The present invention relates to the field of communication networks, and in particular to the systems and methods for authenticating users and devices for access to communication networks. Communications networks allow computers and other electronic devices to exchange data. Wireless networks, which exchange data without wires, typically using radio waves, are popular with users due to the ability to send and receive data almost anywhere within the physical coverage area of the network. This allows users to access communication networks, including local area networks, organization or company intranets, virtual private networks, and wide area networks, such as the Internet, anywhere within the physical coverage area of the wireless networks.
Wireless networks with large physical coverage areas, such as networks covering university campuses or entire cities, offer users ubiquitous access to their data and the Internet. However, typical wireless access points have a ranges of around 100 feet. As a result, large wireless networks require tens, hundreds, or thousands of wireless access points to provide network coverage over a large physical area.
Configuring, managing, and operating a large number of wireless access points requires complicated network configurations. One complication with managing wireless access points is managing network security. Network security typically includes authentication to prevent unauthorized users or devices from accessing the network and data encryption to prevent eavesdropping on communications of authorized users or devices.
There are many wired and wireless networking standards, including the 802.11 set of IEEE standards, that govern wireless networking communications and security methods. In general, the most secure types of wireless networking security, such as the 802.1X standard, often rely on authentication servers and cryptographic certificates to authenticate users and devices and exchange encryption keys to establish secure network connections. However, configuring and maintaining authentication servers and certificates is complicated, error-prone, and expensive. Additionally, users often find it difficult to install the required certificates and configure their devices to use these authentication schemes. This makes it difficult to deploy this type of network security, especially in situations where users and devices are frequently added and removed, such as hotels, conference centers, and other locations that wish to provide wireless networking to visitors.
Another network security approach relies on a preshared key (PSK) to authenticate users and establish secure communications. In these approaches, users are provided with a password or other login information in advance of connecting with the network. This approach is relatively easy for users and network administrators to implement. Authentication servers and certificates are not required. Users can typically configure their devices to connect with the network by inputting the provided password or other login information.
However, preshared key approaches are much less secure than other authentication techniques. Typically, a single preshared key is used by every user and device connecting with the network. This allows any user or device to eavesdrop on the communications of any other device connected via the network. Additionally, anyone with knowledge of the preshared key can access the network. This can be a disadvantage when an employee leaves a company, but can still access the company network using the preshared key. To prevent this, network administrators can change the preshared key. However, this requires all of the legitimate network users and devices to update their configurations, which can be very disruptive.
An embodiment of the invention provides much of the same control and flexibility as that provided by authentication server-based network security techniques with the administrative and technical simplicity of preshared key-based network security. In an embodiment, preshared keys are assigned exclusively to specific client devices, users, or user groups. The set of valid preshared keys or keys derived from the preshared keys is distributed to network devices such as wireless access points.
Upon connecting with a network device, a client device attempts to establish a secure network connection using its assigned preshared key. In an embodiment, a network device attempts to identify the preshared key used by the client device. If this identification is successful, the network device establishes a secure network connection with the client device.
In an embodiment, a network device attempts to identify the preshared key used by the client device by selecting one of its set of valid preshared keys as a candidate key. The network device then determines a validation cryptographic checksum based on the selected candidate key. If the validation cryptographic checksum matches a cryptographic checksum provided by the client device using its assigned preshared key, then the selected candidate key is the preshared key assigned to the client device. If the validation cryptographic checksum does not match the cryptographic checksum provided by the client device, then the network device repeats this comparison using a different candidate key selected from its set of valid preshared keys. This comparison may be repeated using each of the valid preshared keys to determine a validation cryptographic checksum until the preshared key of the client device is identified or the set of valid preshared keys is exhausted.
Once the preshared key used by the client device is identified, an embodiment of the invention may optionally perform a user authentication using an authentication server. Alternatively, a secure network connection may be established without the use of an authentication server.
The invention will be described with reference to the drawings, in which:
An embodiment of the invention allows for users or devices to access a communications network using different preshared keys. An embodiment of the invention automatically manages the distribution and revocation of multiple preshared keys to any number of network devices, ensuring that each user or device can connect using their assigned preshared key. An embodiment of the invention also includes a modified authentication and handshake technique for network devices, such as wireless access points, to identify and authenticate the different preshared keys provided by client devices. For client devices, this authentication and handshake technique does not require any modification from standard preshared key network security techniques. Embodiments of the invention can be used with standard network drivers and applications on client devices and does not require the execution of any additional software applications or non-standard network configurations on client devices. This enables the modified authentication and handshake technique to be utilized with a wide range of client devices.
Additionally, embodiments of the invention may be implemented without an authentication server, such as a RADIUS server, reducing the cost and complexity of implementation. Other embodiments may use authentication servers for aspects of authentication and/or accounting for access charges. Even with authentication servers, client configuration is reduced in complexity.
Upon a client connecting or associating with one of the wireless access points or other network devices of the network, in step 110 the wireless access point begins the 4-way handshake by sending a first message to the client. The first message includes a first cryptographic nonce, or number used once, to the client. This is referred to as the A-Nonce.
