Exchangeable working channel

Information

  • Patent Grant
  • 10716461
  • Patent Number
    10,716,461
  • Date Filed
    Wednesday, May 9, 2018
    6 years ago
  • Date Issued
    Tuesday, July 21, 2020
    4 years ago
Abstract
The systems, methods, and apparatus disclosed herein are directed to an exchangeable working channel for a surgical instrument comprising a proximal portion, a distal portion, and an instrument channel configured to receive the exchangeable working channel. The exchangeable working channel may comprise a shaft comprising a proximal region and a distal region; an inner surface defining a lumen extending through the shaft; and an outer surface configured to interface with the instrument channel of the surgical instrument. The exchangeable working channel may further comprise one or more locking members configured to releasably couple to the proximal portion or the distal portion of the surgical instrument. The exchangeable working channel may increase a service life of the surgical instrument as a worn working channel can be exchanged with a new one.
Description
TECHNICAL FIELD

The present disclosure relates generally to medical devices, and more particularly to an exchangeable working channel for a surgical and/or medical instrument.


BACKGROUND

Medical procedures may involve manipulation of a tool positioned remotely from the operator. For example, the tool may be advanced through a working channel of a surgical instrument (e.g., catheters, endoscopes, etc.) through which the tool is inserted into the body of a patient. In one example, the surgical instrument may be used in the context of minimally invasive surgery, during which medical tools may be inserted into a patient's body through an incision or orifice to access and/or treat tissue. In another example, the surgical instrument may be used in procedures such as biopsies and endoscopy. The surgical instrument may comprise an interior lumen (e.g., a working channel) providing a pathway to the tissue site. Catheters and various tools, such as, for example, a grasping forcep, a biopsy forcep, a cytology brush, a balloon dilator, a snare, a needle, and/or a basket, can be inserted through the working channel of the surgical instrument to access the tissue site.


SUMMARY

The systems, methods and devices of this disclosure each have several innovative aspects, no single one of which is solely responsible for the desirable attributes disclosed herein.


One aspect relates to a removable working channel of a surgical instrument, the surgical instrument having a proximal portion, a distal portion, and a working channel sheath configured to receive the removable working channel, the removable working channel comprising: a shaft, comprising: a proximal region and a distal region; an inner surface defining a lumen extending through the shaft; and an outer surface configured to interface with the working channel sheath of the surgical instrument; and a first locking member at the proximal region of the shaft, the first locking member configured to releasably couple to the proximal portion of the surgical instrument. In some implementations, the surgical instrument may comprise an endoscope.


In some implementations, the first locking member comprises at least one of a clamp, a friction fit component, a latch, a snap fit component, a screw lock, a luer fit, a threaded fit component, a slip fit component, a bayonet, a ball spring or pogo latch, a detent, a magnet, and an O-ring component.


Some implementations further comprise a second locking member at the distal region of the shaft, the second locking member configured to releasably couple to the distal portion of the surgical instrument. In some implementations, the second locking member comprises an annular ring or a spring clamp at the distal region of the shaft. In some implementations, the second locking member comprises at least one of a clamp, a friction fit component, a latch, a snap fit component, a screw lock, a luer fit, a threaded fit component, a slip fit component, a bayonet, a ball spring or pogo latch, a detent, a magnet, and an O-ring component. In some implementations, the removable working channel does not comprise a locking member at the distal region of the shaft.


In some implementations, the first locking member comprises a locking component configured to engage with a tool; and the first locking member is configured to be releasable from the proximal portion of the surgical instrument when, in use, the tool engages and actuates the locking component of the first locking member.


Some implementations further comprise at least one identification member configured to store data comprising information regarding a source of the removable working channel. In some implementations, the at least one identification member comprises a radio-frequency identification (RFID) tag.


In some implementations, the shaft is made of extruded plastic. In some implementations, the shaft is made of at least one of polyether block amide (PEBA), Nylon, polytetrafluoroethylene (PTFE), high-density polyethylene (HDPE), low-density polyethylene (LDPE), linear low density poly ethylene (LLDPE), polyvinyl chloride (PVC), polystyrene, acrylonitrile butadiene styrene (ABS), polypropylene (PP), thermoplastic elastomers (TPE), fluorinated ethylene propylene (FEP), acetal copolymer, polysulfone, polyetheretherketone (PEEK), polyetherimide, polyphenylene oxide (PPO), perfluoroalkoxy (PFA) plastic, polyvinylidene fluoride (PVDF), ethylene tetrafluoroethylene (ETFE), ethylene chlorotrifluoroethylene (ECTFE), and tetrafluoroethylene/hexafluoropropylene/vinylidene fluoride (THV) copolymer. In some implementations, the shaft further comprises an inner liner attached to the inner surface. In some implementations, the inner liner is made of PTFE, HDPE, LDPE, LLDPE, or hydrophilic materials.


In some implementations, the shaft comprises a reinforcement member disposed at least partially between the inner surface and the outer surface. In some implementations, the reinforcement member comprises at least one of (i) one or more coils, (ii) one or more braids, and (iii) one cable tube.


In some implementations, an outer diameter of the shaft is greater than or equal to about 1.2 mm and less than or equal to about 6 mm. In some implementations, an outer diameter of the shaft is about 3.2 mm.


Another aspect relates to an surgical instrument configured to receive a removable working channel, the surgical instrument comprising: a proximal portion and a distal portion; an instrument channel extending through the proximal and distal portions, the instrument channel comprising: a proximal region and a distal region; and an inner surface defining a lumen extending through the instrument channel; a working channel sheath attached to the inner surface of the instrument channel and configured to interface with the removable working channel; and a first coupling member at the proximal portion of the surgical instrument, the first coupling member configured to releasably couple to a proximal region of the removable working channel.


Some implementations further comprise a second coupling member at the distal portion of the surgical instrument, the second coupling member configured to releasably couple to a distal region of the removable working channel. In some implementations, the working channel sheath is made of extruded plastic. In some implementations, the working channel sheath is made of PEBA, Nylon, PTFE, HDPE, LDPE, LLDPE, PVC, polystyrene, ABS, PP, TPE, FEP, acetal copolymer, polysulfone, PEEK, PPO, PFA plastic, PVDF, ETFE, ECTFE, and THV copolymer. In some implementations, the working channel sheath comprises an inner liner made of PTFE, HDPE, LDPE, or LLDPE.


In some implementations, the working channel sheath comprises at least one of (i) one or more coils, (ii) one or more braids, and (iii) one cable tube. In some implementations, the coils, the braids, or the cable tubes are at least partially made of stainless steel, copper, other metals, Nitinol alloy, graphite, polyparaphenylene terephthalamide, Ultra-high-molecular-weight polyethylene (UHMWPE), PEEK, or nylon.


Some implementations further comprises at least one detector configured to read data from at least one identification member of the removable working channel, the data comprising information regarding a source of the removable working channel.


Yet another aspect relates to a tool configured to adjust an attachment between a removable working channel and a surgical instrument, the removable working channel having proximal and distal regions, the surgical instrument having proximal and distal portions, the tool comprising: an actuator configured to engage and actuate at least one of (i) one or more locking members at the proximal region of the removable working channel and (ii) one or more coupling members at the proximal portion of the surgical instrument, wherein, in use, the engagement and actuation of the at least one of (i) one or more locking members and (ii) one or more coupling members by the actuator facilitates at least one of locking and unlocking the attachment between the removable working channel and the surgical instrument.


Still another aspect relates to a method for sanitizing one or more removable working channels of a surgical instrument, the method comprising: removing a first removable working channel from the surgical instrument; analyzing an integrity of the first removable working channel; cleaning and reinstalling the first removable working channel in an instrument channel of the surgical instrument in response to the integrity of the first removable working channel being uncompromised; and replacing the first removable working channel with a second removable working channel in the instrument channel in response to the integrity of the first removable working channel being compromised.


In some implementations, the one or more removable working channels further comprise at least one identification member configured to store data comprising information regarding a source of the one or more removable working channels. In some implementations, the at least one identification member comprises a radio-frequency identification (RFID) tag. Some implementations further comprise updating the identification member with data regarding whether the first removable working channel or the second removable working channel is installed in the instrument channel of the surgical instrument. In some implementations, the one or more removable working channels are made of extruded plastic.


In some implementations, removing the first removable working channel from the surgical instrument comprises removing the first removable working channel through a proximal end of the instrument. In some implementations, replacing the first removable working channel with the second removable working channel comprises inserting a distal end of the second removable working channel through a proximal end of the instrument channel until the distal end of the second removable working channel reaches near a distal end of the instrument channel.


In some implementations, the surgical instrument comprises: a proximal portion and a distal portion; an instrument channel extending through the proximal and distal portions; a working channel sheath attached to an inner surface of the instrument channel; and one or more coupling members at the proximal portion or the distal portion of the surgical instrument.


In some implementations, the one or more coupling members comprise at least one of a clamp, a friction fit component, a latch, a snap fit component, a screw lock, a luer fit, a threaded fit component, a slip fit component, a bayonet, a ball spring or pogo latch, a detent, a magnet, and an O-ring component. In some implementations, the surgical instrument comprises an endoscope.


In some implementations, the one or more removable working channels further comprise one or more locking members configured to releasably couple to the one or more coupling members of the surgical instrument.


In some implementations, removing the first removable working channel from the surgical instrument comprises: engaging a tool to at least one of (i) the one or more coupling members of the surgical instrument and (ii) the one or more locking members of the first removable working channel; actuating the tool to release the one or more coupling members of the surgical instrument from the one or more locking members of the first removable working channel; and removing the first removable working channel from the surgical instrument.


In some implementations, replacing the first removable working channel with a second removable working channel comprises inserting a distal end of the second removable working channel through a proximal end of the instrument channel until at least one of the one or more coupling members of the surgical instrument engage with at least one of the one or more locking members of the second removable working channel.





BRIEF DESCRIPTION OF THE DRAWINGS

The disclosed aspects will hereinafter be described in conjunction with the appended drawings and appendices, provided to illustrate and not to limit the disclosed aspects, wherein like designations denote like elements.



FIGS. 1A-1E illustrate an embodiment of a surgical instrument including a removable working channel in accordance with one or more aspects as described herein.



FIGS. 2A-2B illustrate another embodiment of a surgical instrument including a removable working channel in accordance with one or more aspects as described herein.



