Exchangeable system for minimally invasive beating heart repair of heart valve leaflets

Information

  • Patent Grant
  • 10130474
  • Patent Number
    10,130,474
  • Date Filed
    Friday, May 8, 2015
    9 years ago
  • Date Issued
    Tuesday, November 20, 2018
    6 years ago
Abstract
Improved methods and apparatuses for heart valve repair in a beating heart of a patient utilize an exchangeable heart valve repair system. Heart valve repair system can include a port adapted to be seated in the heart wall and a catheter slidable within the port. The catheter can be selectively locked relative to the port for insertion into the heart and unlocked once the port is seated to allow the catheter to move distally towards target tissue. System elements can be selectively removed from and replaced within port to deploy repair devices while port maintains a seal while elements are and are not inserted.
Description
FIELD OF THE INVENTION

The present invention relates to minimally invasive repair of a heart valve. More particularly, the present invention relates to minimally invasive repair of heart valves utilizing an exchangeable system that allows for multiple repair devices to be deployed with a single access into the heart that permit the repairs to be done on a beating heart without the need for cardiopulmonary bypass and open heart access to the heart.


BACKGROUND OF THE INVENTION

Various types of surgical procedures are currently performed to investigate, diagnose, and treat diseases of the heart and the great vessels of the thorax. Such procedures include repair and replacement of mitral, aortic, and other heart valves, repair of atrial and ventricular septal defects, pulmonary thrombectomy, treatment of aneurysms, electrophysiological mapping and ablation of the myocardium, and other procedures in which interventional devices are introduced into the interior of the heart or a great vessel.


Using current techniques, many of these procedures require a gross thoracotomy, usually in the form of a median sternotomy, to gain access into the patient's thoracic cavity. A saw or other cutting instrument is used to cut the sternum longitudinally, allowing two opposing halves of the anterior or ventral portion of the rib cage to be spread apart. A large opening into the thoracic cavity is thus created, through which the surgical team may directly visualize and operate upon the heart and other thoracic contents.


Surgical intervention within the heart generally requires isolation of the heart and coronary blood vessels from the remainder of the arterial system, and arrest of cardiac function. Usually, the heart is isolated from the arterial system by introducing an external aortic cross-clamp through a sternotomy and applying it to the aorta between the brachiocephalic artery and the coronary ostia. Cardioplegic fluid is then injected into the coronary arteries, either directly into the coronary ostia or through a puncture in the aortic root, so as to arrest cardiac function. In some cases, cardioplegic fluid is injected into the coronary sinus for retrograde perfusion of the myocardium. The patient is placed on cardiopulmonary bypass to maintain peripheral circulation of oxygenated blood.


Of particular interest are intracardiac procedures for surgical treatment of heart valves, especially the mitral and aortic valves. According to recent estimates, more than 79,000 patients are diagnosed with aortic and mitral valve disease in U.S. hospitals each year. More than 49,000 mitral valve or aortic valve replacement procedures are performed annually in the U.S., along with a significant number of heart valve repair procedures.


Various surgical techniques may be used to repair a diseased or damaged valve, including annuloplasty (contracting the valve annulus), quadrangular resection (narrowing the valve leaflets), commissurotomy (cutting the valve commissures to separate the valve leaflets), shortening mitral or tricuspid valve chordae tendonae, reattachment of severed mitral or tricuspid valve chordae tendonae or papillary muscle tissue, and decalcification of valve and annulus tissue. Alternatively, the valve may be replaced by excising the valve leaflets of the natural valve and securing a replacement valve in the valve position, usually by suturing the replacement valve to the natural valve annulus. Various types of replacement valves are in current use, including mechanical and biological prostheses, homografts, and allografts.


The mitral valve, located between the left atrium and left ventricle of the heart, is most easily reached through the wall of the left atrium, which normally resides on the posterior side of the heart, opposite the side of the heart that is exposed by a median sternotomy. Therefore, to access the mitral valve via a sternotomy, the heart is rotated to bring the left atrium into a position accessible through the sternotomy. An opening, or atriotomy, is then made in the left atrium, anterior to the right pulmonary veins. The atriotomy is retracted by means of sutures or a retraction device, exposing the mitral valve directly posterior to the atriotomy. One of the aforementioned techniques may then be used to repair or replace the valve.


An alternative technique for mitral valve access may be used when a median sternotomy and/or rotational manipulation of the heart are/is undesirable. In this technique, a large incision is made in the right lateral side of the chest, usually in the region of the fifth intercostal space. One or more ribs may be removed from the patient, and other ribs near the incision are retracted outward to create a large opening onto the thoracic cavity. The left atrium is then exposed on the posterior side of the heart, and an atriotomy is formed in the wall of the left atrium, through which the mitral valve may be accessed for repair or replacement.


The mitral and tricuspid valves inside the human heart include an orifice (annulus), two (for the mitral) or three (for the tricuspid) leaflets and a subvalvular apparatus. The subvalvular apparatus includes multiple chordae tendineae, which connect the mobile valve leaflets to muscular structures (papillary muscles) inside the ventricles. Rupture or elongation of the chordae tendineae result in partial or generalized leaflet prolapse, which causes mitral (or tricuspid) valve regurgitation. A commonly used technique to surgically correct mitral valve regurgitation is the implantation of artificial chordae (usually 4-0 or 5-0 Gore-Tex sutures) between the prolapsing segment of the valve and the papillary muscle. This operation is generally carried out through a median sternotomy and requires cardiopulmonary bypass with aortic cross-clamp and cardioplegic arrest of the heart.


Using such open-chest techniques, the large opening provided by a median sternotomy or right thoracotomy enables the surgeon to see the mitral valve directly through the left atriotomy, and to position his or her hands within the thoracic cavity in close proximity to the exterior of the heart for manipulation of surgical instruments, removal of excised tissue, and/or introduction of a replacement valve through the atriotomy for attachment within the heart. However, these invasive open-chest procedures produce a high degree of trauma, a significant risk of complications, an extended hospital stay, and a painful recovery period for the patient. Moreover, while heart valve surgery produces beneficial results for many patients, numerous others who might benefit from such surgery are unable or unwilling to undergo the trauma and risks of current techniques.


One alternative to open heart surgery is a robotically guided, thoracoscopically assisted cardiotomy procedure marketed under the tradename of the DaVinci® system. Instead of requiring a sternotomy, the DaVinci® system uses a minimally invasive approach guided by camera visualization and robotic techniques. Unfortunately, the DaVinci® system is not approved for mitral valve repair procedures on a beating heart. Thus, the use of the DaVinci® system for mitral valve repair still requires a cardiopulmonary bypass with aortic cross-clamp and cardioplegic arrest of the heart.


While there are other laparoscopic and minimally invasive surgical techniques and tools that have been developed, most of these devices are not useable for the unique requirements of mitral valve repair on a beating heart. Suturing devices like the Superstich™ vascular suturing device or the Gore® suture passer are designed to permit manual placement of sutures as part of a surgical procedure, but are not designed for use on a beating heart. While certain annuloplasty techniques and instruments that can suture an annuloplasty ring as part of vascular repair or heart bypass surgery may be used in conjunction with a beating heart, these annuloplasty procedures do not involve the capture or retention of a constantly moving leaflet. Consequently, the design and use of annuloplasty techniques and instruments are of little help in solving the problems of developing instruments and techniques for minimally invasive thoracoscopic repair of heart valves.


Recently, a technique has been developed for minimally invasive thoracoscopic repair of heart valves while the heart is still beating. PCT Pub. No. WO 2006/078694 A2 to Speziali discloses a thoracoscopic heart valve repair method and apparatus. Instead of requiring open heart surgery on a stopped heart, the thorascopic heart valve repair methods and apparatus taught by Speziali utilize fiber optic technology in conjunction with transesophageal echocardiography (TEE) as a visualization technique during a minimally invasive surgical procedure that can be utilized on a beating heart. U.S. Publication No. 2008/0228223 to Alkhatib also discloses a similar apparatus for attaching a prosthetic tether between a leaflet of a patient's heart valve and another portion of the patient's heart to help prevent prolapse of the leaflet and/or to otherwise improve leaflet function.


More recent versions of these techniques are disclosed in U.S. Patent Application Publication Nos. 2009/0105751 and 2009/0105729 to Zentgraf, which disclose an integrated device that can enter the heart chamber, navigate to the leaflet, capture the leaflet, confirm proper capture, and deliver a suture as part of a mitral valve regurgitation (MR) repair.


