 of
A card may include, for example, any number of light sensors. Light sensors may be utilized such that a display screen, or other light emitting device, may communicate information to light sensors 627 via light.
Any number of reader communication devices may be included in architecture 650. For example, IC chip 652 may be included to communicate information to an IC chip reader. IC chip 652 may be, for example, an EMV chip. As per another example, RFID 651 may be included to communicate information to an RFID reader.
A magnetic stripe communications device may also be included to communicate information to a magnetic stripe reader. Such a magnetic stripe communications device may provide electromagnetic signals to a magnetic stripe reader. Different electromagnetic signals may be communicated to a magnetic stripe reader to provide different tracks of data. For example, electromagnetic field generators 670, 680, and 685 may be included to communicate separate tracks of information to a magnetic stripe reader. Such electromagnetic field generators may include a coil winding around one or more materials, for example, one or more amorphous materials. For example, the one or more materials may include one more amorphous ribbons (e.g., one more amorphous, soft magnetic ribbons; one or more layers of amorphous, soft magnetic ribbons; and/or one or more stacked layers of amorphous ribbons). Each electromagnetic field generator may communicate information serially to a receiver of a magnetic stripe reader for particular magnetic stripe track. Read-head detectors 671 and 672 may be utilized to sense the presence of a magnetic stripe reader (e.g., a read-head housing of a magnetic stripe reader). This sensed information may be communicated to processor 620 to cause processor 620 to communicate information serially from electromagnetic generators 670, 680, and 685 to magnetic stripe track receivers in a read-head housing of a magnetic stripe reader. Accordingly, a magnetic stripe communications device may change the information communicated to a magnetic stripe reader at any time.
Processor 620 may, for example, communicate user-specific and card-specific information through RFID 651, IC chip 652, and electromagnetic generators 670, 680, and 685 to card readers coupled to remote information processing servers (e.g., purchase authorization servers). Driving circuitry 641 may be utilized by processor 620, for example, to control electromagnetic generators 670, 680, and 685.
Although example embodiments may be disclosed with respect to cards, example embodiments are not so limited. For example, fixed devices (e.g., computing devices) and portable devices (e.g., portable computing devices, such as mobile telephonic devices, PDA's, tablets and/or the like) that may include exchange coupled amorphous magnetic materials as described above are within the scope of example embodiments.
Persons skilled in the art will appreciate that the present invention is not limited to only the embodiments described, and that features described in one embodiment may be used in a different embodiment. The present invention more generally involves dynamic information and devices. Persons skilled in the art will also appreciate that the apparatus of the present invention may be implemented in other ways than those described herein. All such modifications are within the scope of the present invention, which is limited only by the claims that follow.