FIGS. 3A-3B illustrate another embodiment of a surgical instrument including a removable working channel in accordance with one or more aspects as described herein.



FIG. 4 illustrates another embodiment of a removable working channel in accordance with one or more aspects as described herein.



FIG. 5 illustrates a flowchart of an example methodology of replacing and/or cleaning a removable working channel of a surgical instrument.





DETAILED DESCRIPTION

Introduction


During a medical procedure (e.g., minimally invasive surgery) using a surgical instrument (e.g., a catheter, endoscope, laparoscope, etc.) comprising an instrument channel, medical tools, such as, for example, cannulas, graspers, forceps, scissors, retractors, and/or stabilizers may be inserted through the instrument channel of the surgical instrument to reach a target organ or tissue. Components of these medical tools may be made of, for example, stainless steel, tungsten, other metals, or other rigid materials. As a result, when a medical tool passes through the instrument channel of the surgical instrument, the medical tool may scratch, deform, or otherwise damage the inner surface of the instrument channel. Over repeated uses of the surgical instrument, interaction between the medical tools and the inner surface of the instrument channel can result in wear and tear of the inner surface of the instrument channel. Thus, in some cases, the service life of the surgical instrument may be limited by the service life of the instrument channel of the surgical instrument.


The present disclosure relates to removable working channel(s) that may be installed or removed from the instrument channel of the surgical instrument. The removable working channel may be configured to be installed inside the instrument channel of the surgical instrument and to at least partially cover the inner surface of the instrument channel. When the removable working channel is worn enough to warrant replacement, the worn working channel can be exchanged with a new working channel. Thus, the disclosed removable working channel can provide an improved service life of the surgical instrument.


The disclosed systems and apparatuses can provide advantages for medical procedures and applications, including but not limited to surgeries that involve the use of endoscopic, laparoscopic, and/or catheter-delivered tools. Thus, though the disclosed removable working channels are described in portions of the present disclosure below within the context of endoscopy, it should be understood that such removable working channels can also be used with other surgical instruments and in other types of procedures in order to provide the disclosed benefits. For example, a removable working channel as described herein can be used in other types of instruments including but not limited to a bronchoscope, a sinuscope (e.g., as used in sinusplasty), a nasopharyngoscope, a laryngoscope, a laparoscope, a gastroscope, a colonoscope, a hysteroscope, a cystoscope, a uroscope, a urethroscope, a cardioscope (e.g., as used in heart catheterization), and an arthroscope, and more generally in procedures that involve delivering tools through flexible and/or curved scopes, catheters, or tubes (collectively referred to as endoscopes, for simplicity of describing the various embodiments discussed herein).


As used herein, “distal” refers to a relative position or location a scope, instrument, or tool that is positioned closer to the patient during use, and “proximal” refers to a relative position or location of the scope, instrument, or tool positioned closer to the operator (e.g., a physician or robotic control system). Stated differently, the relative positions of components of the scope, instrument, tool, and/or the robotic system are described herein from the vantage point of the operator, going from a proximal location to a distal location.


As used herein, the terms “about” or “approximately” refer to a range of measurements of a length, thickness, a quantity, time period, or other measurable values. Such range of measurements encompasses variations of +/−10% or less, preferably +/−5% or less, more preferably +/−1% or less, and still more preferably +/−0.1% or less, of and from the specified value, in so far as such variations are appropriate in order to function in the disclosed devices, systems, and techniques.


Various embodiments will be described below in conjunction with the drawings for purposes of illustration. It should be appreciated that many other implementations of the disclosed concepts are possible, and various advantages can be achieved with the disclosed implementations. Headings are included herein for reference and to aid in locating various sections. These headings are not intended to limit the scope of the concepts described with respect thereto. Such concepts may have applicability throughout the entire specification.


Example Surgical Instrument and Removable Working Channel



FIGS. 1A-1E illustrate an embodiment of a surgical instrument 100 including a removable working channel 200. FIG. 1A illustrates a side view of the surgical instrument 100. FIG. 1B illustrates a cross-sectional view of the removable working channel 200. FIG. 1C illustrates a cross-sectional view of a proximal portion 104 and a distal portion 106 of the surgical instrument 100, with the removable working channel 200 positioned within the surgical instrument 100. FIG. 1D illustrates a cross-sectional view of the proximal portion 104 and the distal portion 106 of the surgical instrument 100, with the removable working channel 200 removed from the surgical instrument 100. FIG. 1E illustrates a perspective view of a distal portion 106 of the surgical instrument 100. FIGS. 1A-1E are discussed together in portions of the description below due to the overlap of depicted features.


With reference to FIG. 1A, there is shown an example surgical instrument 100 that includes a proximal portion 104 and a distal portion 106 and may include at least one instrument channel 102 extending therethrough. The surgical instrument 100 may further comprise one or more coupling members (not shown here but described in greater detail below) at or near the proximal portion 104 and/or the distal portion 106 of the surgical instrument 100. Though the surgical instrument 100 disclosed in FIG. 1A is described within the context of endoscopic procedures, it will be appreciated that the surgical instrument 100 may include other types of instruments suitable for types of medical procedures. As noted above, examples of the surgical instrument 100 include but are not limited to an endoscope, a bronchoscope, a sinuscope, a nasopharyngoscope, a laryngoscope, a laparoscope, a gastroscope, a colonoscope, a hysteroscope, a cystoscope, a uroscope, a urethroscope, a cardioscope, an arthroscope, etc.


In some embodiments, the instrument channel 102 may have a diameter ranging from about 1.2 mm to about 6 mm. More specifically, the instrument channel 102 may have a diameter about 2.8 mm, about 3.7 mm, about 4.2 mm, and about 6 mm. In some embodiments, the instrument channel 102 may be substantially straight along its longitudinal axis, as illustrated in FIG. 1A. In other embodiments, at least a portion of the instrument channel 102 may be curved. It is to be appreciated that the shape of the instrument channel 102 may depend on how the surgical instrument 100 is actuated or flexed.


As shown in FIG. 1A, the instrument channel 102 of the surgical instrument 100 is configured to receive a removable working channel 200 (drawn with dotted lines to indicate that the removable working channel 200 is inside the surgical instrument 100) such that the removable working channel 200 can be inserted into and/or removed from the instrument channel 102. The removable working channel 200 may be installed within the instrument channel 102 such that an outer surface of the removable working channel 200 interfaces the inner surface of the instrument channel 102. The removable working channel 200, when installed within the instrument channel 102, protects the inner surface of the instrument channel 102 from wear and tear caused by medical tools when passed through the surgical instrument 100.


As shown, the removable working channel 200 includes a proximal region 205, a distal region 207, and an inner surface 212 defining a lumen 208. The lumen 208 of the removable working channel 200 may be a working area usable for the passage of intraoperative instruments, generally referred to herein as medical tools. In other embodiments (not illustrated), one or more additional channels may be incorporated to provide further capabilities, such as, for example, flush/irrigation, aspiration, illumination, laser energy, etc. The lumen 208 of the removable working channel 200 may also be configured to deliver a variety of therapeutic substances along with a tool configured to pass through the removable working channel 200. These substances may be delivered precisely to a target site using the insertion, articulation, and/or other capabilities of the surgical instrument 100 of the present disclosure.


With reference to FIG. 1B, there is shown a cross-sectional view of the removable working channel 200 introduced in FIG. 1A. The removable working channel 200 comprises a shaft 202 and may further comprise one or more locking members 220 and 222 at or near a proximal region 204 and at or near a distal region 206 of the removable working channel 200, respectively. As used herein, the phrase “locking member” may refer to a mechanism for securing the removable working channel to the surgical instrument. The shaft 202 includes the proximal region 205, the distal region 207, and the lumen 208 extending therethrough. The shaft 202 includes a wall 210 comprising the inner surface 212 and an outer surface 214. The inner surface 212 of the shaft 202 defines the lumen 208 extending along the longitudinal length of the shaft 202.


The outer diameter of the shaft 202 may be substantially similar to, equal to, or less than the inner diameter of the instrument channel 102 of the surgical instrument 100. One example of the removable working channel 200 can define a shaft having an outer diameter that is greater than or equal to about 1.2 mm, or less than or equal to about 6 mm. In another example, the removable working channel 200 may have a shaft having an outer diameter of about 3.2 mm. The thickness of the shaft wall 210 may be greater than or equal to about 0.1 mm or less than or equal to about 0.3 mm.


In some embodiments, the shaft 202 of the removable working channel 200 may be made of plastic materials or extruded plastic. For example, the shaft 202 may be made of at least one of polyether block amide (PEBA), Nylon, and polytetrafluoroethylene (PTFE), high-density polyethylene (HDPE), low-density polyethylene (LDPE), linear low density poly ethylene (LLDPE), polyvinyl chloride (PVC), polystyrene, acrylonitrile butadiene styrene (ABS), polypropylene (PP), thermoplastic elastomers (TPE), fluorinated ethylene propylene (FEP), acetal copolymer, polysulfone, polyetheretherketone (PEEK), polyetherimide, polyphenylene oxide (PPO), perfluoroalkoxy (PFA) plastic, polyvinylidene fluoride (PVDF), ethylene tetrafluoroethylene (ETFE), ethylene chlorotrifluoroethylene (ECTFE), tetrafluoroethylene/hexafluoropropylene/vinylidene fluoride (THV) copolymer, or other similar medical grade extrusions. Additionally or alternatively, the shaft 202 may be at least partially made of one or more compressible materials. That way, when the removable working channel 200 is inserted into the surgical instrument 100, the removable working channel 200 may be collapsible or compressible to facilitate the insertion.


In some embodiments, the shaft 202 of the removable working channel 200 may further comprise an inner liner (not shown) attached to the inner surface 212 of the shaft 202. The inner liner may be made of at least one of PTFE, HDPE, LDPE, or LLDPE, or other similar medical grade extrusions. The inner liner may reduce friction and facilitate the passing of medical instruments through the lumen 208 of the removable working channel 200. A lubricant may be added to the surface of the inner liner or the inner surface 212 of the removable working channel 200 to further reduce friction between the surface of the inner liner or the inner surface 212 and the medical instruments.