While the Speziali and Zentgraf techniques represent a significant advance over open heart techniques and previous minimally invasive techniques for heart valve repair, it would be advantageous to further improve upon these techniques.


SUMMARY OF THE INVENTION

Improved methods and apparatuses for heart valve repair in a beating heart of a patient utilize an exchangeable heart valve repair system. Heart valve repair system can include a port adapted to be seated in the heart wall and an imaging catheter slidable within the port. The imaging catheter can be selectively locked relative to the port for insertion into the heart and unlocked once the port is seated to allow the imaging catheter to move distally towards target tissue. A deployment catheter slidably disposed in the imaging catheter and a repair cartridge slidably disposed in the deployment catheter can be used to capture the target tissue and deploy a repair device into the tissue after proper capture is confirmed. System elements can be selectively removed from and replaced within port to deploy additional repair devices while port maintains a seal while elements are and are not inserted.


An exchangeable system for heart valve repair includes a port adapted to span a wall of a patient's heart that includes a sealing portion that creates a seal between the interior and exterior of the heart. An imaging catheter including at least one imaging element is slidably insertable into the port. A deployment catheter carrying a deployment mechanism is slidably insertable into the imaging catheter and a repair cartridge at least partially carrying a repair device is slidably insertable into the deployment catheter. A removable locking mechanism can be selectively engaged with the system to prevent the imaging catheter from moving distally relative to the port and when not engaged the imaging catheter is free to slide distally relative to the port to access target tissue in the heart to capture the tissue with a jaw assembly. The imaging element confirms proper capture of the target tissue and the deployment catheter and repair cartridge function together to deploy a repair device into the tissue. The sealing portion prevents blood from escaping the heart through the port while allowing selection insertion and removal of the imaging catheter, deployment catheter and repair cartridge through the port while the heart of the patient is beating.


A method includes providing a heart valve repair system and instruction for repairing target tissue of a patient's beating heart with the system. System includes a port having a sealing element, an imaging catheter slidably received in the port, a deployment catheter slidably received in the imaging catheter, a repair cartridge at least partially carrying a repair device slidably received in the deployment catheter and a locking mechanism. The locking mechanism is first engaged with the imaging catheter such that the imaging catheter cannot be moved distally relative to the port and the system is inserted into the heart in the locked configuration to position the port in the heart wall. The removable locking mechanism is then disengaged and the imaging catheter can be slid distally relative to the port towards target tissue to be repaired. The tissue is captured between the repair cartridge and at least one of the deployment catheter and imaging catheter and proper capture is confirmed with an imaging element in the imaging catheter. A repair device is then deployed into the captured target tissue with the deployment catheter and repair cartridge. The imaging catheter, deployment catheter and/or repair cartridge can then be selectively withdrawn and replaced to deploy additional repair devices as desired with the port maintaining a seal between the interior and exterior of the heart.


The above summary of the various embodiments of the invention is not intended to describe each illustrated embodiment or every implementation of the invention. This summary represents a simplified overview of certain aspects of the invention to facilitate a basic understanding of the invention and is not intended to identify key or critical elements of the invention or delineate the scope of the invention.





BRIEF DESCRIPTION OF THE FIGURES

The invention may be more completely understood in consideration of the following detailed description of various embodiments of the invention in connection with the accompanying drawings, in which:



FIG. 1A is a perspective view of a heart valve repair system according to an embodiment of the present invention.



FIG. 1B is an exploded view of the heart valve repair system of FIG. 1A.



FIG. 1C is a partial view of the heart valve repair system of FIG. 1A.



FIG. 1D is a perspective view of the heart valve repair system of FIG. 1A.



FIG. 2A is an exploded view of a port for a heart valve repair system according to an embodiment of the present invention.



FIG. 2B is a perspective view of a port for a heart valve repair system according to an embodiment of the present invention.



FIG. 2C is a perspective view of a port for a heart valve repair system according to an embodiment of the present invention.



FIG. 2D is an exploded view of a port for a heart valve repair system according to an embodiment of the present invention.



FIG. 2E is a perspective view of a portion of the port of FIG. 2D.



FIG. 3 is a flowchart of steps in a method of repairing a heart valve according to an embodiment of the present invention.



FIG. 4A is a schematic representation of a step in a method of repairing a heart valve according to an embodiment of the present invention.



FIG. 4B is a schematic representation of a step in a method of repairing a heart valve according to an embodiment of the present invention.



FIG. 5 is a partial side view of a heart valve repair system according to an embodiment of the present invention.



FIG. 6 is a schematic representation of a step in a method of repairing a heart valve according to an embodiment of the present invention.



FIG. 7 is a schematic representation of a step in a method of repairing a heart valve according to an embodiment of the present invention.



FIG. 8 is a schematic representation of a step in a method of repairing a heart valve according to an embodiment of the present invention.



FIG. 9 is a partial side view of a heart valve repair system according to an embodiment of the present invention.



FIG. 10A is a partial side view of a heart valve repair system according to an embodiment of the present invention.



FIG. 10B is a partial side view of a heart valve repair system according to an embodiment of the present invention.



FIG. 11 is a partial perspective view of a heart valve repair system according to an embodiment of the present invention.



FIG. 12 is a partial side view of a heart valve repair system according to an embodiment of the present invention.



FIG. 13A is a top view of a portion of a heart valve repair system according to an embodiment of the present invention.



FIG. 13B is a top view of the portion of a heart valve repair system of FIG. 13A.



FIG. 13C is a top view of the portion of a heart valve repair system of FIG. 13A.



FIG. 13D is a top view of the portion of a heart valve repair system of FIG. 13A.



FIG. 14 is a schematic representation of a portion of a heart valve repair system according to an embodiment of the present invention.



FIG. 15 is a partial perspective view of a portion of a heart valve repair system according to an embodiment of the present invention.



FIG. 16A is a schematic representation of a heart valve repair device implanted in a patient according to an embodiment of the present invention.



FIG. 16B is a schematic representation of the heart valve repair device of FIG. 16A implanted in a patient.



FIG. 17A is a schematic representation of a heart valve repair device implanted in a patient according to an embodiment of the present invention.



FIG. 17B is a schematic representation of the heart valve repair device of FIG. 17A implanted in a patient.



FIG. 18A is a schematic representation of a heart valve repair device implanted in a patient according to an embodiment of the present invention.



FIG. 18B is a schematic representation of the heart valve repair device of FIG. 18A implanted in a patient.



FIG. 19A is a schematic representation of a heart valve repair device implanted in a patient according to an embodiment of the present invention.



FIG. 19B is a schematic representation of the heart valve repair device of FIG. 19A implanted in a patient.



FIG. 20A is a schematic representation of a heart valve repair device implanted in a patient according to an embodiment of the present invention.



FIG. 20B is a schematic representation of the heart valve repair device of FIG. 20A implanted in a patient.





While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.


DETAILED DESCRIPTION

In the following detailed description of the present invention, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, one skilled in the art will recognize that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, and components have not been described in detail so as to not unnecessarily obscure aspects of the present invention.


Embodiments of the present invention define a system that provides access into a heart chamber to repair a heart valve or other tissue structure while the heart is still beating and while minimizing the loss of blood with and without the system inserted. In one embodiment, the heart chamber is accessed transapically via thoracotomy followed by a ventriculotomy. The heart apex can initially be visualized directly through the thoracotomy or can be captured with a capture funnel which expands/unfolds until generally shaped like a conical funnel used to center, hold, and isolate the heart apex for incision. In other embodiments, the apex is visualized via an Ultrasound or IVUS system or via any other non-invasive imaging technique, such as, for example, fluoroscopy or magnetic or radio-frequency tracking.


Once access into the heart chamber is achieved, the system is navigatable via a non-invasive imaging modality. The system provides for capture of intra-cardiac tissue structure. Once captured, the system allows control to be maintained over said tissue structure. Using a device-based imaging component, the system allows confirmation of proper capture position of the system relative to the tissue structure. The system then accommodates the delivery of a repair device to said tissue structure to reduce/eliminate mitral valve regurgitation or other defect once proper position has been confirmed. Tissue structure, as used herein, can refer to any intracardiac structure that is a site for repair or anchoring, such as, for example, valve leaflets, papillary muscles or the heart wall. A repair device is any device whose function is to repair or replace a tissue structure, such as, for example, a suture.