Upon receiving the A-Nonce, in an embodiment of step 115, the client generates and sends a second message in response to the first message. In an embodiment of method 100, the client generates its own nonce, referred to as the S-Nonce. Using the S-Nonce and the A-Nonce, the client generates a copy of a pairwise transient key (PTK), which will be used to encrypt future communications with the network. In an embodiment, the pairwise transient key is determined using a hash of the A-Nonce, S-Nonce, and other data, such as the PMK. For example, PTK=SHA1(PMK, client MAC, wireless access point MAC, A-Nonce, S-Nonce).
An embodiment of the invention divides the PTK into four separate keys, each of which is used for different purposes: EAPOL-MIC key, EAPOL-Encr key, Data-MIC key and Data-Encr key (for AES, the Data-MIC key and the Data_Encr key are the same).
In an embodiment of step 115, the client then sends a second message to the wireless access point. The second message includes the client-generated S-Nonce and a MIC, which is a cryptographic checksum of the message. In an embodiment, the MIC is calculated by applying the EAPOL-MIC key, which is part of the PTK, to the other contents of the second message, including the S-Nonce.
In prior systems, every client used the same preshared key. However, embodiments of the invention use multiple preshared keys. For example, each client may be assigned its own exclusive preshared key. In another embodiments, clients may be assigned to groups, with each group having a different exclusive preshared key. Thus, a wireless access point or other network device may store multiple valid keys, such as PSKs, PMKs, or other data derived from the preshared keys, with each key associated with a different client or group of clients. The set of valid keys are stored in a list, array, or other data structure. Because of this, upon receiving the second message from the client, the wireless access point or any other network device must identify which preshared key the client is using.
In an embodiment, method 100 identifies the preshared key used by the client to send the second message. Step 120 begins this identification by selecting one of the keys from the set of valid keys. In an embodiment of step 120, a wireless access point or other network device stores a list of all of the preshared keys assigned to clients, or alternatively, a list of PMKs derived from all of the preshared keys assigned to clients. Upon receiving the second message from a client that includes a S-Nonce and MIC, an embodiment of a wireless access point or other network device will select one of the preshared keys or PMKs from its stored list. The selected key, whether in the form of a PSK, PMK, or other type of derived data, is referred to as a candidate key.
In step 125, the wireless access point or other network device derives a corresponding PTK using the same technique used by the client. The wireless access point or other network device then uses all or a portion of the derived PTK to calculate its own MIC, referred to herein as a verification MIC, based on the contents of the received second message.
In decision block 130, the wireless access point or other network device compares the verification MIC with the MIC included in the second message by the client. If the verification MIC matches the MIC included by the client in the second message, then the wireless access point or other network device has successfully identified the preshared key and corresponding PMK and PTK used by the client. An embodiment of method 100 may then proceed to step 135 to complete the authentication process. The wireless access point or other network device can then communicate with the client using the PTK derived from the selected preshared key or PMK.
Conversely, if the verification MIC does not match the MIC provided by the client in the second message, then method 100 returns to step 120 and the wireless access point or other network device selects another preshared key or PMK from its list, derives a new corresponding PTK and verification MIC in step 125, and compares the new verification MIC with the MIC included in the second message in decision block 130. The steps 120, 125, and 130 may be repeated until the verification MIC matches the MIC provided in the second message. If the wireless access point or other network device does not match a verification MIC with the MIC included in the second message, then the client is not authorized to access the network.
In a further embodiment, network devices such as wireless access points precalculate and store PMKs corresponding with PSKs, so as to reduce the time required to determine and compare a large number of verification MICs with the MIC of the received message from the client.
Following the determination of the correct PTK by the wireless access point or other network device, the authentication process may be completed in step 135 by exchanging one or more additional messages with the client. For example, the wireless access point and client may follow the IEEE 802.11i standard. In this example, the wireless access point provides a group temporal key (GTK) to be used for multicast traffic and a sequence number to the client in a third message. The client then sends a fourth message to the wireless access point or other network device to acknowledge completion of the authentication. Following this, the wireless access point or other network device and the client communicate with each other using the PTK and GTK.
In some networks, it is desirable to be able to change users for access. In an embodiment, the exclusive preshared key scheme described above is combined with an authentication and accounting server, such as a RADIUS server, to perform authentication/accounting/authorization process for large companies. PAP, CHAP, MSCHAPv2, EAP, EAP-LEAP, EAP-PEAP or others can be used as the authentication methods carried by RADIUS protocol for RADIUS servers to authenticate the clients.
To configure exclusive preshared key techniques to work with a RADIUS server, the username and password should be provided. For example, each client is provided with a username, password and PSK. To configure exclusive preshared key techniques to work without a RADIUS server, a username and preshared key is sufficient to distinguish different users.
In a further embodiment using a RADIUS server, each client is provided with a username and password. In this embodiment, a RADIUS server derives a preshared key for each client from the username and password and other data. For example:
<PSK>=<password>, or
<PSK>=<username><concatenating string><password>.
For example, when username=“adam” and password=“abc123” are provided, and if the expression <PSK>=<password> is chosen, the PSK will be “abc123”; if the expression <PSK>=<username><concatenating string><password> is chosen and the <concatenating string>=“#”, the PSK will be “adam#abc123”.