This application claims the benefit of U.S. Provisional Patent Application No. 61/968,869, titled “EXCHANGE COUPLED AMORPHOUS RIBBONS FOR ELECTRONIC STRIPES,” filed Mar. 21, 2014, which is hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3965463 | Chaudhari | Jun 1976 | A |
4353064 | Stamm | Oct 1982 | A |
4394654 | Hofmann-Cerfontaine | Jul 1983 | A |
4614861 | Pavlov et al. | Sep 1986 | A |
4667087 | Quintana | May 1987 | A |
4701601 | Francini et al. | Oct 1987 | A |
4720860 | Weiss | Jan 1988 | A |
4786791 | Hodama | Nov 1988 | A |
4791283 | Burkhardt | Dec 1988 | A |
4797542 | Hara | Jan 1989 | A |
5038251 | Sugiyama et al. | Aug 1991 | A |
5168520 | Weiss | Dec 1992 | A |
5237614 | Weiss | Aug 1993 | A |
5276311 | Hennige | Jan 1994 | A |
5347580 | Molva et al. | Sep 1994 | A |
5361062 | Weiss et al. | Nov 1994 | A |
5412199 | Finkelstein et al. | May 1995 | A |
5434398 | Goldberg | Jul 1995 | A |
5434405 | Finkelstein et al. | Jul 1995 | A |
5478994 | Rahman | Dec 1995 | A |
5479512 | Weiss | Dec 1995 | A |
5484997 | Haynes | Jan 1996 | A |
5485519 | Weiss | Jan 1996 | A |
5585787 | Wallerstein | Dec 1996 | A |
5591949 | Bernstein | Jan 1997 | A |
5608203 | Finkelstein et al. | Mar 1997 | A |
5623552 | Lane | Apr 1997 | A |
5657388 | Weiss | Aug 1997 | A |
5834747 | Cooper | Nov 1998 | A |
5834756 | Gutman et al. | Nov 1998 | A |
5856661 | Finkelstein et al. | Jan 1999 | A |
5864623 | Messina et al. | Jan 1999 | A |
5907142 | Kelsey | May 1999 | A |
5913203 | Wong et al. | Jun 1999 | A |
5937394 | Wong et al. | Aug 1999 | A |
5955021 | Tiffany, III | Sep 1999 | A |
5956699 | Wong et al. | Sep 1999 | A |
6025054 | Tiffany, III | Feb 2000 | A |
6045043 | Bashan et al. | Apr 2000 | A |
6076163 | Hoffstein et al. | Jun 2000 | A |
6079621 | Vardanyan et al. | Jun 2000 | A |
6085320 | Kaliski | Jul 2000 | A |
6095416 | Grant et al. | Aug 2000 | A |
6130621 | Weiss | Oct 2000 | A |
6145079 | Mitty et al. | Nov 2000 | A |
6157920 | Jakobsson et al. | Dec 2000 | A |
6161181 | Haynes, III et al. | Dec 2000 | A |
6176430 | Finkelstein et al. | Jan 2001 | B1 |
6182894 | Hackett et al. | Feb 2001 | B1 |
6189098 | Kaliski | Feb 2001 | B1 |
6199052 | Mitty et al. | Mar 2001 | B1 |
6206293 | Gutman et al. | Mar 2001 | B1 |
6240184 | Huynh et al. | May 2001 | B1 |
6241153 | Tiffany, III | Jun 2001 | B1 |
6256873 | Tiffany, III | Jul 2001 | B1 |
6269163 | Rivest et al. | Jul 2001 | B1 |
6286022 | Kaliski et al. | Sep 2001 | B1 |
6308890 | Cooper | Oct 2001 | B1 |
6313724 | Osterweil | Nov 2001 | B1 |
6389442 | Yin et al. | May 2002 | B1 |
6393447 | Jakobsson et al. | May 2002 | B1 |
6411715 | Liskov et al. | Jun 2002 | B1 |
6446052 | Juels | Sep 2002 | B1 |
6460141 | Olden | Oct 2002 | B1 |
6592044 | Wong et al. | Jul 2003 | B1 |
6607127 | Wong | Aug 2003 | B2 |
6609654 | Anderson et al. | Aug 2003 | B1 |
6631849 | Blossom | Oct 2003 | B2 |
6655585 | Shinn | Dec 2003 | B2 |
6681988 | Stack et al. | Jan 2004 | B2 |
6687197 | Matsumoto | Feb 2004 | B1 |
6705520 | Pitroda et al. | Mar 2004 | B1 |
6755341 | Wong et al. | Jun 2004 | B1 |
6764005 | Cooper | Jul 2004 | B2 |
6769618 | Finkelstein | Aug 2004 | B1 |
6805288 | Routhenstein et al. | Oct 2004 | B2 |
6811082 | Wong | Nov 2004 | B2 |