An exchangeable heart valve repair system 100 for accomplishing the above described procedure is depicted in FIGS. 1A-1D. System 100 includes a suture cartridge 102 or other repair device, a deployment catheter 104, a fiber optic shaft 106, a port 108 and a locking mechanism 110. Fiber optic shaft 106 can communicate with a display (not pictured). A handle for guiding the device can be connected to a proximal end of system.


The fiber optic shaft or imaging catheter 106 comprises an elongate shaft that can contain device-based imaging, such as fiber optics or sensors. In one embodiment, fiber optics are carried within dedicated lumens 112 in an outer wall 114 of fiber optic shaft 106. Device based imaging can transmit an image to display that is used to confirm proper position on the tissue structure. In one embodiment, display will confirm whether there is full (proper) or partial or no (improper) tissue structure capture. Fiber optic shaft 106 also defines a lumen that allows passage of the deployment catheter 104.


Fiber optic shaft 106, also referred to more generally as an imaging catheter, can comprise individual optical fibers, bundled, within the wall thickness 114 and terminating flush at the distal tip of the catheter 106. In one embodiment, the optical fibers are evenly spaced around the circumference of the imaging catheter 106. In another embodiment, the optic fibers 106 are evenly spaced around the “top” semicircular arc of the catheter 106 relative to the suture cartridge 102. Device-based imaging can include one or more of, but is not limited to, fiber optics, a scope, ICE, OCT, Opto/Acoustic, IVUS, infrared and sonar. In one embodiment, system 100 does not employ a device-based imaging component.


The deployment catheter 104 is used to position and deploy a repair device, such as a suture, to the tissue structure, such as a valve leaflet. The deployment catheter 104 includes a shaft 116 having a proximal end 118 and a distal end 120 which is inserted into the lumen of the fiber optic shaft 106. The deployment catheter 104 can have an interference fit in the lumen of the fiber optic shaft 106 in order to retain the catheter 104 within the shaft 106 during the procedure. Alternatively, the lumen of the fiber optic shaft 106 can include a rib or other structure over which the deployment catheter 104 is advanced to provide a snap fit holding the catheter 104 within the shaft 106. A deployment mechanism such as a needle is slidably disposed in a needle lumen 122 extending through deployment catheter 104 for penetrating the valve leaflet to insert a suture. The deployment catheter 104 also includes a cartridge lumen 124 adapted to slidably contain the suture cartridge 102.


The suture cartridge 102 is loaded into the cartridge lumen 124 of deployment catheter 104 and forms a part of the deployment catheter 104. Suture cartridge 102 includes a shaft 126 and a tip 128. The suture cartridge 102 can contain some or all of a suture or other repair device used to repair tissue. The suture cartridge 102 and deployment catheter 104 operate together to form clamping jaws for grasping tissue such as a valve leaflet therebetween. Tip 128 of suture cartridge 102 is movable relative to deployment catheter 104 by sliding the suture cartridge 102 within the cartridge lumen 124 of deployment catheter 104. A proximally facing surface 130 of the tip 128 and a distally facing surface 132 of the deployment catheter 104 each operate as a portion of the clamping jaws for grasping tissue therebetween. Once tissue is grasped between the jaws, the repair device can be deployed with the deployment mechanism, such as by a needle penetrating the tissue to insert a suture. Details of various embodiments relating to tissue capture and repair device deployment are disclosed in PCT Pub. No. WO 2006/078694 A2 to Speziali and U.S. Patent Application Publication Nos. 2009/0105751 and 2009/0105729 to Zentgraf, each of which is hereby incorporated by reference.


The port 108, shown in more detail in FIG. 2A, is positioned to span the heart muscle wall and is stabilized in that position during the procedure. Port 108 can include a stabilizing portion 134 and a sealing portion 136 and has an opening 139 extending through both portions between an interior and an exterior of the heart. In some embodiments, stabilizing portion 134 can include additional stabilizing structure, such as threads 137 as shown in FIG. 2B or ribs to increase stability of the port 108 in the heart wall. In an embodiment depicted in FIG. 2C, port 108 includes a circumferential groove 133 that defines a narrower central portion 135 around which the heart naturally constricts to provide further stability. In one embodiment, port 108 can comprise a soft material to allow the heart wall to compress into/around it to provide increased stabilization. Port 108 can be flexible to accommodate the insertion of pre-formed, canted shaft/tip shapes (e.g. shaped stylets) and other elements for the advancing/securing of knots (e.g. a knot pusher). Port 108 eliminates the need for multiple passes of the instrument directly against the heart muscle, minimizes blood loss due to instrument leakage, and reduces push/pull forces on the heart wall. In an alternative embodiment, system 100 does not employ a port 108.


Port 108 can include one or more seals 138, 140 in sealing portion 136 to maintain hemostasis with and without an instrument inserted to allow multiple exchanges of tools in the heart chamber while minimizing blood loss. A first seal 138 can include an opening 142 designed to seal around an inserted instrument to maintain hemostasis with the instrument inserted. In one embodiment, the opening 142 is oblong to accommodate a shaft of a similarly shaped instrument. In another embodiment, the opening 142 is symmetrically circular to accommodate an instrument with a shaft of a matching shape. Such a configuration allows the instrument to be circumferentially rotated following insertion. A second seal 140 can be used to maintain hemostasis when no instrument is inserted. Seals 138, 140 can include slits 144. In addition to allowing an instrument to pass through the seals 138, 140, each slit 144 can secure a suture or similar repair device and hold it out of the way of the procedure while also limiting risk of unintentional tension exerted onto the suture. When multiple sutures are inserted, each can be held in a slit 144 to prevent tangling of the sutures with each other or on successive passes of the instrument. In one embodiment, seal 140 can include suture retention projections 143 that include suture grooves 147 that can extend partially or completely through projections 143 for enhanced suture retention. In such an embodiment, seal 138 can include apertures 145 for accommodating suture retention projections 143. The system 100 can therefore control and accommodate multiple deployed repair devices from interfering with the subsequent deployment of more repair devices. In one embodiment, the seals 138, 140 are fixed in place relative to port 108. In another embodiment, the seals 138, 140 are free to rotate and/or move linearly within sealing portion 136.


A handle can be connected to a proximal end of the device 100 to allow control over the device position, jaw actuation, and repair device deployment. In one embodiment, each deployment catheter 104 and/or suture cartridge 102 includes a separate handle that is removed and exchanged when the catheter 104 or cartridge 102 is removed. In another embodiment, the system 100 includes a single handle to which multiple deployment catheters 104 or suture cartridges 102 are exchangeable and attachable. Handle can provide for manual or automatic actuation of the deployment mechanism for the repair device.


A display can be communicatively coupled to the system to receive the images and/or other information captured by device-based imaging. In one embodiment, a cable connects the fiber optic shaft 106 and display. In another embodiment, display wirelessly communicates with the system 100 to obtain the observed data. Display can be an integrated display of system or standard OR monitors. An integrated display can be included as part of the handle. Alternatively, display can be projected onto a location convenient for the physician (e.g. wall, head-up display, etc.). In some embodiments, display can provide, in addition to or in lieu of visual feedback, auditory or tactile feedback.


The removable locking mechanism 110 locks the port 108 and fiber optic shaft or imaging catheter 106 relative to each other, which holds the tip 128 and the fiber optic shaft 106 in proper position for penetration into the heart muscle. Thus, as force is exerted by the physician from a proximal end of the system 100 into the heart wall with the distal end of the system 100, the suture cartridge 102, deployment catheter 104, fiber optic shaft 106 and port 108 remain stationary with respect to each other as the heart is penetrated and the device remains stiff to allow insertion into the heart. In one embodiment, removable locking mechanism 110 holds the components in place via an interference fit. In another embodiment, removable locking mechanism 110 utilizes a snap fit. When removable locking mechanism 110 is removed, as in FIG. 1D, fiber optic shaft 106 (and with it deployment catheter 104 and suture cartridge 102) are able to slide forwardly relative to port 108 in order to access the repair site. In one embodiment, removable locking mechanism 110 is rigid.


