One type of earth-boring bit has a body with at least one rotatable cone mounted to a depending bearing pin. Typically there are three cones, each having rows of cutting elements. The cutting elements may be machined from the metal of the cone, or they may comprise tungsten carbide inserts pressed into holes in the exterior of the cone.
The cone has a cavity that inserts over the bearing pin, forming a journal bearing. The clearances between the bearing surfaces are filled with a grease or lubricant. A seal assembly seals between the bearing pin and the cone near the mouth of the cone.
The seal assembly serves to prevent loss of lubricant to the exterior. Also, the seal assembly serves to exclude debris and cuttings of the borehole from entering the journal bearing. Typically the outer diameter of the seal assembly rotates with the cone and the inner diameter seals against the bearing pin in dynamic contact.
Many different seal assemblies have been proposed and used in the prior art. A variety of shapes of elastomeric seals have been employed. Elastomeric seals that have different materials on the inner and outer diameters are known. Elastomeric seals with carbon fiber fabric on the dynamic portions of the seal are also known. In addition, metal face seal assemblies including an elastomer that urges the metal faces together are also known.
The seal assembly of this invention comprises a seal ring of an elastomeric material. The seal ring has an inner portion that seals against a sealing surface on the bearing pin and an outer portion that seals against a sealing surface in the cone. At least one excluder ring is mounted in one of the portions of the seal ring and has a face urged by the seal ring into contact with one of the sealing surfaces.
Preferably the seal ring has more than one excluder ring. One excluder ring may be more abrasion resistant than the seal ring to protect the seal ring from damage due to cuttings in the drilling fluid. Another of the excluder rings may be formed of a self-lubricating material for providing lubrication to the seal ring. An excluder ring may be located on the outer diameter of the seal rings, also, for frictionally engaging the cone to resist rotation of the seal ring relative to the cone.
Referring to
A cone 19 mounts rotatably to each bearing pin 17. Each cone 19 has a plurality of rows of cutting elements 21. In the example shown, cutting elements 21 comprise tungsten carbide inserts pressed into mating holes drilled in the metal of each cone 19. Alternatively, cutting elements 21 could comprise teeth machined into the metal of each cone 19.
A lubricant compensator 23 supplies lubricant to bearing spaces between the interior of each cone 19 and bearing pin 17. Lubricant compensator 23 also equalizes the pressure of the lubricant with the exterior pressure in the borehole.
Referring to
A seal groove 33 is formed in cavity 29 near its mouth. In this embodiment, groove 33 is rectangular when viewed in cross-section. Groove 33 has a flat base or outer diameter 33a, when viewed in transverse cross-section, and two flat sidewalls 33b.
A seal ring 35 is carried within groove 33 for sealing lubricant against leakage to the exterior. Seal ring 35 is formed of an elastomeric material of a type that is conventional for elastomeric seals for earth-boring bits. Preferably this material comprises a nitrile rubber such as hydrogenated nitrile butadiene rubber, but it could be other types of material as well. Seal ring 35 has an outer portion or diameter 37 that seals against groove 33. Seal ring 35 has an inner diameter or portion 41 that may have a cylindrical portion, thus appears flat when viewed in the transverse cross-section of
At least one thermoplastic excluder band or ring 43 is located within seal ring 35. Three excluder rings 43 are shown in this embodiment, but the number could be less or more. Referring to
In this example, excluder rings 43 are spaced apart from each other along the axis of bearing pin 17. The spacing results in annular sections 49 of seal ring 35 located on each lateral side of each excluder ring 43, each section 49 sealing against bearing pin journal surface 25. One of the sections 49 is located between exterior side 42a and its closest excluder ring 43 and another between interior side 42b and its closest excluder ring 43. Also, a section 49 exists between each of the excluder rings 43. The width of seal ring 35 from interior side 42b to exterior side 42a is greater than the total combined width of the contacting face 47 of each excluder ring 43.