6813354 | Jakobsson et al. | Nov 2004 | B1 |
6817532 | Finkelstein | Nov 2004 | B2 |
6873974 | Schutzer | Mar 2005 | B1 |
6898158 | Matsumoto | May 2005 | B2 |
6902116 | Finkelstein | Jun 2005 | B2 |
6970070 | Juels et al. | Nov 2005 | B2 |
6980969 | Tuchler et al. | Dec 2005 | B1 |
6985583 | Brainard et al. | Jan 2006 | B1 |
6991155 | Burchette, Jr. | Jan 2006 | B2 |
7013030 | Wong et al. | Mar 2006 | B2 |
7035443 | Wong | Apr 2006 | B2 |
7039223 | Wong | May 2006 | B2 |
7044394 | Brown | May 2006 | B2 |
7051929 | Li | May 2006 | B2 |
7083094 | Cooper | Aug 2006 | B2 |
7100049 | Gasparini et al. | Aug 2006 | B2 |
7100821 | Rasti | Sep 2006 | B2 |
7111172 | Duane et al. | Sep 2006 | B1 |
7114652 | Moullette et al. | Oct 2006 | B2 |
7136514 | Wong | Nov 2006 | B1 |
7140550 | Ramachandran | Nov 2006 | B2 |
7163153 | Blossom | Jan 2007 | B2 |
7195154 | Routhenstein | Mar 2007 | B2 |
7197639 | Juels et al. | Mar 2007 | B1 |
7219368 | Juels et al. | May 2007 | B2 |
7225537 | Reed | Jun 2007 | B2 |
7225994 | Finkelstein | Jun 2007 | B2 |
7246752 | Brown | Jul 2007 | B2 |
7298243 | Juels et al. | Nov 2007 | B2 |
7334732 | Cooper | Feb 2008 | B2 |
7337326 | Palmer et al. | Feb 2008 | B2 |
7346775 | Gasparini et al. | Mar 2008 | B2 |
7356696 | Jakobsson et al. | Apr 2008 | B1 |
7357319 | Lin et al. | Apr 2008 | B1 |
7359507 | Kaliski | Apr 2008 | B2 |
7360688 | Harris | Apr 2008 | B1 |
7363494 | Brainard et al. | Apr 2008 | B2 |
7380710 | Brown | Jun 2008 | B2 |
7398253 | Pinnell | Jul 2008 | B1 |
7404087 | Teunen | Jul 2008 | B2 |
7424570 | D'Albore et al. | Sep 2008 | B2 |
7427033 | Roskind | Sep 2008 | B1 |
7454349 | Teunen et al. | Nov 2008 | B2 |
7461250 | Duane et al. | Dec 2008 | B1 |
7461399 | Juels et al. | Dec 2008 | B2 |
7472093 | Juels | Dec 2008 | B2 |
7472829 | Brown | Jan 2009 | B2 |
7494055 | Fernandes et al. | Feb 2009 | B2 |
7502467 | Brainard et al. | Mar 2009 | B2 |
7502933 | Jakobsson et al. | Mar 2009 | B2 |
7503485 | Routhenstein | Mar 2009 | B1 |
7516492 | Nisbet et al. | Apr 2009 | B1 |
7523301 | Nisbet et al. | Apr 2009 | B2 |
7530495 | Cooper | May 2009 | B2 |
7532104 | Juels | May 2009 | B2 |
7543739 | Brown et al. | Jun 2009 | B2 |
7559464 | Routhenstein | Jul 2009 | B2 |
7562221 | Nystrom et al. | Jul 2009 | B2 |
7562222 | Gasparini et al. | Jul 2009 | B2 |
7580898 | Brown et al. | Aug 2009 | B2 |
7584153 | Brown et al. | Sep 2009 | B2 |
7591426 | Osterweil et al. | Sep 2009 | B2 |
7591427 | Osterweil | Sep 2009 | B2 |
7602904 | Juels et al. | Oct 2009 | B2 |
7631804 | Brown | Dec 2009 | B2 |
7639537 | Sepe et al. | Dec 2009 | B2 |
7641124 | Brown et al. | Jan 2010 | B2 |
7660902 | Graham et al. | Feb 2010 | B2 |
7784687 | Mullen et al. | Aug 2010 | B2 |
7793851 | Mullen | Sep 2010 | B2 |
7828207 | Cooper | Nov 2010 | B2 |
7828220 | Mullen | Nov 2010 | B2 |
7931195 | Mullen | Apr 2011 | B2 |
7949373 | Whiting | May 2011 | B2 |
7954705 | Mullen | Jun 2011 | B2 |
D643063 | Mullen et al. | Aug 2011 | S |
8011577 | Mullen et al. | Sep 2011 | B2 |
8020775 | Mullen et al. | Sep 2011 | B2 |
8066191 | Cloutier et al. | Nov 2011 | B1 |
D651237 | Mullen et al. | Dec 2011 | S |
D651238 | Mullen et al. | Dec 2011 | S |
8074877 | Mullen et al. | Dec 2011 | B2 |
D651644 | Mullen et al. | Jan 2012 | S |
D652075 | Mullen et al. | Jan 2012 | S |
D652076 | Mullen et al. | Jan 2012 | S |