Removable locking mechanism 110 can include a projection or fin 111 that aids in removal of locking mechanism 110. In one embodiment, fin 111 is rigid and unitary with locking mechanism 110. Alternatively, fin 11 can be retractable via, for example, a spring mechanism to reduce the profile of locking mechanism 110 when desired. In other embodiments, removable locking mechanism 110 can be removable with a separate removal tool, such as a magnetic removal tool that cooperates with a magnet in locking mechanism 110 or a removal tool that is keyed to fit into and mate with a recess in locking mechanism. The length of locking mechanism 110 can be used to control a distance that the imaging catheter 116 and tip 128 extend from the port 108 during insertion. Typically, it is desirable to minimize this distance.


In one embodiment, tip 128 of suture cartridge 102 is provided with a tapered configuration in order to ease entrance through and dilate the opening in the heart wall. Such a configuration reduces the insertion force necessary for entrance into the heart wall and the port 108. Alternatively, system 100 can employ a separate trocar to penetrate the incision and seat port 109, which is then removed and replaced with imaging catheter 106. In one embodiment, tip 128 and shaft 126 of suture cartridge 102 and distal end 120 of fiber optic shaft 106 and deployment catheter 104 extend generally straight outwardly from system 100 as shown in FIG. 5. In another embodiment, distal end 120 has a pre-formed and permanent curve to allow access to difficult and hard to reach areas of the heart chamber 14 as shown in FIG. 6. Distal end 120 can also be flexible as shown in FIG. 7 to allow it to conform to the shape of pre-formed stylets 146 to guide fiber optic shaft 106 and deployment catheter 104 along a pre-defined path. In a further embodiment, distal end 120 can be capable of articulating between various angular positions as shown in FIG. 8 to allow it to adapt to various insertion geometries.


The flowchart depicted in FIG. 3 shows the steps of a surgical procedure 200 utilizing exchangeable repair system 100 according to an embodiment of the present invention. In preparation for the initial insertion of the system into the heart chamber, the components are assembled and removable locking mechanism locks the fiber optic shaft 106 and port 108 in place relative to each other at step 202. The locked assembly is then advanced as a unit penetrating into the heart 10 through a heart wall 12 and into a heart chamber 14 at step 204 as shown in FIG. 4A. The left ventricle is accessed via port 108 to facilitate entrance of the system 100 into the heart chamber. The lock is then removed at step 206 to allow the fiber optic shaft 106 to slide relative to the port 108 as needed.


The cartridge 102 slides in a dedicated lumen 124 inside of the deployment catheter 104. The deployment catheter 104 can slide in a dedicated lumen inside of the fiber optic shaft 106, but can remain generally in place during the procedure due to an interference fit or other structure retaining the deployment catheter 104 in the fiber optic shaft 106. The fiber optic shaft 106 slides in a dedicated lumen inside of the port 108. The port 108 maintains the access into the heart chamber 14 and remains seated in the heart wall 12 as the other components are selectively moved relative to the port 108. At step 208, the deployment catheter 104, suture cartridge 102 and fiber optic shaft 106 can be advanced to a tissue structure 16 to capture the tissue structure 16 with the clamping jaws. Device-based imaging present in the fiber optic shaft 106 is used to confirm proper tissue capture at step 210. A repair device, such as a suture, can be deployed onto the tissue at step 212. The deployment catheter 104 and/or suture cartridge 102 can then be removed and a new deployment catheter 104, suture cartridge 102 or other repair device can be inserted a desired number of times to deploy additional repair devices at step 214. The deployment catheter 104 can be exchanged with or without the fiber optic shaft 106. Tools having various functions and/or employing various repair devices can be used interchangeably with system 100 by insertion into fiber optic shaft 106.


In one embodiment, the port 108 has an inner diameter of approximately 32 french, the fiber optic shaft has an outer diameter of 28 french, the deployment cather has an outer diameter of 24 french, and the repair cartridge 102 shaft 126 has an outer diameter of 5 french. The removable locking mechanism can have a height of about 5 french.


System 100 can be utilized in conjunction with non-invasive imaging distinct from the device-based imaging for confirmation capture in order to further enhance visualization and positioning of the system inside the heart. Non-invasive imaging refers to imaging modalities that are independent of the device and are used for global navigation of the device inside the heart. In one embodiment, the system 100 can be guided when inside the heart via TEE (Transesophageal Echo—2D and 3D). In another embodiment, the system 100 is guided via real-time MRI. In other embodiments, the system 100 can be guided using fluoroscopy, infrared or sonar. In an embodiment, no external non-invasive imaging is needed.


Device-based imaging is used by system 100 to precisely locate the deployment catheter 104 and fiber optic shaft or imaging catheter 106 on the target zone of the tissue structure. Device-based imaging can be carried by a separate fiber optic shaft or independent imaging catheter 106 or be incorporated into the deployment catheter 104.


In one embodiment, the device-based imaging is integrated into the deployment catheter 104 via a plurality of channels 148 carrying imaging elements to the distal end of the catheter as shown in FIG. 9. Capture of the tissue structure simultaneously results in indication of proper capture. When proper capture has been achieved, the repair device can be deployed.


In other embodiments, the device-based imaging is independent of the deployment catheter 104. One embodiment is depicted in FIGS. 10A and 10B. The system 100 is inserted into the heart chamber with the independent imaging catheter or fiber optic shaft 106 inserted comprising the proximal face of the clamp that is formed with the suture cartridge 102. Capture of the tissue structure simultaneously results in indication of proper capture. When proper capture has been achieved, the independent imaging catheter 106 is retracted (intermediate proximal clamp surface may be used or the outer sheath 105 may be used to maintain control of the tissue structure). The deployment catheter 104 is then inserted and the repair device can be deployed. FIG. 11 depicts an additional embodiment wherein a deployment sheath 105 defines a lumen 124 for the suture cartridge 102 and a separate lumen 150 that can separately carry the imaging catheter 106 and the deployment catheter 104 carrying the repair device. Suture cartridge 102 can include an opening 152 to enhance visualization through tip 128. In some embodiments, following deployment of the repair device, the deployment catheter 104 can be removed and the imaging catheter 106 reinserted to visualize/confirm effectiveness of the deployed repair device. In an embodiment, the same independent imaging catheter and deployment catheter can be reused wherein said deployment catheter is reloaded with new repair devices. In a further embodiment, the deployment catheter is disposable after a single use. Each new repair device is then loaded in a new deployment catheter.


Device-based imaging can also be linked to the deployment catheter 104 as described previously herein with reference to FIGS. 1A-1D and as further illustrated in FIG. 12. The system 100 enters the heart chamber with the linked imaging catheter 106 inserted comprising the proximal face of the clamp. The linked imaging catheter 106 and port 108 are locked together for puncture access into the heart chamber. The system can then be unlocked allowing the imaging catheter 106 to move independently in and out of the port 108. Capture of the tissue structure simultaneously results in indication of proper capture. When proper capture has been achieved, the repair device can be deployed. The deployment catheter 104 can be retracted leaving the linked imaging catheter 106 in place. The linked imaging catheter 106 and deployment catheter 104 can also be removed together as one. Multiple repair devices can be deployed in this manner with the port 108 maintaining a seal and allowing different repair devices to be deployed. In one embodiment, the same deployment catheter 104 can be reused by being reloaded with new repair devices. In another embodiment, the deployment catheter 104 is disposable after a single use and each new repair device is loaded in an individual deployment catheter 104.


In another embodiment of the deployment catheter 104 and cartridge 102 tip 128, multiple sets of clamps may be used, e.g., a secondary clamp composed of a retractable/collapsible wire form can be used for gross capture of the tissue structure and a primary clamp can then be used for finer precision. The primary clamp can be positioned and repositioned as desired while the secondary clamp prevents total loss of control of the tissue structure. In another embodiment shown in FIG. 15, a single clamp can incorporate a rolling mechanism 180. Said mechanism can be spring loaded, or loaded in a similar fashion, such that as the clamps are opened to reposition, the rolling mechanism protrudes, keeping contact/control of the tissue structure, but allowing repositioning. As the clamps are closed, the rolling mechanism is retracted into the tip 128 and does not interfere with clamp closure.


In one embodiment shown in FIG. 14, the clamp face of tip 128 and/or deployment catheter 104 is embedded with micro-needles 182 for drug delivery. The drug delivered could aid in tissue growth on/through the repair device. The drug could also alter the composition of the leaflet, such as by tightening the leaflet to reduce mitral valve regurgitation (such that the drug acts as the repair device).