In one embodiment, the shaft 202 may further comprise a reinforcement member disposed at least partially between the inner surface 212 and the outer surface 214 of the shaft 202. In another embodiment, the reinforcement member may be disposed inside the inner surface 212 of the shaft 202 or outside the outer surface 214 of the shaft 202. Examples of the reinforcement member include one or more coils, one or more braids, or one or more cable tubes. The coils, the braids, and/or the cable tubes may be at least partially made of stainless steel (e.g., stainless steel 304 or stainless steel 316), copper, other metals, Nitinol alloy, graphite, or polymers such as polyparaphenylene terephthalamide (e.g., tradename Kevlar), Ultra-high-molecular-weight polyethylene (UHMWPE) (e.g., tradename Spectra), PEEK, or nylon. It is to be appreciated that other materials may be used depending on the application and the materials just described are not provided in a limiting manner.


As described above with reference to FIG. 1B, the removable working channel 200 may further comprise the one or more locking members 220 at or near the proximal region 204 of the removable working channel 200. The one or more locking members 220 may be configured to releasably couple with the surgical instrument (not shown; see e.g., the surgical instrument 100 in FIG. 1A). As shown in FIG. 1B, the one or more locking members 220 may be at the proximal end of the removable working channel 200. In other examples, the one or more locking members 220 may be placed anywhere in the proximal region 204 of the removable working channel 200.


Similarly, the removable working channel 200 may further comprise the one or more locking members 222 at or near the distal region 206 of the removable working channel 200. The one or more locking members 222 may be configured to releasably couple with the surgical instrument (not shown). As shown in FIG. 1B, the one or more locking members 222 may be at the distal end of the removable working channel 200. In other examples, the one or more locking members 222 may be placed anywhere in the distal region 206 of the removable working channel 200.


With reference to FIG. 1C, there is shown a cross-sectional view of the surgical instrument 100 and the removable working channel 200 inside the surgical instrument 100. The removable working channel 200 is configured to be installed within the surgical instrument 100. The one or more locking members 220 at the proximal end of the removable working channel 200 may be configured to releasably couple with the one or more coupling members 120 of the surgical instrument 100. In another embodiment in which the surgical instrument 100 does not comprise one or more coupling members 120 at or near the proximal portion 104 (not shown), the one or more locking members 220 may be configured to releasably couple to the proximal portion 104 of the surgical instrument 100.


Similarly, the one or more locking members 222 at the distal end of the removable working channel 200 may be configured to releasably couple with the one or more coupling members 122 of the surgical instrument 100. In another embodiment in which the surgical instrument 100 does not comprise one or more coupling members 122 at or near the distal portion 106 (not shown), the one or more locking members 220 may be configured to releasably couple to the distal portion 106 of the surgical instrument 100.


The locking members 220 and 222 of the removable working channel 200 on the proximal region 204 and the distal region 206, respectively, may comprise a removable luer fit component 223, a clamp, a friction fit component (also known as interference fit), a latch, a threaded fit component 224, a slip fit component, a bayonet, a ball spring or pogo latch, a detent, a magnet, a screw lock, a snap fit component, or an O-ring component.


In one example, the locking members 220 and/or 222 may comprise a removable luer fit component configured to fit into a complementary removable luer fit component of the surgical instrument 100. In another example, the locking members 220 and/or 222 may comprise a clamp configured to removably hold at least a portion of the surgical instrument 100 (e.g., proximal portion 104 or distal portion 106). In yet another example, the locking members 220 and/or 222 may comprise a friction fit component configured to slip into the instrument channel 102 of the surgical instrument 100 and lock by friction with the inner surface of the instrument channel 102. In still another example, the locking members 220 and/or 222 may comprise a latch configured to join or fasten to a latch component of the surgical instrument 100 or directly to a portion of the surgical instrument 100. The latch may comprise (1) a ball with a spring or (2) a pogo latch.


In one example, the locking members 220 and/or 222 may comprise a threaded fit component configured to rotatably fit and lock into the instrument channel 102 of the surgical instrument 100 via an interlocking between threads of the threaded fit component and those on the inner surface of the instrument channel 102. In one example, the locking members 220 and/or 222 may comprise a slip fit component configured to fit and lock into the instrument channel 102 of the surgical instrument 100. In another example, the locking members 220 and/or 222 may comprise a bayonet component. The bayonet component may comprise a catch, a detent, or a pin configured to removably couple to a receptor (e.g., a hole, a groove, or an L-shaped groove) on the inner surface of the instrument channel 102 of the surgical instrument 100. Alternatively, the bayonet component of the removable working channel 200 may be a receptor (e.g., a hole, a groove, or an L-shaped groove) configured to receive a catch, a detent, or a pin on the inner surface of the instrument channel 102 of the surgical instrument 100. In yet another example, the locking members 220 and/or 222 may comprise a magnet configured to interact with a magnet at or near the instrument channel 102 of the surgical instrument 100. In still another example, the locking members 220 and/or 222 may comprise a screw lock configured to rotatably lock the removable working channel 200 to the surgical instrument 100 via an interlocking between threads of the screw lock and those on the surgical instrument 100. In another example, the locking members 220 and/or 222 may comprise an O-ring component configured to be placed inside and seal against the instrument channel 102 of the surgical instrument 100.


In some embodiments, the locking members 220 and/or 222 of the removable working channel 200 may comprise one or more locking components configured to engage with a tool 216. The locking members 220 and/or 222 may be releasable from the surgical instrument 100 when, in use, the tool 216 engages and actuates the locking components. In another embodiment, the tool 216 may be configured to selectively actuate and release certain type or types of the locking components. For example, the tool 216 may be a key that is configured to engage and unlock only one type of the locking components. The key may be configured such that the key is not able to engage or unlock other types of the locking components. In yet another embodiment, the tool 216 may be configured to wirelessly communicate with the locking components to actuate them.


As described above with reference to FIG. 1C, the surgical instrument 100 is configured to receive the removable working channel 200. The surgical instrument 100 may further comprise one or more coupling members 122 at or near the distal portion 106 of the surgical instrument 100. The one or more coupling members 122 of the surgical instrument 100 may be configured to releasably couple with the one or more locking members 222 of the removable working channel 200. In another embodiment in which the removable working channel 200 does not comprise one or more locking members at or near the distal region 206 of the removable working channel 200 (not shown), the one or more coupling members 122 may be configured to releasably couple to the distal region 206 of the removable working channel 200. Examples of the coupling members 122 of the surgical instrument 100 are explained below.


As shown in FIG. 1C, the one or more coupling members 122 may be at the distal end of the surgical instrument 100. In other embodiments, the one or more coupling members 122 may be placed anywhere in the distal portion 106 of the surgical instrument 100.


Similarly, the surgical instrument 100 may further comprise one or more coupling members 120 at or near the proximal portion 104 of the surgical instrument 100. The one or more coupling members 120 of the surgical instrument 100 may be configured to releasably couple with the one or more locking members 220 of the removable working channel 200. In another embodiment in which the removable working channel 200 does not comprise one or more locking members at or near the proximal region 204 of the removable working channel 200 (not shown), the one or more coupling members 120 may be configured to releasably couple to the proximal region 204 of the removable working channel 200. For example, the one or more coupling members 120 may comprise a clamp mechanism configured to couple to or pinch at the proximal region 204 of the removable working channel 200.


As shown in FIG. 1C, the one or more coupling members 120 may be at the proximal end of the surgical instrument 100. In other embodiments, the one or more coupling members 120 may be placed anywhere in the proximal portion 104 of the surgical instrument 100.


The coupling members 120 and 122 on the proximal portion 104 and the distal portion 106, respectively, of the surgical instrument 100 may comprise a removable luer fit component, a clamp, a friction fit component (also known as an interference fit component), a latch, a threaded fit component, a slip fit component, a bayonet, a ball spring or pogo latch, a detent, a magnet, a screw lock, a snap fit component, or an O-ring component. In one example, the coupling members 120 and/or 122 of the surgical instrument 100 may comprise a removable luer fit component configured to fit into a complementary removable luer fit component of the removable working channel 200. In another example, the coupling members 120 and/or 122 may comprise a clamp configured to removably hold at least a portion of the removable working channel 200. In yet another example, the coupling members 120 and/or 122 may comprise a friction fit component configured to lock by friction with the outer surface of the removable working channel 200. In still another example, the coupling members 120 and/or 122 may comprise a latch configured to join or fasten to a latch component of the removable working channel 200 or directly to a portion of the removable working channel 200. The latch may comprise (1) a ball with a spring and/or (2) a pogo latch.


In one example, the coupling members 120 and/or 122 may comprise a threaded fit component configured to rotatably fit and lock with the removable working channel 200 via an interlocking between threads of the threaded fit component and those on the outer surface of the removable working channel 200. In one example, the coupling members 120 and/or 122 may comprise a slip fit component configured to fit and lock with the removable working channel 200. In another example, the coupling members 120 and/or 122 may comprise a bayonet component. The bayonet component may comprise a catch, a detent, or a pin configured to removably couple to a receptor (e.g., a hole, a groove, or an L-shaped groove) on the outer surface of the removable working channel 200. Alternatively, the bayonet component of the surgical instrument 100 may be a receptor (e.g., a hole, a groove, or an L-shaped groove) configured to receive a catch, a detent, or a pin on the outer surface of the removable working channel 200. In yet another example, the coupling members 120 and/or 122 may comprise a magnet configured to interact with a magnet placed on the removable working channel 200. In still another example, the coupling members 120 and/or 122 may comprise a screw lock configured to rotatably lock at least a portion of the surgical instrument 100 to at least a portion of the removable working channel 200 via an interlocking between threads of the screw lock and those on the removable working channel 200. In another example, the coupling members 120 and/or 122 may comprise an O-ring component configured to be seal against the removable working channel 200.


In some embodiments, the coupling members 120 and/or 122 of the surgical instrument 100 may comprise one or more locking components configured to engage with a tool 216. The coupling members 120 and/or 122 of the surgical instrument 100 may be configured to be released from the removable working channel 200 when the tool 216 engages and actuates the locking components of the coupling members 120 and/or 122. In another embodiment, the tool 216 may be configured to selectively actuate and release certain type or types of the locking components. For example, the tool 216 may be a key that is configured to engage and unlock only one type of the locking components. The key may be configured such that the key is not able to engage or unlock other types of the locking components. In yet another embodiment, the tool 216 may wirelessly communicate with the locking components to actuate them.