D652448 | Mullen et al. | Jan 2012 | S |
D652449 | Mullen et al. | Jan 2012 | S |
D652450 | Mullen et al. | Jan 2012 | S |
D652867 | Mullen et al. | Jan 2012 | S |
D653288 | Mullen et al. | Jan 2012 | S |
8172148 | Cloutier et al. | May 2012 | B1 |
D665022 | Mullen et al. | Aug 2012 | S |
D665447 | Mullen et al. | Aug 2012 | S |
D666241 | Mullen et al. | Aug 2012 | S |
8282007 | Cloutier et al. | Oct 2012 | B1 |
8286876 | Mullen et al. | Oct 2012 | B2 |
D670329 | Mullen et al. | Nov 2012 | S |
D670330 | Mullen et al. | Nov 2012 | S |
D670331 | Mullen et al. | Nov 2012 | S |
D670332 | Mullen et al. | Nov 2012 | S |
D670759 | Mullen et al. | Nov 2012 | S |
8302872 | Mullen | Nov 2012 | B2 |
D672389 | Mullen et al. | Dec 2012 | S |
8322623 | Mullen et al. | Dec 2012 | B1 |
D673606 | Mullen et al. | Jan 2013 | S |
D674013 | Mullen et al. | Jan 2013 | S |
D675256 | Mullen et al. | Jan 2013 | S |
8348172 | Cloutier et al. | Jan 2013 | B1 |
D676487 | Mullen et al. | Feb 2013 | S |
D676904 | Mullen et al. | Feb 2013 | S |
8382000 | Mullen et al. | Feb 2013 | B2 |
8393545 | Mullen et al. | Mar 2013 | B1 |
8393546 | Yen et al. | Mar 2013 | B1 |
8413892 | Mullen et al. | Apr 2013 | B2 |
8424773 | Mullen et al. | Apr 2013 | B2 |
8459548 | Mullen et al. | Jun 2013 | B2 |
D687094 | Mullen et al. | Jul 2013 | S |
D687095 | Mullen et al. | Jul 2013 | S |
8485437 | Mullen et al. | Jul 2013 | B2 |
8485446 | Mullen et al. | Jul 2013 | B1 |
D687487 | Mullen et al. | Aug 2013 | S |
D687488 | Mullen et al. | Aug 2013 | S |
D687489 | Mullen et al. | Aug 2013 | S |
D687490 | Mullen et al. | Aug 2013 | S |
D687887 | Mullen et al. | Aug 2013 | S |
D688744 | Mullen et al. | Aug 2013 | S |
8511574 | Yen et al. | Aug 2013 | B1 |
8517276 | Mullen et al. | Aug 2013 | B2 |
8523059 | Mullen et al. | Sep 2013 | B1 |
D692053 | Mullen et al. | Oct 2013 | S |
8561894 | Mullen et al. | Oct 2013 | B1 |
8567679 | Mullen et al. | Oct 2013 | B1 |
D694322 | Mullen et al. | Nov 2013 | S |
8573503 | Cloutier et al. | Nov 2013 | B1 |
8579203 | Lambeth | Nov 2013 | B1 |
8590796 | Cloutier et al. | Nov 2013 | B1 |
D695636 | Mullen et al. | Dec 2013 | S |
8602312 | Cloutier et al. | Dec 2013 | B2 |
8608083 | Mullen et al. | Dec 2013 | B2 |
8622309 | Mullen et al. | Jan 2014 | B1 |
8628022 | Rhoades et al. | Jan 2014 | B1 |
8668143 | Mullen et al. | Mar 2014 | B2 |
8727219 | Mullen | May 2014 | B1 |
8733638 | Mullen et al. | May 2014 | B2 |
8746579 | Cloutier et al. | Jun 2014 | B1 |
8757483 | Mullen et al. | Jun 2014 | B1 |
8757499 | Cloutier et al. | Jun 2014 | B2 |
8814050 | Mullen et al. | Aug 2014 | B1 |
8827153 | Rhoades et al. | Sep 2014 | B1 |
8875999 | Mullen et al. | Nov 2014 | B2 |
8881989 | Mullen et al. | Nov 2014 | B2 |
8888009 | Mullen | Nov 2014 | B1 |
8931703 | Mullen et al. | Jan 2015 | B1 |
8944333 | Mullen et al. | Feb 2015 | B1 |
8960545 | Batra | Feb 2015 | B1 |
8973824 | Mullen et al. | Mar 2015 | B2 |
9004368 | Mullen et al. | Apr 2015 | B2 |
9010630 | Mullen et al. | Apr 2015 | B2 |
9010644 | Workley | Apr 2015 | B1 |
9010647 | Workley et al. | Apr 2015 | B2 |
D729869 | Mullen et al. | May 2015 | S |
D729870 | Mullen et al. | May 2015 | S |
D729871 | Mullen et al. | May 2015 | S |
D730438 | Mullen et al. | May 2015 | S |
D730439 | Mullen et al. | May 2015 | S |
9033218 | Batra | May 2015 | B1 |
9053398 | Cloutier | Jun 2015 | B1 |