System 100 can be designed to load and deploy a single repair device. Alternatively, multiple repair devices can be loaded at one time and deployed simultaneously or in series. In such an embodiment, multiple repair devices can be deployed without withdrawing the deployment catheter 104 far away from the target or out of the heart completely. In one embodiment, the deployment action of a first repair device is linked to the loading action of a second repair device. In some embodiments, multiple sutures can be used on the same leaflet. Multiple sutures on both leaflets can be used and tethered together to create an edge-to-edge repair.


The repair device delivered by the system can be a suture that is delivered through the leaflet and secured with a girth hitch knot. The suture can then be tensioned to reduce mitral valve regurgitation and anchored to the exterior of the heart apex. The suture can alternatively be anchored to the papillary muscle, to the heart wall (i.e., more lateral relative to the apex) or to a leaflet of another heart valve (e.g., a mitral valve leaflet tethered to an aortic valve leaflet). Alternatively, other securing methods can be used including alternative knots, use of a knot pusher, the creation, and advancement of the knot from the exterior of the heart, the creation/advancement of the knot while inside the heart chamber, and the use of an attachment clip.


The suture can be captured by a deployment mechanism (e.g. a hooked needle) with a single capture area. In another embodiment, a deployment mechanism can have redundant capture points (e.g. a needle with multiple hooks or a corkscrew shape). In a further embodiment, a key and lock mechanism can be used wherein the deployment mechanism locks into a key mechanism that is connected to the suture. Alternatively, the suture is used to capture the deployment mechanism (e.g. the suture is held open in a lasso formation, the hook is passed through, the lasso is closed around the hook, and then the hook is retracted). In one embodiment, the deployment mechanism can have a retractable/collapsible capture end (e.g. the tip closes similar to an umbrella and the tip is passed by the suture in the closed position, opened, retracted to the suture, and closed around the suture).


In some embodiments, sutures 160 can be anchored with the use of a pledget 162 as shown in FIGS. 13A-13D. Pledgets 162 typically comprise a thin soft material, such as, for example, teflon. Pledget 162 defines a body 164 having one or more apertures 166 extending through body 164. In one embodiment, pledget 162 has three apertures 166A, 166B, 166C. Following deployment of the suture 160 onto a tissue structure, a first free end 168, and a second free end 170 of the suture can be passed through the pledget apertures 166A-C. In one embodiment, free ends 168, 170 are passed through pledget 162 as shown in FIGS. 13A and 13B in the direction and order indicated by the arrows. First free end 168 of suture 160 is threaded up through second aperture 166B, down through third aperture 166C and then back up through first aperture 166A. Second free end 170 is also threaded up through second aperture 166B and then down through first aperture 166A and back up through third aperture 166C. Free ends 168, 170 can then be used to form a knot 172 as shown in FIG. 13C. In one embodiment, pledget 162 does not have apertures 166 and instead suture 160 is threaded through pledget with a needle or other penetrating device. A retrieval suture 174 that can be comprised of, for example, prolene, can then be threaded through the pledget 162 as shown in FIG. 13D. The pledget 162 and suture 160 can be inserted into the heart chamber by using a blunt end forceps or similar instrument to pass the knot 172 into the chamber approximately mid-way to the valve. Once in the chamber, the knot 172 can be released and the suture 160 and pledget 162 can be delivered to the tissue structure by pulling on the loop end of the suture 160. In one embodiment, multiple sutures on one or both leaflets can be tied to the same pledget 162.


Port 108 can include additional features to aid in use of a pledget 162 or other repair device. Port 108 can include structure that moves and holds tissue structures, such as muscle, tendinae, and connective tissue, at the insertion point out of the way to ease insertion of a repair device well into the open space of the heart chamber to limit snagging of the repair device on the tissue during insertion. Alternatively, port 108 can include an insertion channel that extends well into the heart chamber to allow the repair device to be inserted into the open area of the heart beyond said tissue. In addition, port 108 can utilize structure to aid in retrieving and removing a repair device to limit interference with retrieval of the device back out of the heart chamber.


Although the repair device described herein is primarily described as suture attached to the leaflet as an artificial chord, various other repair devices, such as, for example, a wire form or NeuroStar concept that facilitate leaflet coaptation, are within the scope of the present invention.


In one embodiment the repair device comprises a wire form. Repair device deployment can be accomplished by the deployment by a delivery catheter containing the wire form folded into said catheter. The delivery catheter can advanced through the plane of the mitral valve leaflets. The delivery catheter can then be retracted allowing a folded coaptation cap portion to expand on the atrial side and a body portion of the wire form to expand down through the valve. The body can then be secured to the apex. In one embodiment, the wire form can be comprised of Nitinol.


In a further embodiment depicted in FIGS. 16A and 16B, the repair device comprises a wire form 210 wherein said wire form is deployed around the leaflet 224 providing a structurally supportive scaffold or modification. The scaffold clips or clamps to both sides of the leaflet and is secured by either compression from the wire form or with fasteners such as sutures. Wire form can be deployed via a deployment catheter or advanced along a preplaced suture in a monorail/guidewire fashion. In a further embodiment, said scaffold can be sutured to the leaflet.


In another embodiment, the repair device comprises a wire form 210 wherein said wire form is deployed around the leaflet 224 providing a physical stop preventing prolapsed such as shown in FIGS. 17-17B and 18A-18B. Said wire form can clip or clamp to both sides of the leaflet and be secured by either compression from the wire form or with fasteners such as sutures (suture tie-down of the superior placed structural element (e.g. wire form)). Wire form can be deployed via a deployment catheter or advanced along a preplaced suture in a monorail/guidewire fashion. In an additional embodiment depicted in FIGS. 19-19B, said wire form 210 is delivered directly around the leaflet 224 directly from the deployment catheter.


In some embodiments, a suture can first be delivered via the deployment catheter. Said suture can then be used as a guidewire and said wire form is advanced to the leaflet. Said suture can then be anchored to the heart. In a further embodiment, said suture is removed once said wire form has been placed.


In another embodiment, said wire form is delivered superior to the valve to reshape the valve annulus and/or facilitate complete closure of the valve to improve valve function. In such an embodiment, said wire form can contain sutures that can be tensioned to close the circumference of the annulus. The ring can deployed superior to the valve. Ring can be secured to the annulus with, for example, hooks. In some embodiments, ring circumference size can be decreased thereby reducing the size of the annulus. Sutures can be used to close the ring and/or can extend through the valve. An alternative is to deploy a spring superior to the valve that spreads apart the commisures of the valve. This makes the annular shape more oblong thereby bringing the two leaflets closer together increasing coaption.


In a further embodiment, the repair device can be a valve replacement device, including, for example, a valve mounted in said wire form.


In another embodiment shown in Figured 20A-20B, repair devices can include sutures 208 and a leaflet extension 226 secured to a free edge 228 of a leaflet 224 with sutures. Said leaflet extension overlaps the orifice such that when the valve closes, said extension ensures complete closure by overlapping prolapsing areas of the valve. The extension can be placed on either the atrial or ventricular side of the leaflet. To deploy the extension, the leaflet can captured and suture deployed. The suture can then be passed through the extension material. A girth hitch knot can then be formed. Extension can have reinforced areas for exoskeletal support (pre-shaped feature) and/or for suture attachment. The skeleton can be of a shape memory material such as a nitinol, a thermoelastic, etc. In some embodiments, a second suture 208 could be placed in the same manner. The two girth hitch knots are advanced along with the Extension material. Alternatively, the extension can be attached via a non-suture method (e.g. clips, clamp, adhesive, anchor, etc.). The extension can be fastened to one or both leaflets to increase coaptation surface (e.g. if leaflets are too far apart due to annular dilatation). The extension can extend under a prolapsing segment (of opposite leaflet) or be secured over a prolapsing segment.


Leaflet extensions can be shaped to better fit with valve anatomy. Extensions can have reinforced areas to insert sutures through. Extensions can follow the full length of the leaflet or a partial length. The pre-shaped feature can act as an exoskeletal support, shape alteration to better match the contour of the leaflets leading edge, or better contour to maximize coaptation length. If adhered to the leaflet, the feature can be used as a strength member to reinforce the leaflet or to alter the shape of the valve orifice geometry to better reduce regurgitation. In one embodiment, the extension can be drug coated and have drug elution properties to optimize function, adhesion, and mitigate clotting risks. The material for the extension is pliable and preferably currently approved for use in replacement valves (e.g. Synovis Veritas material, bovine pericardium, ECM material, Dacron, Teflon, polyurethane, dura mater, etc.). Extension can be tethered under minimal tension to a tissue structure (e.g. heart apex). Alternatively, Extension can be fixed to the leaflet and excess suture cut and removed.