The surgical instrument 100 may comprise a sensor and/or a detector configured to communicate with a processor (e.g., of a surgical robotic system or a computing device in communication with the surgical robotic system) configured to process or verify the information received from the at least one identification member of the removable working channel 200. The user of the surgical instrument 100 (e.g., an operator, a physician, or a robotic surgical system) may set requirements as to which removable working channel 200 may be installed to the surgical instrument 100. After the processor receives information from the removable working channel 200 (e.g., from the sensor or detector), the processor may determine whether the removable working channel 200 satisfies the requirements set by the user. The surgical instrument 100 may be configured to only receive a removable working channel 200 whose information is verified by the processor. In some embodiments, the surgical instrument 100 may be configured to receive only removable working channels 200 whose information satisfies a certain set of requirements set by the user. For example, the surgical instrument 100 may be configured to receive removable working channels 200 produced by verifiable manufacturers only or by a certain set of one or more manufacturers only. In another embodiment, the surgical instrument 100 may be configured to receive only removable working channels 200 that have not been used before. In yet another embodiment, the processor may be configured to transmit a message or otherwise warn a user that one or more requirements of the removable working channel 200 have not been met (e.g., if the source or the manufacturer of the removable working channel 200 is not verifiable).


With reference to FIG. 1D, there is shown a cross-sectional view of the proximal portion 104 and the distal portion 106 of the surgical instrument 100, with the removable working channel 200 removed from the surgical instrument 100. As shown in FIG. 1D, at least a portion of the inner surface 109 of the instrument channel 102 may be covered by a working channel sheath 110. The working channel sheath 110 may be configured to receive the removable working channel 200 as described herein. The removable working channel 200 may be positioned inside the surgical instrument 100 such that the outer surface of the removable working channel 200 interfaces the inner surface 111 of the working channel sheath 110. The working channel sheath 110 may reduce friction between the inner surface 109 of the instrument channel 102 and the removable working channel 200, facilitating the installation and/or removal processes for the removable working channel 200. In other embodiments (not shown), the inner surface 109 of the instrument channel 102 may not be covered with the working channel sheath 110.


The working channel sheath 110 may be made of plastic or extruded plastic. In another embodiment, the working channel sheath 110 may be made of at least one of PEBA, Nylon, PTFE, HDPE, LDPE, LLDPE, PVC, polystyrene, ABS, PP, TPE, FEP, acetal copolymer, polysulfone, PEEK, polyetherimide, PPO, PFA plastic, PVDF, ETFE, ECTFE, and THV copolymer, or other similar medical grade extrusions. In another embodiment, the working channel sheath 110 may further comprise an inner liner attached to the inner surface 111 of the working channel sheath 110. The inner liner may be made of at least one of PTFE, HDPE, LDPE, LLDPE, or other similar medical grade extrusions, or hydrophilic materials. The hydrophilic inner liner coating may be useful for some applications such as tissue/stone removal or easing the passage of medical tools.


The working channel sheath 110 may further comprise one or more coils, one or more braids, or one or more cable tubes. The coils, the braids, and/or the cable tubes may be at least partially inside the working channel sheath 110. In another embodiment, the coils, the braids, and/or the cable tubes may be disposed inside the inner surface 111 of the working channel sheath 110 or outside the outer surface of the working channel sheath 110. The coils, the braids, and/or the cable tubes may be at least partially made of stainless steel (e.g., stainless steel 304 or stainless steel 316), copper, other metals, Nitinol alloy, graphite, or polymers such as polyparaphenylene terephthalamide (e.g., tradename Kevlar), UHMWPE (e.g., tradename Spectra), PEEK, or nylon. It is to be appreciated that other materials may be used depending on the application and the materials just described are not provided in a limiting manner.


Referring to FIG. 1E, the distal portion 106 of the surgical instrument 100 may comprise the distal region 107 of the instrument channel 102, light sources 150 (e.g., light emitting diode (LED), optic fiber, etc.), and a camera 155 (e.g., charge-coupled device (CCD) or complementary metal-oxide-semiconductor (CMOS) camera, terminal end of imaging fiber bundle etc.). In conjunction with the light sources 150, the camera 155 may be used, for example, to capture real-time video to assist with navigation within anatomical structures. Other channels or operating electronics may be provided along the surgical instrument 100 to provide various known capabilities at the distal portion 106, such as wiring to the camera 155, insufflation, suction, electricity, fiber optics, ultrasound transducer, electromagnetic (EM) sensing, and optical coherence tomography (OCT) sensing.


Other Examples of Surgical Instruments and Removable Working Channels



FIGS. 2A-2B illustrate aspects of another embodiment of a surgical instrument 300 including a removable working channel 400 as described herein, wherein the surgical instrument 300 comprises an endoscope and includes (1) a removable luer adapter 320 at the proximal portion 304 of the surgical instrument 300 and (2) a snap fit component 322 at the distal portion 306 of the surgical instrument 300; and the removable working channel 400 comprises (1) a removable luer component 420 at the proximal region 404 of the removable working channel 400 and (2) a snap fit component 422 at the distal region 406 of the removable working channel 400. FIG. 2A illustrates a cross-sectional view of a distal portion 306 of the surgical instrument 300. FIG. 2B illustrates a cross-sectional view of a proximal portion 304 of the surgical instrument 300. FIGS. 2A-2B are discussed together in portions of the description below due to the overlap of depicted features.


In FIGS. 2A-2B, components that can be similar to components described above with reference the embodiment of FIGS. 1A-1E and the description above are identified by similar numbers wherein the reference number used is preceded by the numbers “3” and “4” instead of “1” and “2”, respectively. For example, components 302, 304 and 306 can be similar to components 102, 104 and 106, and components 402, 404 and 406 can be similar to components 202, 204 and 206. Reference can be made to the description above for additional descriptions and embodiments of these components which can be used with the embodiment of FIGS. 2A-2B.


Similar to the surgical instrument 100 of FIGS. 1A-1E, the surgical instrument 300 may include at least one instrument channel 302 extending along its longitudinal length. With reference to FIG. 2A, there is shown an embodiment of the surgical instrument 300 comprising an endoscope. The instrument channel 302 of the surgical instrument 300 is configured to receive a removable working channel 400 such that the removable working channel 400 can be inserted into, positioned within, attached to, and/or removed from the instrument channel 302.


Similar to the surgical instrument 100 of FIGS. 1A-1E, at least a portion of the inner surface of the instrument channel 302 of the surgical instrument 300 may be covered with a working channel sheath 310. An outer surface of the working channel sheath 310 interfaces with the inner surface of the instrument channel 302, and an inner surface of the working channel sheath 310 interfaces with the instrument channel 302. The working channel sheath 310 is configured to receive the removable working channel 400 as described herein.


With reference to the embodiment of FIG. 2A, the surgical instrument 300 includes a snap fit component 322 near the distal end of the surgical instrument 300. It is noted that the snap fit component 322 may be placed anywhere in the distal portion 306 of the surgical instrument 300. The snap fit component 322 comprises a step portion configured to abut a distal region 406 of the removable working channel 400. At the distal portion 306 of the surgical instrument 300, the diameter of the instrument channel 302 increases such that the distal portion of the instrument channel 302 can receive the distal region 406 of the removable working channel 400. The removable working channel 400 comprises a snap fit component 422 near the distal end of the removable working channel 400. It is noted that the snap fit component 422 may be placed anywhere in the distal region 406 of the removable working channel 400. The snap fit component 422 is configured to annularly surround the outer surface of the distal region 406 of the removable working channel 400. That way, the outer diameter of the removable working channel 400 at its distal region 406 is greater than that at other regions of the removable working channel 400. As shown in FIG. 2A, the snap fit component 422 may be integrally formed to the distal region 406 of the removable working channel 400. It is to be appreciated that an interference fit component and/or a slip fit component may be used in the distal portion 306 of the surgical instrument 300 instead of or in addition to the snap fit component 322 for simplicity.


The snap fit component 422 of the removable working channel 400 is configured to releasably couple to the snap fit component 322 of the surgical instrument 300. The outer diameter of the distal region 406 of the removable working channel 400 is greater than the diameter of the instrument channel 302 at or near its proximal end. Thus, when the removable working channel 400 is inserted into a proximal end of the instrument channel 302, the distal region 406 of the removable working channel 400 is folded toward the radially inward direction in order for the removable working channel 400 to be able to pass through the instrument channel 302. To facilitate the insertion, the removable working channel 400 may be at least partially made of one or more compressible materials. In some embodiments, when inserting the removable working channel 400 into a proximal end of the instrument channel 302, the user may use a tool (e.g., a mandrel with a handle) to move the removable working channel 400 into the instrument channel 302. When the snap fit component 422 of the removable working channel 400 reaches the distal portion 306 of the surgical instrument 300, the diameter of the instrument channel 302 becomes greater to be substantially similar to the outer diameter of the distal region 406 of the removable working channel 400. As a result, the distal region 406 of the removable working channel 400 radially expands from its folded state to conform to the shape of the instrument channel 302 at the distal portion 306. When the snap fit component 422 of the removable working channel 400 slides along the instrument channel 302 further distally, the distal region 406 of the removable working channel 400 abuts the step portion of the snap fit component 322 of the surgical instrument 300, which prevents a further distal movement of the removable working channel 400.


In some embodiments, the snap fit component 322 of the surgical instrument 300 may comprise an annular recess on an inner surface at or near the distal end of the instrument channel 302, and the snap fit component 422 of the removable working channel 400 may comprise an annular ring on its outer surface. The annular ring of the removable working channel 400 may be configured to snap into and removably couple with the annular recess of the instrument channel 302. In other embodiments, the snap fit component 422 of the removable working channel 400 may comprise a spring clamp on its outer surface. The spring clamp of the removable working channel 400 may be configured to snap into and removably couple with the annular recess of the instrument channel 302. In other embodiments, the snap fit component 322 of the surgical instrument 300 may comprise a wire spring clamp embedded at or near the distal end of the instrument channel 302 (e.g., on the inner surface at or near the distal end of the instrument channel 302). The wire spring clamp may be configured to removably hold the distal region 406 of the removable working channel 400.