9064194 | Bohac, Jr. | Jun 2015 | B1 |
9064195 | Hartwick et al. | Jun 2015 | B2 |
9064255 | Mullen et al. | Jun 2015 | B1 |
D737373 | O'Shea et al. | Aug 2015 | S |
D750166 | Nicklaus et al. | Feb 2016 | S |
D750167 | Nicklaus et al. | Feb 2016 | S |
D750168 | Nicklaus et al. | Feb 2016 | S |
D751639 | Mullen et al. | Mar 2016 | S |
D751640 | Nicklaus et al. | Mar 2016 | S |
9292843 | Mullen et al. | Mar 2016 | B1 |
9306666 | Zhang et al. | Apr 2016 | B1 |
9329619 | Cloutier | May 2016 | B1 |
9349089 | Rhoades et al. | May 2016 | B1 |
9361569 | Mullen et al. | Jun 2016 | B2 |
9373069 | Cloutier et al. | Jun 2016 | B2 |
9384438 | Mullen et al. | Jul 2016 | B2 |
D764584 | Nicklaus et al. | Aug 2016 | S |
D765173 | Mullen et al. | Aug 2016 | S |
D765174 | Nicklaus et al. | Aug 2016 | S |
D767024 | O'Shea et al. | Sep 2016 | S |
D777252 | Nicklaus et al. | Jan 2017 | S |
9547816 | Mullen et al. | Jan 2017 | B2 |
9619741 | Rigatti | Apr 2017 | B1 |
9639796 | Mullen et al. | May 2017 | B2 |
9646240 | Mullen et al. | May 2017 | B1 |
9646750 | Workley | May 2017 | B1 |
9652436 | Yen et al. | May 2017 | B1 |
9659246 | Workley | May 2017 | B1 |
9684861 | Mullen et al. | Jun 2017 | B2 |
D792511 | Mullen et al. | Jul 2017 | S |
D792512 | Mullen et al. | Jul 2017 | S |
D792513 | Mullen et al. | Jul 2017 | S |
9697454 | Mullen et al. | Jul 2017 | B2 |
9704088 | Mullen et al. | Jul 2017 | B2 |
9704089 | Mullen et al. | Jul 2017 | B2 |
9710745 | O'Shea | Jul 2017 | B1 |
9721201 | Mullen et al. | Aug 2017 | B1 |
9727813 | Mullen et al. | Aug 2017 | B2 |
9734669 | Mullen et al. | Aug 2017 | B1 |
9805297 | Mullen et al. | Oct 2017 | B2 |
9818125 | Mullen et al. | Nov 2017 | B2 |
9836680 | Cloutier | Dec 2017 | B1 |
9852368 | Yen et al. | Dec 2017 | B1 |
9875437 | Cloutier et al. | Jan 2018 | B2 |
9881245 | Rhoades et al. | Jan 2018 | B1 |
9916992 | Mullen et al. | Mar 2018 | B2 |
9928456 | Cloutier et al. | Mar 2018 | B1 |
9953255 | Yen et al. | Apr 2018 | B1 |
10022884 | Cloutier | Jul 2018 | B1 |
10032100 | Mullen et al. | Jul 2018 | B2 |
10055614 | Cloutier et al. | Aug 2018 | B1 |
10062024 | Bohac, Jr. | Aug 2018 | B1 |
D828870 | Mullen et al. | Sep 2018 | S |
10095970 | Mullen | Oct 2018 | B1 |
10095974 | Mullen et al. | Oct 2018 | B1 |
10108891 | Yu | Oct 2018 | B1 |
10169692 | Mullen et al. | Jan 2019 | B2 |
10169693 | Batra | Jan 2019 | B1 |
10176419 | Cloutier et al. | Jan 2019 | B1 |
10176423 | Mullen et al. | Jan 2019 | B1 |
10181097 | Mullen et al. | Jan 2019 | B1 |
10198687 | Mullen et al. | Feb 2019 | B2 |
10223631 | Mullen et al. | Mar 2019 | B2 |
10255545 | Mullen et al. | Apr 2019 | B2 |
10311349 | Workley | Jun 2019 | B1 |
10325199 | Mullen et al. | Jun 2019 | B2 |
10395156 | Batra | Aug 2019 | B1 |
10430704 | Mullen et al. | Oct 2019 | B2 |
10467521 | Mullen et al. | Nov 2019 | B2 |
10482363 | Cloutier et al. | Nov 2019 | B1 |
10496918 | Mullen et al. | Dec 2019 | B2 |
10504105 | Mullen et al. | Dec 2019 | B2 |
10579920 | Mullen et al. | Mar 2020 | B2 |
10693263 | Mullen et al. | Jun 2020 | B1 |
10922597 | Workley | Feb 2021 | B1 |
20010034702 | Mockett et al. | Oct 2001 | A1 |
20010047335 | Arndt et al. | Nov 2001 | A1 |
20020059114 | Cockrill et al. | May 2002 | A1 |
20020082989 | Fife et al. | Jun 2002 | A1 |
20020096570 | Wong et al. | Jul 2002 | A1 |
20020120583 | Keresman, III et al. | Aug 2002 | A1 |