Various embodiments of systems, devices and methods have been described herein. These embodiments are given only by way of example and are not intended to limit the scope of the present invention. It should be appreciated, moreover, that the various features of the embodiments that have been described may be combined in various ways to produce numerous additional embodiments. Moreover, while various materials, dimensions, shapes, implantation locations, etc. have been described for use with disclosed embodiments, others besides those disclosed may be utilized without exceeding the scope of the invention.

Claims
  • 1. A system for repairing heart tissue in a beating heart of a patient, comprising: a port adapted to span a wall of the heart of the patient, the port having an opening extending therethrough and including a sealing portion including at least one seal configured to be positioned in the opening between an interior and an exterior of the heart;a catheter selectively slidably insertable into the opening of the port, wherein the at least one seal substantially prevents blood from escaping the heart through the port while providing for selective insertion and removal of the catheter through the port; andan elongate removable locking mechanism selectively removable from contact with both the catheter and the port and configured to engage the catheter longitudinally along a length of an outer circumferential surface of the catheter to prevent the catheter from moving distally towards the target tissue relative to the port when the removable locking mechanism is engaged with the catheter and a proximal force is applied to the catheter for inserting the catheter into the heart of the patient, the removable locking mechanism configured to move together with the catheter when engaged with the catheter, wherein the catheter is free to slide distally relative to the port to access the target tissue in the heart when the removable locking mechanism is not engaged with the catheter.
  • 2. The system of claim 1, wherein the elongate removal locking mechanism prevents the catheter from moving distally towards the target tissue when engaged with the port and the catheter by providing a physical barrier sandwiched between a proximally facing surface of the port and a distally facing surface of the catheter.
  • 3. The system of claim 2, wherein the distally facing surface of the catheter is raised relative to the outer surface of the catheter.
  • 4. The system of claim 1, where the at least one seal includes a first seal and a second seal, the first seal having an opening configured to seal around the outer circumferential surface of the catheter and the second seal having a plurality off slits that remain generally sealed when the catheter is not inserted through the second seal.
  • 5. The system of claim 1, wherein an outer surface of a portion of the port includes at least one of threads and ribs configured to engage with the heart wall.
  • 6. The system of claim 1, wherein the port includes an outer circumferential groove that defines a narrowed central portion of the port configured to be positioned within the heart wall to promote natural constriction of the heart wall around the narrowed central portion.
  • 7. The system of claim 1, further comprising a repair device configured to be delivered to a tissue structure in the heart through the port.
  • 8. The system of claim 7, wherein the repair device is a suture.
  • 9. The system of claim 7, wherein the repair device is a clip.
  • 10. The system of claim 7, wherein the repair device includes a pledget and a suture configured to attach the pledget to the tissue structure.
  • 11. The system of claim 7, wherein the repair device is a leaflet extender.
  • 12. The system of claim 7, wherein the repair device comprises a collapsible wire form structure.
RELATED APPLICATION

The application is a continuation of U.S. application Ser. No. 13/339,865 filed Dec. 29, 2011, which claims the benefit of U.S. Provisional Application No. 61/428,048 filed Dec. 29, 2010, which is hereby fully incorporated herein by reference.