The releasable coupling between the two snap fit components 322 and 422 is at least partially achieved by friction between the inner surface of the instrument channel 302 at or near the distal portion 306 and the snap fit component 422 of the removable working channel 400. When the removable working channel 400 is removed from the instrument channel 302 in a proximal direction, the snap fit component 422 of the removable working channel 400 slides in a proximal direction, so the diameter of the instrument channel 302 contacting the snap fit component 422 becomes smaller. As a result, the snap fit component 422 of the removable working channel 400 is forced into the portion of the instrument channel 302 outside the distal region 406 whose diameter is smaller than the outer diameter of the distal region 406 of the removable working channel 400. Accordingly, the snap fit component 422 of the removable working channel 400 is pushed against the inner surface of the instrument channel 302, causing frictions resisting the uncoupling between the two snap fit components 322 and 422. However, the coupling between the two snap fit components 322 and 422 is not permanent and may be released by enough pulling force and/or manipulation of the distal region 406 of the removable working channel 400 (e.g., pulling the distal region 406 toward the radially inward direction) that overcomes the forces of the snap fit. In some embodiments, one or more tools may be used to remove the removable working channel 400 from the instrument channel 302.


With reference to FIG. 2B, the removable working channel 400 comprises a removable luer component 420 at the proximal region 404 of the removable working channel 400. The surgical instrument 300 includes a removable luer adapter 320 at the proximal portion 304 of the surgical instrument 300. The removable luer component 420 of the removable working channel 400 is configured to releasably couple to the removable luer adapter 320 of the surgical instrument 300. The removable luer component 420 of the removable working channel 400 may be configured to slip and fit into the removable luer adapter 320 of the surgical instrument 300. Alternatively, the removable luer component 420 of the removable working channel 400 may be configured to rotatably fit and lock into the removable luer adapter 320 of the surgical instrument 300.



FIGS. 3A-3B illustrate yet another embodiment of a surgical instrument 500 including a removable working channel 600 as described herein, wherein the surgical instrument does not comprise one or more coupling members at or near the distal portion 506 of the surgical instrument 500. FIG. 3A illustrates a cross-sectional view of the surgical instrument 500 as described herein. FIG. 3B illustrates a cross-sectional view of the removable working channel 600 as described herein. FIGS. 3A-3B are discussed together in portions of the description below due to the overlap of depicted features.


In FIGS. 3A-3B, components that can be similar to components described above with reference the embodiment of FIGS. 1A-1E and the description above are identified by similar numbers wherein the reference number used is preceded by the numbers “5” and “6” instead of “1” and “2”, respectively. For example, components 502, 504 and 506 can be similar to components 102, 104 and 106, and components 602, 604 and 606 can be similar to components 202, 204 and 206. Reference can be made to the description above for additional descriptions and embodiments of these components which can be used with the embodiment of FIGS. 3A-3B.


With reference to FIG. 3A, the surgical instrument 500 may include at least one instrument channel 502 extending along its longitudinal length. Similar to the surgical instrument 100 of FIGS. 1A-1E, the instrument channel 502 of the surgical instrument 500 is configured to receive the removable working channel 600 such that the removable working channel 600 can be inserted into and/or removed from the instrument channel 502.


Similar to the surgical instrument 100 of FIGS. 1A-1E, at least a portion of the inner surface of the instrument channel 502 of the surgical instrument 500 is covered with a working channel sheath 510. As shown in FIG. 3A, an outer surface of the working channel sheath 510 interfaces with the inner surface of the instrument channel 502, and an inner surface of the working channel sheath 510 interfaces with the instrument channel 502. The working channel sheath 510 is configured to receive the removable working channel 600 as described herein.


As shown in FIG. 3A, the surgical instrument 500 does not comprise one or more coupling members at or near the distal portion 506 of the surgical instrument 500. Thus, the distal portion 506 of the surgical instrument 500 is not configured to lock or couple to the removable working channel 600. Similar to the surgical instrument 100 of FIGS. 1A-1E, the surgical instrument 500 comprises one or more coupling members 520 at the proximal portion 504 of the surgical instrument 500. The coupling members 520 of the surgical instrument 500 may comprise a removable luer fit component, a clamp, a friction fit component (also known as an interference fit component), a latch, a threaded fit component, a slip fit component, a bayonet, a ball spring or pogo latch, a detent, a magnet, a screw lock, a snap fit component, or an O-ring component.



FIG. 3B illustrates a cross-sectional view of the removable working channel 600. Similar to the removable working channel 200 of FIG. 1B, the removable working channel 600 comprises a shaft 602. The shaft 602 includes a proximal end 605, a distal end 607, and a lumen 608 extending therethrough. The shaft 602 includes a wall 610 comprising an inner surface 612 and an outer surface 614. The inner surface 612 of the shaft 602 defines the lumen 608 extending along the longitudinal length of the shaft 602. The outer surface 614 of the shaft 602, when installed, interfaces with the instrument channel 502 of the surgical instrument (not shown).


The removable working channel 600 further comprises one or more locking members 620 at the proximal region 604 of the removable working channel 600. The locking members 620 of the removable working channel 600 are configured to releasably couple to the coupling members 520 of the surgical instrument 500. In an alternate example, the locking members 620 of the removable working channel 600 are configured to releasably couple to the proximal portion 504 of the surgical instrument 500. The locking members 620 of the removable working channel 600 may comprise a removable luer fit component, a clamp, a friction fit component (also known as an interference fit component), a latch, a threaded fit component, a slip fit component, a bayonet, a ball spring or pogo latch, a detent, a magnet, a screw lock, a snap fit component, or an O-ring component. In contrast, the removable working channel 600 does not comprise one or more locking members at or near the distal region 606 of the removable working channel 600 such that the distal region 606 of the removable working channel 600 is not configured to lock or couple to the distal portion 506 of the surgical instrument 500.


Example Identification Members



FIG. 4 illustrates another embodiment of a removable working channel 700 as described herein, wherein the removable working channel 700 further comprises an identification member 730.


In FIG. 4, components that can be similar to components described above with reference the embodiment of FIG. 1B and the description above are identified by similar numbers wherein the reference number used is preceded by the numbers “7” instead of “2”, respectively. For example, components 702, 704 and 706 can be similar to components 202, 204 and 206, respectively. Reference can be made to the description above for additional descriptions and embodiments of these components which can be used with the embodiment of FIG. 4.


Similar to the removable working channel 200 of FIG. 1B, the removable working channel 700 comprises a shaft 702 including a proximal end 705, a distal end 707, and a lumen 708 extending therethrough. The shaft 702 includes a wall 710 comprising an inner surface 712 and an outer surface 714. The inner surface 712 of the shaft 702 defines the lumen 708 extending along the longitudinal length of the shaft 702. The outer surface 714 of the shaft 702, when installed, interfaces with the instrument channel of the surgical instrument (not shown). In some embodiments, the removable working channel 700 may further comprise one or more locking members 720 at the proximal region 704 of the removable working channel 700 and/or one or more locking members 722 at the distal region 706 of the removable working channel 700. The locking members 720 and/or 722 of the removable working channel 700 are configured to releasably couple to the surgical instrument (not shown) as described above. The locking members 720 and/or 722 of the removable working channel 700 may comprise a removable luer fit component, a clamp, a friction fit component (also known as an interference fit component), a latch, a threaded fit component, a slip fit component, a bayonet, a ball spring or pogo latch, a detent, a magnet, a screw lock, a snap fit component, or an O-ring component.


With reference to FIG. 4, the removable working channel 700 further comprises one or more identification members 730 configured to store data comprising information regarding the surgical instrument (e.g., one similar to the surgical instrument 100), the removable working channel 700, or both. In some embodiments, the identification member 730 may be attached to the shaft 702 (e.g., on the inner surface 712 or the outer surface 714), or to the locking members 720 and/or 722. Examples of the identification members 730 may include, but not be limited to, a radio-frequency identification (RFID) tag, a near field communication (NFC) tag, a bar code, a Quick Response (QR) code, a Bluetooth low energy (BLE) tag, an ultrasound identification tag, an infrared identification tag, or a video identification tag. The data saved in the identification members 730 may include a source, type, material, dimension, manufacture date, expiration date, and/or identification number of the surgical instrument or the removable working channel 700. In some embodiments, one or more identification members 730 may be installed on the surgical instrument, the removable working channel 700, or both. In other embodiments, the surgical instrument, the removable working channel 700, or both may further comprise at least one sensor or detector configured to read data from the identification members 730.


Example Tool to Couple and/or Uncouple Between Removable Working Channel and Surgical Instrument


In accordance with one or more aspects of the present disclosure, a tool may be configured to couple and/or uncouple between a removable working channel (e.g., removable working channel 200, 400, or 600 as described above) and a surgical instrument (e.g., surgical instrument 100, 300, or 500 as described above). The removable working channel and/or the surgical instrument may be configured to couple and/or uncouple to each other only through the use of a specific type of the tool. This way, only people with the specific type of the tool may install and/or remove the removable working channel onto/from the surgical instrument.


In some embodiments, the tool may be configured to adjust an attachment between the removable working channel and the surgical instrument. The tool may comprise an actuator configured to engage and actuate at least one of (i) one or more locking members (e.g., locking members 220, 420, and/or 620 as described above) at the proximal region of the removable working channel and (ii) one or more coupling members (e.g., coupling members 120, 320, and/or 520 as described above) at the proximal portion of the surgical instrument. In another embodiment, the actuator may be configured to engage and actuate at least one of (i) one or more locking members (e.g., locking members 222 and/or 422 as described above) at the distal region of the removable working channel and (ii) one or more coupling members (e.g., coupling members 122 and/or 322 as described above) at the distal portion of the surgical instrument.


The engagement and actuation of the at least one of (i) one or more locking members and (ii) one or more coupling members by the actuator facilitates locking and/or unlocking an attachment between the removable working channel and the surgical instrument. In another embodiment, the tool may be configured to wirelessly communicate with the one or more locking members of the removable working channel to engage or actuate the one or more locking members. In yet another embodiment, the tool may be configured to wirelessly communicate with the one or more coupling members of the surgical instrument to engage or actuate the one or more coupling members. Examples of the tool include, and are not limited to, a key, a driver, a pipe, a needle, and a transmitter.