20030034388 | Routhenstein et al. | Feb 2003 | A1 |
20030052168 | Wong | Mar 2003 | A1 |
20030057278 | Wong | Mar 2003 | A1 |
20030116635 | Taban | Jun 2003 | A1 |
20030152253 | Wong | Aug 2003 | A1 |
20030163287 | Vock et al. | Aug 2003 | A1 |
20030173409 | Vogt et al. | Sep 2003 | A1 |
20030179909 | Wong et al. | Sep 2003 | A1 |
20030179910 | Wong | Sep 2003 | A1 |
20030226899 | Finkelstein | Dec 2003 | A1 |
20040035942 | Silverman | Feb 2004 | A1 |
20040133787 | Doughty | Jul 2004 | A1 |
20040162732 | Rahim et al. | Aug 2004 | A1 |
20040172535 | Jakobsson | Sep 2004 | A1 |
20040177045 | Brown | Sep 2004 | A1 |
20050043997 | Sohata et al. | Feb 2005 | A1 |
20050080747 | Anderson et al. | Apr 2005 | A1 |
20050086160 | Wong et al. | Apr 2005 | A1 |
20050086177 | Anderson et al. | Apr 2005 | A1 |
20050116026 | Burger et al. | Jun 2005 | A1 |
20050119940 | Concilio et al. | Jun 2005 | A1 |
20050154643 | Doan et al. | Jul 2005 | A1 |
20050228959 | D'Albore et al. | Oct 2005 | A1 |
20060000900 | Fernandes et al. | Jan 2006 | A1 |
20060037073 | Juels et al. | Feb 2006 | A1 |
20060041759 | Kaliski et al. | Feb 2006 | A1 |
20060085328 | Cohen et al. | Apr 2006 | A1 |
20060091223 | Zellner | May 2006 | A1 |
20060161435 | Atef et al. | Jul 2006 | A1 |
20060163353 | Moulette et al. | Jul 2006 | A1 |
20060174104 | Crichton et al. | Aug 2006 | A1 |
20060196931 | Holtmanns et al. | Sep 2006 | A1 |
20060256961 | Brainard et al. | Nov 2006 | A1 |
20070034700 | Poidomani et al. | Feb 2007 | A1 |
20070114274 | Gibbs et al. | May 2007 | A1 |
20070124321 | Szydlo | May 2007 | A1 |
20070152070 | D'Albore | Jul 2007 | A1 |
20070152072 | Frallicciardi et al. | Jul 2007 | A1 |
20070153487 | Frallicciardi et al. | Jul 2007 | A1 |
20070174614 | Duane et al. | Jul 2007 | A1 |
20070192249 | Biffle et al. | Aug 2007 | A1 |
20070241183 | Brown et al. | Oct 2007 | A1 |
20070241201 | Brown et al. | Oct 2007 | A1 |
20070256123 | Duane et al. | Nov 2007 | A1 |
20070291753 | Romano | Dec 2007 | A1 |
20080005510 | Sepe et al. | Jan 2008 | A1 |
20080008315 | Fontana et al. | Jan 2008 | A1 |
20080008322 | Fontana et al. | Jan 2008 | A1 |
20080010675 | Massascusa et al. | Jan 2008 | A1 |
20080016351 | Fontana et al. | Jan 2008 | A1 |
20080019507 | Fontana et al. | Jan 2008 | A1 |
20080028447 | O'Malley et al. | Jan 2008 | A1 |
20080029607 | Mullen | Feb 2008 | A1 |
20080035738 | Mullen | Feb 2008 | A1 |
20080040271 | Hammad et al. | Feb 2008 | A1 |
20080040276 | Hammad et al. | Feb 2008 | A1 |
20080054068 | Mullen | Mar 2008 | A1 |
20080054079 | Mullen | Mar 2008 | A1 |
20080054081 | Mullen | Mar 2008 | A1 |
20080058016 | Di Maggio et al. | Mar 2008 | A1 |
20080059379 | Ramaci et al. | Mar 2008 | A1 |
20080065555 | Mullen | Mar 2008 | A1 |
20080096326 | Reed | Apr 2008 | A1 |
20080126398 | Cimino | May 2008 | A1 |
20080128515 | Di Iorio | Jun 2008 | A1 |
20080148394 | Poidomani et al. | Jun 2008 | A1 |
20080201264 | Brown et al. | Aug 2008 | A1 |
20080209550 | Di Iorio | Aug 2008 | A1 |
20080288699 | Chichierchia | Nov 2008 | A1 |
20080294930 | Varone et al. | Nov 2008 | A1 |
20080302869 | Mullen | Dec 2008 | A1 |
20080302876 | Mullen | Dec 2008 | A1 |
20080302877 | Musella et al. | Dec 2008 | A1 |
20090013122 | Sepe et al. | Jan 2009 | A1 |
20090036147 | Romano | Feb 2009 | A1 |
20090046522 | Sepe et al. | Feb 2009 | A1 |