US Referenced Citations (338)
Number Name Date Kind
2751908 Wallace Jun 1956 A
3667474 Lapkin Jun 1972 A
3744062 Parsonnet Jul 1973 A
3842840 Schweizer Oct 1974 A
4258716 Sutherland Mar 1981 A
4351345 Carney Sep 1982 A
4935027 Yoon Jun 1990 A
4957498 Caspari et al. Sep 1990 A
4967498 Caspari Sep 1990 A
4960424 Grooters Oct 1990 A
4967798 Hammer Nov 1990 A
4972874 Jackson Nov 1990 A
5053013 Ensminger Oct 1991 A
5059201 Asnis Oct 1991 A
5211650 Noda May 1993 A
5297536 Wilk Mar 1994 A
5304185 Taylor Apr 1994 A
5312423 Rosenbluth et al. May 1994 A
5336229 Noda Aug 1994 A
5383877 Clarke Jan 1995 A
5431666 Sauer et al. Jul 1995 A
5433723 Lindenberg et al. Jul 1995 A
5452733 Sterman Sep 1995 A
5474519 Bloomer Dec 1995 A
5547455 McKenna et al. Aug 1996 A
5556411 Taoda et al. Sep 1996 A
5571215 Sterman Nov 1996 A
5601578 Murphy Feb 1997 A
5626607 Malecki May 1997 A
5653716 Malo et al. Aug 1997 A
5665100 Yoon Sep 1997 A
5667472 Finn et al. Sep 1997 A
5667473 Finn et al. Sep 1997 A
5667478 McFarlin et al. Sep 1997 A
5693091 Larson, Jr. et al. Dec 1997 A
5728113 Sherts Mar 1998 A
5762458 Wang et al. Jun 1998 A
5762613 Sutton et al. Jun 1998 A
5766163 Mueller et al. Jun 1998 A
5772597 Goldberger et al. Jun 1998 A
5772672 Toy et al. Jun 1998 A
5785658 Benaron et al. Jul 1998 A
5797960 Stevens et al. Aug 1998 A
5830231 Geiges, Jr. Nov 1998 A
5839639 Sauer et al. Nov 1998 A
5897564 Schulze et al. Apr 1999 A
5908428 Scirica et al. Jun 1999 A
5908429 Yoon Jun 1999 A
5919128 Fitch Jul 1999 A
5961440 Schweich, Jr. Oct 1999 A
5972004 Williamson et al. Oct 1999 A
5972030 Garrison et al. Oct 1999 A
5984939 Yoon Nov 1999 A
5993466 Yoon Nov 1999 A
5993467 Yoon Nov 1999 A
6022360 Reimels et al. Feb 2000 A
6045497 Schweich, Jr. Apr 2000 A
6050936 Schweich, Jr. Apr 2000 A
6053933 Balazs et al. Apr 2000 A
6059715 Schweich, Jr. May 2000 A
6077214 Mortier et al. Jun 2000 A
6117144 Nobles et al. Sep 2000 A
6129683 Sutton et al. Oct 2000 A
6149660 Laufer et al. Nov 2000 A
6152934 Harper et al. Nov 2000 A
6162168 Schweich, Jr. Dec 2000 A
6162233 Williamson Dec 2000 A
6165119 Schweich, Jr. Dec 2000 A
6165120 Schweich, Jr. Dec 2000 A
6165183 Kuehn et al. Dec 2000 A
6178346 Amundson et al. Jan 2001 B1
6183411 Mortier et al. Feb 2001 B1
6190357 Ferrari et al. Feb 2001 B1
6234079 Chertkow May 2001 B1
6234995 Peacock, III May 2001 B1
6245079 Nobles et al. Jun 2001 B1
6260552 Mortier et al. Jul 2001 B1
6261222 Schweich, Jr. Jul 2001 B1
6264602 Mortier et al. Jul 2001 B1
6269819 Oz et al. Aug 2001 B1
6270508 Klieman et al. Aug 2001 B1
6283993 Cosgrove et al. Sep 2001 B1
6312447 Grimes Nov 2001 B1
6332863 Schweich, Jr. et al. Dec 2001 B1
6332864 Schweich, Jr. et al. Dec 2001 B1
6332893 Mortier et al. Dec 2001 B1
6355050 Andreas et al. Mar 2002 B1
6401720 Stevens et al. Jun 2002 B1
6402679 Mortier et al. Jun 2002 B1
6402680 Mortier et al. Jun 2002 B2
6402781 Langberg et al. Jun 2002 B1
6406420 McCarthy et al. Jun 2002 B1
6419626 Yoon Jul 2002 B1
6436107 Wang et al. Aug 2002 B1
6443922 Roberts et al. Sep 2002 B1
6451054 Stevens Sep 2002 B1
6461366 Seguin Oct 2002 B1
6508777 Macoviak et al. Jan 2003 B1
6514194 Schweich, Jr. et al. Feb 2003 B2
6533796 Sauer et al. Mar 2003 B1
6537198 Vidlund et al. Mar 2003 B1
6537314 Langberg et al. Mar 2003 B2
6551331 Nobles et al. Apr 2003 B2
6558416 Cosgrove et al. May 2003 B2
6562052 Nobles et al. May 2003 B2
6564805 Garrison et al. May 2003 B2
6582388 Coleman et al. Jun 2003 B1
6585727 Cashman et al. Jul 2003 B1
6589160 Schweich, Jr. et al. Jul 2003 B2
6602288 Cosgrove et al. Aug 2003 B1
6616684 Vidlund et al. Sep 2003 B1
6619291 Hlavka et al. Sep 2003 B2
6622730 Ekvall et al. Sep 2003 B2
6626917 Craig Sep 2003 B1
6626930 Allen et al. Sep 2003 B1
6629534 St. Goar et al. Oct 2003 B1
6629921 Schweich, Jr. et al. Oct 2003 B1
6629984 Chan Oct 2003 B1
6645205 Ginn Nov 2003 B2
6679268 Stevens et al. Jan 2004 B2
6692605 Kerr et al. Feb 2004 B2
6695866 Kuehn et al. Feb 2004 B1
6709456 Langberg et al. Mar 2004 B2
6718985 Hlavka et al. Apr 2004 B2
6723038 Schroeder et al. Apr 2004 B1
6726648 Kaplon et al. Apr 2004 B2
6733509 Nobles et al. May 2004 B2
6740107 Loeb et al. May 2004 B2
6746471 Mortier et al. Jun 2004 B2
6752713 Johnson, Jr. Jun 2004 B2
6752813 Goldfarb et al. Jun 2004 B2
6755777 Schweich, Jr. et al. Jun 2004 B2
6764510 Vidlund et al. Jul 2004 B2
6770083 Seguin Aug 2004 B2
6770084 Bain et al. Aug 2004 B1
6793618 Schweich, Jr. et al. Sep 2004 B2
6802860 Cosgrove et al. Oct 2004 B2
6808488 Mortier et al. Oct 2004 B2
6810882 Langberg et al. Nov 2004 B2
6840246 Downing Jan 2005 B2
6858003 Evans et al. Feb 2005 B2
6875224 Grimes Apr 2005 B2
6893448 O'Quinn et al. May 2005 B2
6908424 Mortier et al. Jun 2005 B2
6918917 Nguyen et al. Jul 2005 B1
6921407 Nguyen et al. Jul 2005 B2
6929715 Fladda et al. Aug 2005 B2
6936054 Chu Aug 2005 B2
6955175 Stevens et al. Oct 2005 B2
6962605 Cosgrove et al. Nov 2005 B2
6978176 Lattouf Dec 2005 B2
6986775 Morales et al. Jan 2006 B2
6989028 Lashinski et al. Jan 2006 B2
6991635 Takamoto et al. Jan 2006 B2
6997950 Chawla Feb 2006 B2
7004176 Lau Feb 2006 B2
7004952 Nobles et al. Feb 2006 B2
7011669 Kimblad Mar 2006 B2
7044905 Vidlund et al. May 2006 B2
7048754 Martin et al. May 2006 B2
7077862 Vidlund et al. Jul 2006 B2
7083628 Bachman Aug 2006 B2
7083638 Foerster Aug 2006 B2
7090686 Nobles et al. Aug 2006 B2
7094244 Schreck Aug 2006 B2
7100614 Stevens et al. Sep 2006 B2
7112207 Allen et al. Sep 2006 B2
7112219 Vidlund et al. Sep 2006 B2
7118583 O'Quinn et al. Oct 2006 B2
7122040 Hill et al. Oct 2006 B2
7179291 Rourke et al. Feb 2007 B2
7186264 Liddicoat et al. Mar 2007 B2
7189199 McCarthy et al. Mar 2007 B2
7217240 Snow May 2007 B2
7226467 Lucatero et al. Jun 2007 B2
7247134 Vidlund et al. Jul 2007 B2
7250028 Julian et al. Jul 2007 B2
7288097 Seguin Oct 2007 B2
7294148 McCarthy Nov 2007 B2
7381210 Zarbatany et al. Jun 2008 B2
7464712 Oz et al. Dec 2008 B2
7563267 Goldfarb et al. Jul 2009 B2
7563273 Goldfarb et al. Jul 2009 B2
7604646 Goldfarb et al. Oct 2009 B2
7608091 Goldfarb et al. Oct 2009 B2
7635386 Gammie Dec 2009 B1
7666204 Thornton et al. Feb 2010 B2
7815654 Chu Oct 2010 B2
7879048 Bain et al. Feb 2011 B2
7887552 Bachman Feb 2011 B2
8052751 Aklog et al. Nov 2011 B2
8465500 Speziali Jun 2013 B2
8758393 Zentgraf Jun 2014 B2
9044221 Zentgraf et al. Jun 2015 B2
9192374 Zentgraf Nov 2015 B2
20010005787 Oz Jun 2001 A1
20010016675 Mortier et al. Aug 2001 A1
20010021872 Bailey et al. Sep 2001 A1
20020013571 Goldfarb et al. Jan 2002 A1
20020029080 Mortier et al. Mar 2002 A1
20020049402 Peacock, III Apr 2002 A1
20020077524 Schweich, Jr. Jun 2002 A1
20020161378 Downing Oct 2002 A1
20020169359 McCarthy Nov 2002 A1
20020173694 Mortier et al. Nov 2002 A1
20020183766 Seguin Dec 2002 A1
20030004562 DiCarlo Jan 2003 A1
20030032979 Mortier et al. Feb 2003 A1
20030050529 Vidlund et al. Mar 2003 A1
20030050693 Quijano Mar 2003 A1
20030078600 O'Quinn et al. Apr 2003 A1
20030105519 Fasol Jun 2003 A1
20030120264 Lattouf Jun 2003 A1
20030130731 Vidlund et al. Jul 2003 A1
20030166992 Schweich, Jr. Sep 2003 A1
20030167071 Martin et al. Sep 2003 A1
20030171641 Schweich, Jr. Sep 2003 A1
20030181928 Vidlund et al. Sep 2003 A1
20030187457 Weber Oct 2003 A1
20030195529 Takamoto et al. Oct 2003 A1
20030199975 Gabbay Oct 2003 A1
20040003819 St. Goar Jan 2004 A1
20040030382 St. Goar Feb 2004 A1
20040039442 St. Goar Feb 2004 A1
20040044350 Martin et al. Mar 2004 A1