In some embodiments, the actuator of the tool may be configured to be able to engage only with a certain type or types of the locking members and/or the coupling members. Such an exclusive engagement may be enabled by (1) physical features of the actuator, the locking members, and/or the coupling members or (2) electronic or wireless communications between the tool and the locking members or the coupling members. For example, in one embodiment, the actuator of the tool may have a physical shape that can engage with only a certain type or types of the locking members and/or the coupling members. In another embodiment, the tool may be configured to wirelessly communicate with the locking members and/or the coupling members to allow engagement with only a certain type or types of the locking members and/or the coupling members.


Example Method for Sanitizing or Replacing Removable Working Channels of Surgical Instrument


With the removable working channel and the surgical instrument described herein, a user may sanitize or replace the surgical instrument by removing a removable working channel installed in an instrument channel of the surgical instrument, checking the integrity of the removable working channel, and then either (1) cleaning and reinstalling the removable working channel or (2) replacing the removable working channel with a new removable working channel in the surgical instrument, depending on the integrity of the first removable working channel.



FIG. 5 depicts a flowchart illustrating an embodiment of a process 800 of sanitizing or replacing one or more removable working channels (e.g., removable working channels 200, 400, 600, and 700 as described above) of a surgical instrument described herein (e.g., surgical instruments 100, 300, and 500 as described above), wherein the process 800 may be conducted by a user. The user may include, but not be limited to, hospitals, physicians, healthcare practitioners, third-party cleaning service companies, medical device companies, and/or autonomous systems. The process 800 may also be implemented, entirely or in part, by an automated system (e.g., robotic system). It will be appreciated that although components described in the process 800 may be identified by the reference numbers used for the embodiment of FIGS. 1A-1E, these components are not limited to the embodiment of FIGS. 1A-1E.


At block 805, the user (e.g., a human operator or an autonomous system) may remove a first removable working channel from a surgical instrument. For example, in implementations in which the removable working channel 200 is installed in the instrument channel 102 of the surgical instrument 100, removing the first removable working channel may comprise removing the removable working channel 200 out of the proximal end of the instrument channel 102. In implementations in which the surgical instrument 100 comprises one or more coupling members 120 and/or 122, and the first removable working channel 200 comprises one or more locking members 220 and/or 222, which are configured to releasably couple to the one or more coupling members 120 and/or 122 of the surgical instrument 100, respectively, block 805 may involve (1) engaging a tool to at least one of (i) the one or more coupling members 120 and/or 122 of the surgical instrument 100 and (ii) the one or more locking members 220 and/or 222 of the first removable working channel 200; (2) actuating the tool to release the one or more coupling members 120 and/or 122 of the surgical instrument 100 from the one or more locking members 220 and/or 222 of the first removable working channel 200; and (3) removing the first removable working channel 200 from the surgical instrument 100.


At block 810, the user may analyze the integrity of the first removable working channel. In some implementations, the user may check the duration of usage of the first removable working channel 200. For example, the user may check the duration of usage of the first removable working channel 200 by accessing data from one or more identification members attached to the first removable working channel 200 (e.g., identification members 730 or one or more RFID tags). At block 815, the user may determine whether the integrity of the first removable working channel is compromised. In some implementations, the standard(s) or factor(s) for deciding whether the removable working channel 200 is compromised may be pre-determined by the user. Additionally or alternatively, the determination of whether the integrity of the first removable working channel is compromised may be determined based on detecting cases of wear and tear, such as areas that include scrapes, holes, or any other signs of wear and tear.


At block 820, if the user determines that the integrity of the first removable working channel is compromised, the user may replace the first removable working channel with a second removable working channel in the instrument channel of the surgical instrument. In some implementations, replacing the first removable working channel with the second removable working channel may involve inserting the distal region 206 of the second removable working channel 200 through the proximal end of the instrument channel 102 of the surgical instrument 100 until the distal region 206 of the second removable working channel 200 reaches near the distal end of the instrument channel 102. In implementations in which the second removable working channel 200 comprises one or more locking members 220 and/or 222, and the surgical instrument 100 comprises one or more coupling members 120 and/or 122, block 820 may involve inserting the distal region 206 of the second removable working channel 200 through the proximal end of the instrument channel 102 of the surgical instrument 100 until at least one of the one or more coupling members 120 and/or 122 of the surgical instrument 100 engages with at least one of the one or more locking members 220 and/or 222 of the second removable working channel 200.


Alternatively, at block 825, if the user determines that the integrity of the first removable working channel is not compromised, the user may clean and reinstall the first removable working channel in the instrument channel of the surgical instrument. In some implementations, reinstalling the first removable working channel 200 in the instrument channel 102 of the surgical instrument 100 may involve inserting the distal region 206 of the first removable working channel 200 through the proximal end of the instrument channel 102 of the surgical instrument 100 until the distal region 206 of the first removable working channel 200 reaches or is near the distal end of the instrument channel 102. In implementations in which the first removable working channel 200 comprises one or more locking members 220 and/or 222, and the surgical instrument 100 comprises one or more coupling members 120 and/or 122, reinstalling the first removable working channel 200 in the instrument channel 102 of the surgical instrument 100 may involve inserting the distal region 206 of the first removable working channel 200 through the proximal end of the instrument channel 102 of the surgical instrument 100 until at least one of the one or more coupling members 120 and/or 122 of the surgical instrument 100 engages with at least one of the one or more locking members 220 and/or 222 of the first removable working channel 200.


At block 830, for a removable working channel (e.g., removable working channel 800) or a surgical instrument including one or more identification members (e.g., identification members 730), the user may optionally update data saved in the identification members with information regarding the installed working channel. Depending on whether the first removable working channel was replaced with the second removable working channel in block 820 or the first removable working channel was cleaned and replaced in block 825, the information regarding the installed working channel may include information as to whether the first removable working channel is reinstalled in the surgical instrument (e.g., surgical instrument 100) or the second removable working channel is installed in the surgical instrument. In the case where the identification member is a RFID tag, the user may use an RFID writer to update a data structure in the RFID tag that specifies whether the removable working channel has been replaced, a date that the removable working channel has been replaced, a count associated with a number of times the working channel has been sanitized but not replaced, or any other suitable data associated with the use or replacement of a removable working channel with respect to a surgical instrument.


Implementing Systems and Terminology


Implementations disclosed herein provide systems, methods and apparatus for increasing a service life of a surgical instrument. More specifically, implementations of the present disclosure relate to a removable working channel for a surgical instrument and to a surgical instrument configured to receive and interfere with the removable working channel.


It should be noted that the terms “couple,” “coupling,” “coupled” or other variations of the word couple as used herein may indicate either an indirect connection or a direct connection. For example, if a first component is “coupled” to a second component, the first component may be either indirectly connected to the second component via another component or directly connected to the second component.


The methods described herein may be stored as one or more instructions on a processor-readable or computer-readable medium. The term “computer-readable medium” refers to any available medium that can be accessed by a computer or processor. By way of example, and not limitation, such a medium may comprise RAM, ROM, EEPROM, flash memory, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer. It should be noted that a computer-readable medium may be tangible and non-transitory. As used herein, the term “code” may refer to software, instructions, code or data that is/are executable by a computing device or processor.


The methods disclosed herein comprise one or more steps or actions for achieving the described method. The method steps and/or actions may be interchanged with one another without departing from the scope of the claims. In other words, unless a specific order of steps or actions is required for proper operation of the method that is being described, the order and/or use of specific steps and/or actions may be modified without departing from the scope of the claims.


As used herein, the term “plurality” denotes two or more. For example, a plurality of components indicates two or more components. The term “determining” encompasses a wide variety of actions and, therefore, “determining” can include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure), ascertaining and the like. Also, “determining” can include receiving (e.g., receiving information), accessing (e.g., accessing data in a memory) and the like. Also, “determining” can include resolving, selecting, choosing, establishing and the like.


The phrase “based on” does not mean “based only on,” unless expressly specified otherwise. In other words, the phrase “based on” describes both “based only on” and “based at least on.”


The previous description of the disclosed implementations is provided to enable any person skilled in the art to make or use the present disclosure. Various modifications to these implementations will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other implementations without departing from the scope of the present disclosure. For example, it will be appreciated that one of ordinary skill in the art will be able to employ a number corresponding alternative and equivalent structural details, such as equivalent ways of fastening, mounting, coupling, or engaging tool components, and equivalent mechanisms for producing particular actuation motions. Thus, the present disclosure is not intended to be limited to the implementations shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