20090108064 | Fernandes et al. | Apr 2009 | A1 |
20090150295 | Hatch et al. | Jun 2009 | A1 |
20090152365 | Li et al. | Jun 2009 | A1 |
20090159663 | Mullen et al. | Jun 2009 | A1 |
20090159667 | Mullen et al. | Jun 2009 | A1 |
20090159668 | Mullen et al. | Jun 2009 | A1 |
20090159669 | Mullen et al. | Jun 2009 | A1 |
20090159670 | Mullen et al. | Jun 2009 | A1 |
20090159671 | Mullen et al. | Jun 2009 | A1 |
20090159672 | Mullen et al. | Jun 2009 | A1 |
20090159673 | Mullen et al. | Jun 2009 | A1 |
20090159680 | Mullen et al. | Jun 2009 | A1 |
20090159681 | Mullen et al. | Jun 2009 | A1 |
20090159682 | Mullen et al. | Jun 2009 | A1 |
20090159688 | Mullen et al. | Jun 2009 | A1 |
20090159689 | Mullen et al. | Jun 2009 | A1 |
20090159690 | Mullen et al. | Jun 2009 | A1 |
20090159696 | Mullen | Jun 2009 | A1 |
20090159697 | Mullen et al. | Jun 2009 | A1 |
20090159698 | Mullen et al. | Jun 2009 | A1 |
20090159699 | Mullen et al. | Jun 2009 | A1 |
20090159700 | Mullen et al. | Jun 2009 | A1 |
20090159701 | Mullen et al. | Jun 2009 | A1 |
20090159702 | Mullen | Jun 2009 | A1 |
20090159703 | Mullen et al. | Jun 2009 | A1 |
20090159704 | Mullen et al. | Jun 2009 | A1 |
20090159705 | Mullen et al. | Jun 2009 | A1 |
20090159706 | Mullen et al. | Jun 2009 | A1 |
20090159707 | Mullen et al. | Jun 2009 | A1 |
20090159708 | Mullen et al. | Jun 2009 | A1 |
20090159709 | Mullen | Jun 2009 | A1 |
20090159710 | Mullen et al. | Jun 2009 | A1 |
20090159711 | Mullen et al. | Jun 2009 | A1 |
20090159712 | Mullen et al. | Jun 2009 | A1 |
20090159713 | Mullen et al. | Jun 2009 | A1 |
20090160617 | Mullen et al. | Jun 2009 | A1 |
20090242648 | Di Sirio et al. | Oct 2009 | A1 |
20090244858 | Di Sirio et al. | Oct 2009 | A1 |
20090253460 | Varone et al. | Oct 2009 | A1 |
20090255996 | Brown et al. | Oct 2009 | A1 |
20090290704 | Cimino | Nov 2009 | A1 |
20090303885 | Longo | Dec 2009 | A1 |
20090308921 | Mullen | Dec 2009 | A1 |
20100098972 | Maeda | Apr 2010 | A1 |
20110028184 | Cooper | Feb 2011 | A1 |
20110272465 | Mullen et al. | Nov 2011 | A1 |
20110272466 | Mullen et al. | Nov 2011 | A1 |
20110272467 | Mullen et al. | Nov 2011 | A1 |
20110272471 | Mullen | Nov 2011 | A1 |
20110272472 | Mullen | Nov 2011 | A1 |
20110272473 | Mullen et al. | Nov 2011 | A1 |
20110272474 | Mullen et al. | Nov 2011 | A1 |
20110272475 | Mullen et al. | Nov 2011 | A1 |
20110272476 | Mullen et al. | Nov 2011 | A1 |
20110272477 | Mullen et al. | Nov 2011 | A1 |
20110272478 | Mullen | Nov 2011 | A1 |
20110272479 | Mullen | Nov 2011 | A1 |
20110272480 | Mullen et al. | Nov 2011 | A1 |
20110272481 | Mullen et al. | Nov 2011 | A1 |
20110272482 | Mullen et al. | Nov 2011 | A1 |
20110272483 | Mullen et al. | Nov 2011 | A1 |
20110272484 | Mullen et al. | Nov 2011 | A1 |
20110276380 | Mullen et al. | Nov 2011 | A1 |
20110276381 | Mullen et al. | Nov 2011 | A1 |
20110276416 | Mullen et al. | Nov 2011 | A1 |
20110276424 | Mullen | Nov 2011 | A1 |
20110276425 | Mullen | Nov 2011 | A1 |
20110276436 | Mullen et al. | Nov 2011 | A1 |
20110276437 | Mullen et al. | Nov 2011 | A1 |
20110278364 | Mullen et al. | Nov 2011 | A1 |
20110282753 | Mullen et al. | Nov 2011 | A1 |
20110284632 | Mullen et al. | Nov 2011 | A1 |
20110284640 | Mullen et al. | Nov 2011 | A1 |
20120028702 | Mullen et al. | Feb 2012 | A1 |
20120037709 | Cloutier et al. | Feb 2012 | A1 |