In
Excluder rings 43 also slidingly and sealingly engage journal surface 25, but typically do not seal as well as seal ring 35 because they serve other purposes. For example, one or more of excluder rings 43 may be formed of a harder and more wear resistant material to trap or exclude debris. One or more of excluder rings 43 may be formed of a known self-lubricating material for providing lubrication. In the preferred embodiment, excluder rings 43 are formed of one of the following materials: polyether ether ketone, polytetrafluoroethylene, polyphenylenesulfide and fiber reinforced composite thereof. However, other materials are also feasible. The material should be resistant to relative high temperatures and resistant to abrasion due to cuttings and other erosive particles in the drilling fluid. One preferred material for providing more resistance is polyether ether ketone with reinforcing fibers, either glass or carbon. If used to trap and exclude debris, the wear rate of each excluder ring 43 is preferably less than seal ring 35. The hardness of each excluder ring 43 used to trap and exclude debris is greater. If one of the excluder rings 43 is used primarily for lubrication, its hardness may be less than that of seal ring 35. A referred material for providing self-lubrication of an excluder ring 43 is polytetrafluoroethylene. An excluder ring 43 for providing lubrication would contain polytetrafluoroethylene and have less wear resistance than seal ring 35.
Micro texturing may be formed in the inner diameters 47 of each excluder ring 43 to enhance sealing. Micro texturing comprises very shallow recesses formed in the surface by known techniques, such as by laser. A wide variety of texturing is feasible. As an example,
In operation, as bit 11 rotates, each cone 19 will rotate about its bearing pin 17 (
In
In
In
In
An outer excluder ring 105 is shown embedded within a groove on the outer diameter of seal ring 97 and in frictional engagement with the base of cone groove 101. Outer excluder ring 105 serves to frictionally grip cone 93 to resist slippage and rotation of seal ring 97 relative to cone 93. Outer excluder ring 105 may be formed of a material that has good gripping properties, the hardness of which may be less than seal ring 97. Outer excluder ring 105 may have a variety of shapes, but is shown as having a shape similar to excluder ring 63 of
The term “excluder” has been used in connection with the rings, whether designed to exclude and trap debris, or to lubricate, or to resist rotation. This term is used only for convenience and not in a limiting manner.
The invention has significant advantages. The inclusion of more wear resistant excluder rings into a seal ring reduces the rate of wear on the seal ring. The reduction in wear rate increases the life of the drill bit by retaining lubricant in the journal bearing. Excluder rings with lubricating properties may be used to add lubrication, which reduces heat and prolongs the life of the seal ring. Excluder rings with gripping properties may be used to resist rotation of the seal ring.
While the invention has been shown in only a few of its forms, it should be apparent to those skilled in the art that it is not so limited but is susceptible to various changes without departing from the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
3862762 | Millsap | Jan 1975 | A |
4249781 | Olschewski et al. | Feb 1981 | A |
4466621 | Garner et al. | Aug 1984 | A |
4619534 | Daly et al. | Oct 1986 | A |
4762189 | Tatum | Aug 1988 | A |
RE36452 | Upton et al. | Dec 1999 | E |
6033117 | Cariveau et al. | Mar 2000 | A |
6196339 | Portwood et al. | Mar 2001 | B1 |
6254275 | Slaughter, Jr. et al. | Jul 2001 | B1 |
6264367 | Slaughter, Jr. et al. | Jul 2001 | B1 |
6305483 | Portwood | Oct 2001 | B1 |
6336512 | Siracki et al. | Jan 2002 | B1 |
6431293 | Portwood et al. | Aug 2002 | B1 |
6533051 | Singh et al. | Mar 2003 | B1 |
6536542 | Fang et al. | Mar 2003 | B1 |
20020153172 | Portwood et al. | Oct 2002 | A1 |
20030019666 | Portwood et al. | Jan 2003 | A1 |
20030029645 | Mourik et al. | Feb 2003 | A1 |
20040031624 | Scott et al. | Feb 2004 | A1 |
20050274550 | Yu et al. | Dec 2005 | A1 |
20080073124 | Lin | Mar 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20080011518 A1 | Jan 2008 | US |