Claims
  • 1. A removable working channel of a surgical instrument, the surgical instrument extending from a proximal end to a distal end and having a working channel sheath configured to receive the removable working channel, the removable working channel comprising: a shaft, comprising: a proximal region and a distal region, the distal region of the shaft being located proximal relative to the distal end of the surgical instrument when the removable working channel is received within the working channel sheath;an inner surface defining a lumen extending through the shaft, wherein the inner surface is configured to allow passage of a medical tool through the shaft to extend outward beyond the distal end of the surgical instrument; andan outer surface having a substantially circular cross-section and configured to interface with the working channel sheath of the surgical instrument, wherein a diameter of the outer surface of the shaft is substantially the same as a diameter of an inner surface of the working channel sheath; anda first locking member comprising a luer fit or a threaded fit component, the first locking member at the proximal region of the shaft, the first locking member configured to releasably couple to the proximal end of the surgical instrument.
  • 2. The removable working channel of claim 1, wherein the surgical instrument comprises an endoscope.
  • 3. The removable working channel of claim 1, further comprising a second locking member at the distal region of the shaft.
  • 4. The removable working channel of claim 3, wherein the second locking member comprises an annular ring or a spring clamp at the distal region of the shaft.
  • 5. The removable working channel of claim 3, wherein the second locking member comprises at least one of a clamp, a friction fit component, a latch, a snap fit component, a screw lock, a luer fit, a threaded fit component, a slip fit component, a bayonet, a ball spring or pogo latch, a detent, a magnet, and an O-ring component.
  • 6. The removable working channel of claim 1, wherein the removable working channel does not comprise a locking member at the distal region of the shaft.
  • 7. The removable working channel of claim 1, further comprising at least one identification member configured to store data comprising information regarding a source of the removable working channel.
  • 8. The removable working channel of claim 7, wherein the at least one identification member comprises a radio-frequency identification (RFID) tag.
  • 9. The removable working channel of claim 1, wherein the shaft is made of extruded plastic.
  • 10. The removable working channel of claim 1, wherein the shaft further comprises an inner liner attached to the inner surface of the removable working channel.
  • 11. The removable working channel of claim 10, wherein the inner liner is made of polytetrafluoroethylene (PTFE), high-density polyethylene (HDPE), low-density polyethylene (LDPE), linear low density poly ethylene (LLDPE), or hydrophilic materials.
  • 12. The removable working channel of claim 1, wherein the shaft comprises a reinforcement member disposed at least partially between the inner surface of the removable working channel and the outer surface of the removable working channel.
  • 13. The removable working channel of claim 12, wherein the reinforcement member comprises at least one of (i) one or more coils, (ii) one or more braids, and (iii) one cable tube.
  • 14. The removable working channel of claim 1, wherein the shaft is parallel to a longitudinal axis of the surgical instrument when the removable working channel is received within the working channel sheath.
  • 15. A surgical instrument configured to receive a removable working channel, the surgical instrument comprising: a proximal end and a distal end;an instrument channel extending through the proximal and distal end, the instrument channel comprising: a proximal region and a distal region; anda first inner surface defining a lumen extending through the instrument channel;a working channel sheath attached to the first inner surface of the instrument channel and configured to interface with the removable working channel; anda first coupling member comprising a luer fit or a threaded fit component, the first coupling member at the proximal end of the surgical instrument, the first coupling member configured to releasably couple to a proximal region of the removable working channel, the removable working channel further including a distal region located proximal relative to the distal end of the surgical instrument when the removable working channel is received within the working channel sheath,wherein the removable working channel comprises a second inner surface configured to allow passage of a medical tool through the instrument channel to extend outward beyond the distal end of the surgical instrument when the removable working channel is received within the working channel sheath, andwherein an outer surface of the removable working channel has a substantially circular cross-section and a diameter that is substantially the same as a diameter of the first inner surface.
  • 16. The surgical instrument of claim 15, further comprising a second coupling member at the distal end of the surgical instrument, the second coupling member configured to releasably couple to the distal region of the removable working channel.
  • 17. The removable working channel of claim 15, wherein the working channel sheath is made of extruded plastic.
  • 18. The surgical instrument of claim 15, wherein the working channel sheath comprises an inner liner made of polytetrafluoroethylene (PTFE), high-density polyethylene (HDPE), low-density polyethylene (LDPE), or linear low density poly ethylene (LLDPE).
  • 19. The surgical instrument of claim 15, wherein the working channel sheath comprises at least one of (i) one or more coils, (ii) one or more braids, and (iii) one cable tube.
  • 20. The surgical instrument of claim 15, wherein the coils, the braids, or the cable tubes are at least partially made of stainless steel, copper, other metals, Nitinol alloy, graphite, polyparaphenylene terephthalamide, Ultra-high-molecular-weight polyethylene (UHMWPE), PEEK, or nylon.
  • 21. The surgical instrument of claim 15, further comprising at least one detector configured to read data from at least one identification member of the removable working channel, the data comprising information regarding a source of the removable working channel.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Application No. 62/507,709, filed May 17, 2017, which is hereby incorporated by reference in its entirety.