20120197708 | Mullen et al. | Aug 2012 | A1 |
20120209744 | Mullen et al. | Aug 2012 | A1 |
20120254037 | Mullen | Oct 2012 | A1 |
20120254038 | Mullen | Oct 2012 | A1 |
20120286037 | Mullen et al. | Nov 2012 | A1 |
20120286928 | Mullen et al. | Nov 2012 | A1 |
20120286936 | Mullen et al. | Nov 2012 | A1 |
20120290449 | Mullen et al. | Nov 2012 | A1 |
20120290472 | Mullen et al. | Nov 2012 | A1 |
20120318871 | Mullen et al. | Dec 2012 | A1 |
20120326013 | Cloutier et al. | Dec 2012 | A1 |
20130020396 | Mullen et al. | Jan 2013 | A1 |
20130217152 | Mullen et al. | Aug 2013 | A1 |
20130282573 | Mullen et al. | Oct 2013 | A1 |
20130282575 | Mullen et al. | Oct 2013 | A1 |
20130295415 | Wang | Nov 2013 | A1 |
20140001269 | Hartwick et al. | Jan 2014 | A1 |
20140054384 | Cloutier et al. | Feb 2014 | A1 |
20140117094 | Workley et al. | May 2014 | A1 |
20140175170 | Bowers | Jun 2014 | A1 |
20140203902 | Shippee et al. | Jul 2014 | A1 |
20140233166 | O'Shea | Aug 2014 | A1 |
20150161498 | Olson | Jun 2015 | A1 |
20150186766 | Mullen et al. | Jul 2015 | A1 |
20150193679 | Workley et al. | Jul 2015 | A1 |
20150254546 | Hartwick et al. | Sep 2015 | A1 |
20160162713 | Cloutier et al. | Jun 2016 | A1 |
20160180209 | Mullen et al. | Jun 2016 | A1 |
20160239735 | Mullen et al. | Aug 2016 | A1 |
20160283837 | Mullen et al. | Sep 2016 | A1 |
20160307085 | Mullen et al. | Oct 2016 | A1 |
20160335529 | Mullen et al. | Nov 2016 | A1 |
20160342876 | Mullen et al. | Nov 2016 | A1 |
20160342877 | Mullen et al. | Nov 2016 | A1 |
20160342878 | Mullen et al. | Nov 2016 | A1 |
20160342879 | Mullen et al. | Nov 2016 | A1 |
20160342880 | Mullen et al. | Nov 2016 | A1 |
20170286817 | Mullen et al. | Oct 2017 | A1 |
20170300796 | Mullen et al. | Oct 2017 | A1 |
20180053079 | Cloutier et al. | Feb 2018 | A1 |
20180060881 | Mullen et al. | Mar 2018 | A1 |
20180151391 | Mullen et al. | May 2018 | A1 |
20190026613 | O'Shea | Jan 2019 | A1 |
20190042903 | Cloutier et al. | Feb 2019 | A1 |
20190065928 | Mullen et al. | Feb 2019 | A1 |
20190197387 | Mullen et al. | Jun 2019 | A1 |
20190340484 | Mullen et al. | Nov 2019 | A1 |
20200082383 | Mullen et al. | Mar 2020 | A1 |
Number | Date | Country |
---|---|---|
05210770 | Aug 1993 | JP |
WO9852735 | Nov 1998 | WO |
WO0247019 | Jun 2002 | WO |
WO06066322 | Jun 2006 | WO |
WO06080929 | Aug 2006 | WO |
WO06105092 | Oct 2006 | WO |
WO06116772 | Nov 2006 | WO |
WO08064403 | Jun 2008 | WO |
PCTUS1125047 | Feb 2011 | WO |
PCTUS1137041 | May 2011 | WO |
PCTUS1145991 | Jul 2011 | WO |
PCTUS1231919 | Apr 2012 | WO |
PCTUS1231921 | Apr 2012 | WO |
PCTUS1237237 | May 2012 | WO |
PCTUS1326746 | Feb 2013 | WO |
Entry |
---|
U.S. Appl. No. 60/594,300, filed Mar. 26, 2005, Poidomani et al. |
U.S. Appl. No. 60/675,388, filed Apr. 27, 2005, Poidomani et al. |
The Bank Credit Card Business. Second Edition, American Bankers Association, Washington, D.C., 1996. |
A Day in the Life of a Flux Reversal. http:--www.phrack-org-issues.html?issue=37&id=6#article. as viewed on Apr. 12, 2010. |
Dynamic Virtual Credit Card Numbers. http:--homes.cerias.purdue.edu-˜jtli-paper-fc07.pdf. as viewed on Apr. 12, 2010. |
English translation of JP 05210770, 1993. |
Number | Date | Country | |
---|---|---|---|
61968869 | Mar 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14658184 | Mar 2015 | US |
Child | 16134940 | US |