20040044365 Bachman Mar 2004 A1
20040049207 Goldfarb et al. Mar 2004 A1
20040049552 Motoyama Mar 2004 A1
20040087975 Lucatero et al. May 2004 A1
20040087978 Velez et al. May 2004 A1
20040092962 Thornton et al. May 2004 A1
20040097805 Verard et al. May 2004 A1
20040116767 Lebovic Jun 2004 A1
20040122448 Levine Jun 2004 A1
20040127983 Mortier et al. Jul 2004 A1
20040133063 McCarthy et al. Jul 2004 A1
20040167374 Schweich et al. Aug 2004 A1
20040167539 Kuehn et al. Aug 2004 A1
20040220593 Greenhalgh Nov 2004 A1
20040225300 Goldfarb et al. Nov 2004 A1
20040225304 Vidlund et al. Nov 2004 A1
20040236353 Bain et al. Nov 2004 A1
20040236354 Seguin Nov 2004 A1
20040243229 Vidlund et al. Dec 2004 A1
20040267083 McCarthy Dec 2004 A1
20050004665 Aklog et al. Jan 2005 A1
20050004668 Aklog et al. Jan 2005 A1
20050021055 Toubia et al. Jan 2005 A1
20050021056 St. Goar Jan 2005 A1
20050021057 St. Goar Jan 2005 A1
20050033446 Deem et al. Feb 2005 A1
20050044365 Bachman Feb 2005 A1
20050049667 Arbefeuille et al. Mar 2005 A1
20050065396 Mortier et al. Mar 2005 A1
20050075723 Schroeder et al. Apr 2005 A1
20050075727 Wheatley Apr 2005 A1
20050101975 Nguyen et al. May 2005 A1
20050125011 Spence et al. Jun 2005 A1
20050131277 Schweich, Jr. Jun 2005 A1
20050131533 Alfieri et al. Jun 2005 A1
20050143620 Mortier et al. Jun 2005 A1
20050148815 Mortier et al. Jul 2005 A1
20050149014 Hauck et al. Jul 2005 A1
20050154402 Sauer et al. Jul 2005 A1
20050165419 Sauer et al. Jul 2005 A1
20050171601 Cosgrove Aug 2005 A1
20050216039 Lederman Sep 2005 A1
20050240202 Shennib et al. Oct 2005 A1
20050251187 Beane et al. Nov 2005 A1
20060020275 Goldfarb et al. Jan 2006 A1
20060036317 Vidlund et al. Feb 2006 A1
20060041306 Vidlund et al. Feb 2006 A1
20060052868 Mortier et al. Mar 2006 A1
20060058871 Zakay et al. Mar 2006 A1
20060074484 Huber Apr 2006 A1
20060074485 Realyvasquez Apr 2006 A1
20060089671 Goldfarb et al. Apr 2006 A1
20060100699 Vidlund et al. May 2006 A1
20060127509 Eckman Jun 2006 A1
20060135993 Seguin Jun 2006 A1
20060149123 Vidlund et al. Jul 2006 A1
20060161040 McCarthy Jul 2006 A1
20060161193 Beane et al. Jul 2006 A1
20060184203 Martin et al. Aug 2006 A1
20060195012 Mortier et al. Aug 2006 A1
20060195134 Crittenden Aug 2006 A1
20060195183 Navia et al. Aug 2006 A1
20060241340 Vidlund Oct 2006 A1
20060287657 Bachman Dec 2006 A1
20070002627 Youn Jan 2007 A1
20070027451 Desinger et al. Feb 2007 A1
20070049952 Weiss Mar 2007 A1
20070050022 Vidlund et al. Mar 2007 A1
20070055303 Vidlund et al. Mar 2007 A1
20070088375 Beane et al. Apr 2007 A1
20070100356 Lucatero et al. May 2007 A1
20070112244 McCarthy May 2007 A1
20070118154 Crabtree May 2007 A1
20070118155 Goldfarb et al. May 2007 A1
20070129737 Goldfarb et al. Jun 2007 A1
20070179511 Paolitto Aug 2007 A1
20070197858 Goldfarb et al. Aug 2007 A1
20070203391 Bloom et al. Aug 2007 A1
20070232941 Rabinovich Oct 2007 A1
20070239272 Navia et al. Oct 2007 A1
20070265643 Beane et al. Nov 2007 A1
20070299468 Viola Dec 2007 A1
20080027468 Fenton Jan 2008 A1
20080051703 Thornton et al. Feb 2008 A1
20080065011 Marchand et al. Mar 2008 A1
20080065156 Hauser et al. Mar 2008 A1
20080065205 Nguyen et al. Mar 2008 A1
20080091059 Machold Apr 2008 A1
20080091264 Machold Apr 2008 A1
20080097482 Bain et al. Apr 2008 A1
20080097489 Goldfarb et al. Apr 2008 A1
20080167714 St. Goar Jul 2008 A1
20080183194 Goldfarb et al. Jul 2008 A1
20080188873 Speziali Aug 2008 A1
20080195200 Vidlund et al. Aug 2008 A1
20080208006 Farr Aug 2008 A1
20080228223 Alkhatib Sep 2008 A1
20090082857 Lashinski et al. Mar 2009 A1
20090105729 Zentgraf Apr 2009 A1
20090105751 Zentgraf Apr 2009 A1
20090131880 Speziali et al. May 2009 A1
20090156995 Martin et al. Jun 2009 A1
20090163934 Raschdorf, Jr. Jun 2009 A1
20090177274 Scorsin Jul 2009 A1
20090259304 O'Beirne et al. Oct 2009 A1
20100042147 Janovsky et al. Feb 2010 A1
20100160726 Windheuser Jun 2010 A1
20100174297 Speziali Jul 2010 A1
20120101571 Thambar Apr 2012 A1
20120157760 Aklog et al. Jun 2012 A1
20120290077 Aklog et al. Nov 2012 A1
20140039324 Speziali Feb 2014 A1
20140364875 Zentgra Dec 2014 A1
Foreign Referenced Citations (37)
Number Date Country
20 2004 017888 May 2005 DE
1039851 Jul 2005 EP
1637091 Mar 2006 EP
1845861 Oct 2007 EP
1408850 Sep 2009 EP
06142114 May 1994 JP
WO 199900059 Jan 1999 WO
WO 199930647 Jun 1999 WO
WO 200006026 Feb 2000 WO
WO 200006026 Feb 2000 WO
WO 200006027 Feb 2000 WO
WO 200006028 Feb 2000 WO
WO 200016700 Mar 2000 WO
WO 200166018 Sep 2001 WO
WO 2001095809 Dec 2001 WO
WO 2003001893 Jan 2003 WO
WO 2003059209 Jul 2003 WO
WO 2003082157 Oct 2003 WO
WO 2003082158 Oct 2003 WO
WO 2004021893 Mar 2004 WO
WO 2004043265 May 2004 WO
WO 2005039428 May 2005 WO
WO 2005094525 Oct 2005 WO
WO 2006012750 Feb 2006 WO
WO 2006032051 Mar 2006 WO
WO 2006065966 Jun 2006 WO
WO 2006078694 Jul 2006 WO
WO 2006116310 Nov 2006 WO
WO 2006127509 Nov 2006 WO
WO 2007002627 Jan 2007 WO
WO 2007027451 Mar 2007 WO
WO 2007062128 May 2007 WO
WO 2007081418 Jul 2007 WO
WO 2007117612 Oct 2007 WO
WO 2008010738 Jan 2008 WO
WO 2008112237 Sep 2008 WO
WO 2009052528 Apr 2009 WO
Non-Patent Literature Citations (20)
Entry
Extended European Search Report, EP 06718728.6, dated Nov. 11, 2009.
Interactive Cardio Vascular and Thoracic Surgery; Abstracts; Suppl 3 to vol. 7 (Sep. 2008) 52 pages.
PCT International Preliminary Report on Patentability for PCT/US2008/080560, dated Apr. 29, 2010, 7 pages.
PCT International Search Report and Written Opinion, PCT/US06/01699, dated May 6, 2008.
Port Access System for Mitral Valve Repair Proves its Value in Study; MedGadget Jul. 9, 2009 (5 pages).
European Search Report, EP 08839048.9, dated Sep. 16, 2010, 7 pages.
PCT International Search Report, PCT/US2008/080560, dated Aug. 25, 2009, 3 pages.
PCT International Search Report, PCT/US2008/080560, dated Aug. 28, 2009, 2 pages.
PCT/US2011/067884, Search Report/Written Opinion dated Jul. 30, 2011, 11 pages.
Written Opinion of the International Search Authority, International Application No. PCT/US2008/080560, filed Oct. 20, 2008, Dated Aug. 24, 2009.
Application and File History for U.S. Appl. No. 11/813,695, filed Jul. 11, 2007, now U.S. Pat. No. 8,465,500. Inventor: Speziali.
Application and File History for U.S. Appl. No. 12/709,220, filed Feb. 19, 2010, now U.S. Pat. No. 8,968,338. Inventor: Speziali.
Application and File History for U.S. Appl. No. 13/898,709, filed May 21, 2013, now U.S. Pat. No. 9,364,213. Inventors: Speziali.
Application and File History for U.S. Appl. No. 13/339,865, filed Dec. 29, 2011, now U.S. Pat. No. 9,044,221. Inventors: Zentgraf et al.
Application and File History for U.S. Appl. No. 13/340,185, filed Dec. 29, 2011. Inventors: Zentgraf et al.
Application and File History for U.S. Appl. No. 12/254,808, filed Oct. 20, 2008, now U.S. Pat. No. 9,192,374. Inventor: Zentgraf.
Application and File History for U.S. Appl. No. 12/254,807, filed Oct. 20, 2008, now U.S. Pat. No. 8,758,393. Inventor: Zentgraf.
Application and File History for U.S. Appl. No. 14/310,069, filed Jun. 20, 2014. Inventor: Zentgraf.
European Application No. 11863521.8, Decision to Grant dated Oct. 6, 2017, 2 pages.
European Search Report, EP 11863521.8, dated Nov. 26, 2015, 10 pages.
Related Publications (1)
Number Date Country
20150313713 A1 Nov 2015 US
Provisional Applications (1)
Number Date Country
61428048 Dec 2010 US
Continuations (1)
Number Date Country
Parent 13339865 Dec 2011 US
Child 14707945 US