US Referenced Citations (322)
Number Name Date Kind
3572325 Bazell et al. Mar 1971 A
3913565 Kawahara Oct 1975 A
4294234 Matsuo Oct 1981 A
4392485 Hiltebrandt Jul 1983 A
4607619 Seike Aug 1986 A
4690175 Ouchi et al. Sep 1987 A
4706656 Kuboto Nov 1987 A
4741326 Sidall May 1988 A
4745908 Wardle May 1988 A
4748969 Wardle Jun 1988 A
4750475 Yoshihashi Jun 1988 A
4771766 Aoshiro Sep 1988 A
4846791 Hattler Jul 1989 A
4869238 Opie et al. Sep 1989 A
4906496 Hosono Mar 1990 A
4907168 Boggs Mar 1990 A
4967732 Inoue Nov 1990 A
5050585 Takahashi Sep 1991 A
5083549 Cho et al. Jan 1992 A
5106387 Kittrell et al. Apr 1992 A
5108800 Koo Apr 1992 A
5125909 Heimberger Jun 1992 A
5168864 Shockey Dec 1992 A
5217002 Katsurada Jun 1993 A
5251611 Zehel Oct 1993 A
5257617 Takahashi Nov 1993 A
5261391 Inoue Nov 1993 A
5287861 Wilk Feb 1994 A
5313934 Wiita et al. May 1994 A
5386818 Schneebaum Feb 1995 A
5448988 Watanabe Sep 1995 A
5478330 Imran et al. Dec 1995 A
5482029 Sekiguchi Jan 1996 A
5489270 van Erp Feb 1996 A
5507725 Savage et al. Apr 1996 A
5533985 Wang Jul 1996 A
5580200 Fullerton Dec 1996 A
5681296 Ishida Oct 1997 A
5704534 Huitema et al. Jan 1998 A
5720775 Lamard Feb 1998 A
5741429 Donadio, III Apr 1998 A
5749889 Bacich May 1998 A
5873817 Kokish et al. Feb 1999 A
5876325 Mizuno et al. Mar 1999 A
5879287 Yoshihashi Mar 1999 A
5882347 Mouris-Laan Mar 1999 A
5888191 Akiba Mar 1999 A
5910129 Koblish et al. Jun 1999 A
5938586 Wilk Aug 1999 A
6012494 Balazs Jan 2000 A
6143013 Samson et al. Nov 2000 A
6157853 Blume et al. Dec 2000 A
6197015 Wilson Mar 2001 B1
6198974 Webster, Jr. Mar 2001 B1
6315715 Taylor et al. Nov 2001 B1
6404497 Backman Jun 2002 B1
6436107 Wang et al. Aug 2002 B1
6464632 Taylor Oct 2002 B1
6485411 Konstorum Nov 2002 B1
6491626 Stone et al. Dec 2002 B1
6537205 Smith Mar 2003 B1
6554793 Pauker et al. Apr 2003 B1
6716178 Kilpatrick et al. Apr 2004 B1
6746422 Noriega Jun 2004 B1
6749560 Konstorum Jun 2004 B1
6790173 Saadat Sep 2004 B2
6827710 Mooney Dec 2004 B1
6827712 Tovey et al. Dec 2004 B2
6837846 Jaffe Jan 2005 B2
6908428 Aizenfeld Jun 2005 B2
6921362 Ouchi Jul 2005 B2
6958035 Friedman Oct 2005 B2
7008401 Thompson et al. Mar 2006 B2
7130700 Gardeski et al. Oct 2006 B2
7594903 Webler et al. Sep 2009 B2
7645230 Mikkaichi Jan 2010 B2
7645231 Akiba Jan 2010 B2
7789827 Landry Sep 2010 B2
7930065 Larkin et al. Apr 2011 B2
8052636 Moll et al. Nov 2011 B2
8246536 Ochi Aug 2012 B2
8444637 Podmore et al. May 2013 B2
8498691 Moll et al. Jul 2013 B2
8515215 Younge et al. Aug 2013 B2
8652030 Matsuura et al. Feb 2014 B2
8758231 Bunch et al. Jun 2014 B2
8827947 Bosman et al. Sep 2014 B2
9186046 Ramamurthy et al. Nov 2015 B2
9427551 Leeflang et al. Aug 2016 B2
9504604 Alvarez Nov 2016 B2
9561083 Yu et al. Feb 2017 B2
9591990 Chen et al. Mar 2017 B2
9622827 Yu et al. Apr 2017 B2
9636184 Lee et al. May 2017 B2
9713509 Schuh et al. Jul 2017 B2
9727963 Mintz et al. Aug 2017 B2
9737371 Romo et al. Aug 2017 B2
9737373 Schuh Aug 2017 B2
9744335 Jiang Aug 2017 B2
9763741 Alvarez et al. Sep 2017 B2
9788910 Schuh Oct 2017 B2
9818681 Machida Nov 2017 B2
9844353 Walker et al. Dec 2017 B2
9844412 Bogusky et al. Dec 2017 B2
9867635 Alvarez et al. Jan 2018 B2
9918681 Wallace et al. Mar 2018 B2
9931025 Graetzel et al. Apr 2018 B1
9949749 Noonan et al. Apr 2018 B2
9955986 Shah May 2018 B2
9962228 Schuh et al. May 2018 B2
10016900 Meyer et al. Jul 2018 B1
10022192 Ummalaneni Jul 2018 B1
10130427 Tanner et al. Nov 2018 B2
10145747 Lin et al. Dec 2018 B1
10159532 Ummalaneni et al. Dec 2018 B1
20010004676 Ouchi Jun 2001 A1
20030036748 Cooper et al. Feb 2003 A1
20030130564 Martone Jul 2003 A1
20030158545 Hovda et al. Aug 2003 A1
20030163199 Chu et al. Aug 2003 A1
20030195664 Nowlin et al. Oct 2003 A1
20040015122 Zhang et al. Jan 2004 A1
20040054322 Vargas Mar 2004 A1
20040138525 Saadat et al. Jul 2004 A1
20040193013 Isakawa et al. Sep 2004 A1
20040249246 Campos Dec 2004 A1
20050004515 Hart et al. Jan 2005 A1
20050125005 Fujikura Jun 2005 A1
20050154262 Banik et al. Jul 2005 A1
20050159646 Nordstrom et al. Jul 2005 A1
20050222581 Fischer, Jr. Oct 2005 A1
20050272975 McWeeney et al. Dec 2005 A1
20050273085 Hinman et al. Dec 2005 A1
20050288549 Mathis Dec 2005 A1
20060041188 Dirusso et al. Feb 2006 A1
20060111692 Hlavka et al. May 2006 A1
20060241368 Fichtinger et al. Oct 2006 A1
20060264708 Horne Nov 2006 A1
20060276827 Mitelberg et al. Dec 2006 A1
20070060879 Weitzner et al. Mar 2007 A1
20070112355 Salahieh May 2007 A1
20070135733 Soukup et al. Jun 2007 A1
20070135763 Musbach et al. Jun 2007 A1
20070135803 Belson Jun 2007 A1
20070156019 Larkin et al. Jul 2007 A1
20070270645 Ikeda Nov 2007 A1
20070270679 Nguyen et al. Nov 2007 A1
20070282167 Barenboym et al. Dec 2007 A1
20070287886 Saadat Dec 2007 A1
20080039255 Jinno et al. Feb 2008 A1
20080051629 Sugiyama et al. Feb 2008 A1
20080065103 Cooper et al. Mar 2008 A1
20080097293 Chin et al. Apr 2008 A1
20080108869 Sanders et al. May 2008 A1
20080139887 Fitpatrick Jun 2008 A1
20080146874 Chen Jun 2008 A1
20080177285 Brock et al. Jul 2008 A1
20080208001 Hadani Aug 2008 A1
20080212082 Froggatt et al. Sep 2008 A1
20080218770 Moll et al. Sep 2008 A1
20090099420 Woodley et al. Apr 2009 A1
20090163851 Holloway Jun 2009 A1
20090247880 Naruse et al. Oct 2009 A1
20090254083 Wallace et al. Oct 2009 A1
20090262109 Markowitz et al. Oct 2009 A1
20090299344 Lee et al. Dec 2009 A1
20090306587 Milijasevic et al. Dec 2009 A1
20100030023 Yoshie Feb 2010 A1
20100073150 Olson et al. Mar 2010 A1
20100114115 Schlesinger et al. May 2010 A1
20100130823 Ando May 2010 A1
20100217184 Koblish et al. Aug 2010 A1
20100249497 Peine et al. Sep 2010 A1
20100249506 Prisco et al. Sep 2010 A1
20110009863 Stanislaw Jan 2011 A1
20110046441 Wiltshire et al. Feb 2011 A1
20110077681 Nagano Mar 2011 A1
20110098533 Onoda Apr 2011 A1
20110130718 Kidd et al. Jun 2011 A1
20110148442 Berner Jun 2011 A1
20110152880 Alvarez et al. Jun 2011 A1
20110261183 Ma et al. Oct 2011 A1
20110306836 Ohline et al. Dec 2011 A1
20120071894 Tanner et al. Mar 2012 A1
20120071895 Stahler et al. Mar 2012 A1
20120123327 Miller May 2012 A1
20120136419 Zarembo et al. May 2012 A1
20120143226 Belson et al. Jun 2012 A1
20120190976 Kleinstreuer Jul 2012 A1
20120191107 Tanner et al. Jul 2012 A1
20120239012 Laurent et al. Sep 2012 A1
20120259244 Roberts et al. Oct 2012 A1
20120283747 Popovic Nov 2012 A1
20130018400 Milton et al. Jan 2013 A1
20130030519 Tran et al. Jan 2013 A1
20130035537 Wallace et al. Feb 2013 A1
20130090552 Ramamurthy et al. Apr 2013 A1
20130109957 Hooft et al. May 2013 A1
20130144116 Cooper et al. Jun 2013 A1
20130165854 Sandhu et al. Jun 2013 A1
20130165908 Purdy et al. Jun 2013 A1
20130304091 Straehnz Nov 2013 A1
20130317276 D'Andrea Nov 2013 A1
20130317519 Romo et al. Nov 2013 A1
20130345519 Piskun et al. Dec 2013 A1
20140046313 Pederson et al. Feb 2014 A1
20140142591 Alvarez et al. May 2014 A1
20140200402 Snoke Jul 2014 A1
20140276391 Yu Sep 2014 A1
20140276594 Tanner et al. Sep 2014 A1
20140309649 Alvarez et al. Oct 2014 A1
20140316397 Brown Oct 2014 A1
20140357984 Wallace et al. Dec 2014 A1
20140364870 Alvarez et al. Dec 2014 A1
20140379000 Romo et al. Dec 2014 A1
20150031950 Drontle Jan 2015 A1
20150051592 Kintz Feb 2015 A1
20150101442 Romo Apr 2015 A1
20150119638 Yu et al. Apr 2015 A1
20150164594 Romo et al. Jun 2015 A1
20150164596 Romo Jun 2015 A1
20150335480 Alvarez et al. Nov 2015 A1
20160001038 Romo et al. Jan 2016 A1
20160007881 Wong et al. Jan 2016 A1
20160067450 Kowshik Mar 2016 A1
20160151122 Alvarez et al. Jun 2016 A1
20160227982 Takahashi Aug 2016 A1
20160270865 Landey et al. Sep 2016 A1
20160287279 Bovay et al. Oct 2016 A1
20160287346 Hyodo et al. Oct 2016 A1
20160296294 Moll et al. Oct 2016 A1
20160346049 Allen et al. Dec 2016 A1
20160374541 Agrawal et al. Dec 2016 A1
20160374590 Wong et al. Dec 2016 A1
20170007337 Dan Jan 2017 A1
20170065364 Schuh et al. Mar 2017 A1
20170065365 Schuh Mar 2017 A1
20170100199 Yu et al. Apr 2017 A1
20170119413 Romo May 2017 A1
20170119481 Romo et al. May 2017 A1
20170165011 Bovay et al. Jun 2017 A1
20170172673 Yu et al. Jun 2017 A1
20170202627 Sramek et al. Jul 2017 A1
20170209073 Sramek et al. Jul 2017 A1
20170281218 Timm Oct 2017 A1
20170290631 Lee et al. Oct 2017 A1
20170333679 Jiang Nov 2017 A1
20170340396 Romo et al. Nov 2017 A1
20170365055 Mintz et al. Dec 2017 A1
20170367782 Schuh et al. Dec 2017 A1
20180025666 Ho et al. Jan 2018 A1
20180055589 Joseph et al. Mar 2018 A1
20180177383 Noonan et al. Jun 2018 A1
20180177556 Noonan et al. Jun 2018 A1
20180177561 Mintz et al. Jun 2018 A1
20180214011 Graetzel et al. Aug 2018 A1
20180221038 Noonan et al. Aug 2018 A1
20180221039 Shah Aug 2018 A1
20180250083 Schuh et al. Sep 2018 A1
20180271616 Schuh et al. Sep 2018 A1
20180279852 Rafii-Tari et al. Oct 2018 A1
20180280660 Landey et al. Oct 2018 A1
20180289243 Landey et al. Oct 2018 A1
20180289431 Draper et al. Oct 2018 A1
20180325499 Landey et al. Nov 2018 A1
20180333044 Jenkins Nov 2018 A1
20180360435 Romo Dec 2018 A1
20190000559 Berman et al. Jan 2019 A1
20190000560 Berman et al. Jan 2019 A1
20190000566 Graetzel et al. Jan 2019 A1
20190000568 Connolly et al. Jan 2019 A1
20190000576 Mintz et al. Jan 2019 A1
20190083183 Moll et al. Mar 2019 A1
20190105110 Tanner et al. Apr 2019 A1
20190105776 Ho et al. Apr 2019 A1
20190105785 Meyer Apr 2019 A1
20190107454 Lin Apr 2019 A1
20190110839 Rafii-Tari et al. Apr 2019 A1
20190110843 Ummalaneni et al. Apr 2019 A1
20190151148 Alvarez et al. Apr 2019 A1
20190228528 Mintz et al. Apr 2019 A1
20190167366 Ummalaneni Jun 2019 A1
20190175009 Mintz Jun 2019 A1
20190175062 Rafii-Tari et al. Jun 2019 A1
20190175287 Hill Jun 2019 A1
20190175799 Hsu Jun 2019 A1
20190183585 Rafii-Tari et al. Jun 2019 A1
20190183587 Rafii-Tari et al. Jun 2019 A1
20190216548 Ummalaneni Jul 2019 A1
20190216550 Eyre Jul 2019 A1
20190216576 Eyre Jul 2019 A1
20190223974 Romo Jul 2019 A1
20190228525 Mintz et al. Jul 2019 A1
20190246882 Graetzel et al. Aug 2019 A1
20190262086 Connolly et al. Aug 2019 A1
20190269468 Hsu et al. Sep 2019 A1
20190274764 Romo Sep 2019 A1
20190290109 Agrawal et al. Sep 2019 A1
20190298160 Ummalaneni et al. Oct 2019 A1
20190298458 Srinivasan Oct 2019 A1
20190298460 Al-Jadda Oct 2019 A1
20190298465 Chin Oct 2019 A1
20190307987 Yu Oct 2019 A1
20190328213 Landey et al. Oct 2019 A1
20190336238 Yu Nov 2019 A1
20190365209 Ye et al. Dec 2019 A1
20190365479 Rafii-Tari Dec 2019 A1
20190365486 Srinivasan et al. Dec 2019 A1
20190374297 Wallace et al. Dec 2019 A1
20190375383 Alvarez Dec 2019 A1
20190380787 Ye Dec 2019 A1
20190380797 Yu Dec 2019 A1
20200000530 DeFonzo Jan 2020 A1
20200000533 Schuh Jan 2020 A1
20200022767 Hill Jan 2020 A1
20200038128 Joseph Feb 2020 A1
20200039086 Meyer Feb 2020 A1
20200046434 Graetzel Feb 2020 A1
20200046942 Alvarez Feb 2020 A1
20200054405 Schuh Feb 2020 A1
20200054408 Schuh et al. Feb 2020 A1
20200060516 Baez Feb 2020 A1
Foreign Referenced Citations (28)
Number Date Country
101500470 Aug 2009 CN
102665590 Sep 2012 CN
0 543 539 May 1993 EP
0 776 739 Jun 1997 EP
1 442 720 Aug 2004 EP
0 904 796 Nov 2004 EP
2006-525087 Nov 2006 JP
2007-511247 May 2007 JP
2010-046384 Mar 2010 JP
2011-015992 Jan 2011 JP
2012-105793 Jun 2012 JP
WO 9414494 Jul 1994 WO
WO 0067640 Nov 2000 WO
WO 02074178 Sep 2002 WO
WO 04039273 May 2004 WO
WO 04105849 Dec 2004 WO
WO 05032637 Apr 2005 WO
WO 05081202 Sep 2005 WO
WO 09097461 Jun 2007 WO
WO 07146987 Dec 2007 WO
WO 08097540 Aug 2008 WO
WO 09092059 Jul 2009 WO
WO 10081187 Jul 2010 WO
WO 10088187 Aug 2010 WO
WO 11005335 Jan 2011 WO
WO 13107468 Jul 2013 WO
WO 15093602 Dec 2013 WO
WO 16003052 Jan 2016 WO
Non-Patent Literature Citations (1)
Entry
International Search Report and Written Opinion dated Aug. 8, 2018 in application No. PCT/US18/31850.
Related Publications (1)
Number Date Country
20180333044 A1 Nov 2018 US
Provisional Applications (1)
Number Date Country
62507709 May 2017 US