In client side, the preshared key is given by an administrator to configure a client. The administrator also distributes the preshared key to the wireless access point, RADIUS server, or other network device, such as a wireless access point manager device or application. In RADIUS server, the username and password are configured by the IT administrator.
In further embodiments, passwords may be generated automatically for users. For example:
<password>=SHAI (<username>, <created-time>, <expired-time>, [<index>,] <secret>, <location>, [<SSID>])
In this example, the username is configured for an individual user. The “created-time” is the time when the password is created and start to be used. The “expired-time” is the time when the password ceases to be valid. The “index” is the index of the password which is used to specify one user and to distinguish different users (different users will be given different indexes). The indexes are also used to generate a large numbers of passwords (to derive a bunch of PSKs) for guest clients. The “secret” is a shared secret among all wireless access points for generating the same password for the same user. The “location” is used to distinguish the HQ and branches for large companies. The “SSID” is the SSID the PSKs will apply to. Some or all of these parameters of this example may be optional, for example allowing the SSID and/or index to be omitted.
Embodiments of the invention may allow administrators to configure the username, created-time, expired-time, index, shared secret and location for each user. After the passwords are generated, the PSKs can be derived by using <PSK>=<password> or <PSK>=<username>#<password>. When the index is used, there will be another method to derive the PSK: <PSK>=<username><index>#<password>.
In further embodiments, the clients can be divided into different groups. Each group may be associated with one or more group attributes, such as a VLAN ID, user profile ID (user role) and firewall policy. When the client is being authenticated, the PSK, username and group can be identified. The group attributes can be applied to that client and its connection with the network. This allows different clients or groups of clients to be treated differently upon connection with the network, for example using different VLANs, different user profiles and/or different firewall policies.
In further embodiments, a preshared key may be exclusive to a user or alternatively to a specific client device. In the former case, a user may use their assigned exclusive preshared key for more than one simultaneous network connection. For example, if the user has two laptop computers, he/she can configure these two client devices and connect the two devices to the same wireless network. An exclusive preshared key may be associated with a connection limit to prevent a user from using the same preshared key for an unlimited number of simultaneous network connections. In the case of the latter, a preshared key may be associated with one or more specific client devices, for example using one or more MAC addresses or other unique client device identifiers. This prevents a preshared key from being used with any arbitrary client device.
Embodiments of the invention can employ exclusive preshared key techniques to a variety of applications. The following scenarios illustrate example applications for enabling guest access to a network and employee access to a network in small and large network deployments.
In example 200, a network administrator 205 will create a set (for example, 1024) of username/password pairs, derives PSKs from these pairs, and save the PSKs. In an embodiment, the pregenerated preshared keys are saved 207 in a preshared key database associated with a guest manager application 210. The guest manager application 210 then distributes 208 these PSKs, or derived PMKs, to one or more wireless access points, including wireless access point 235 or other network devices to prepare them to receive connections from clients. The pregenerated preshared keys may be distributed using a network device management application 215. Network device management application 215 may include management applications that operate outside of the data path of wireless access points as well as controller applications and devices that are inside of the data path of wireless access points and thus are required by the wireless access points' operation. Usernames, passwords, and/or preshared keys may be generated manually or automatically, for example as described above. In alternate implementations, wireless access points may derive PSKs from username/password pairs, and then derive PMKs from PSKs.
A receptionist 220 or other employee associated with the network accesses the Guest Manager application 209, for example via a graphical user interface, to provide 211 an unused PSK to a guest user 225. In an embodiment, the PSK, expired-time and other info can be printed out and handed to the guest user by the receptionist.
Then the guest user 225 can configure the PSK to his/her own wireless-enabled client device 230 (such as a computer or handheld device) to connect to the wireless network. After the guest's client device 230 gets associated with one of the wireless access points 235 of the network using its assigned preshared key, authentication proceeds as described above.
For example, the access point 235 sends a first message 215 including an A-Nonce to the client. The client 230 response with a second message 217 including an S-Nonce and a MIC created using a PMK derived from the preshared key. In response to the second message 217, the wireless access point 235 will traverse list of PSKs or PMKs to match the received MIC with a validation MIC, as described in method 100, thereby identifying the specific key used by the guest. After the client's key is found, the wireless access point 235 and client will continue their authentication and key exchange using messages 219 and 221.
First, an administrator 305 will create a number (for example, 1024) of user accounts including username/password pairs, and send 306 them into the embedded RADIUS server 307 of the guest manager application 310, which derives PSKs from these pairs and saves the PSKs in the PSK database of the guest manager application 310. If the passwords are manually configured, the IT administrator 305 will also distribute 308 these passwords to wireless access points and other network devices, including wireless access point 320 either manually or automatically using a network device management application 315. Passwords may be automatically generated as described above.
A receptionist or other employee 325 associated with the network accesses the Guest Manager application 310, for example via a graphical user interface, to provide 327 an unused PSK to a guest user 330. In an embodiment, the PSK, expired-time and other info can be printed out and handed to the guest user 330 by the receptionist 325. Then the guest user 330 can configure the PSK to his/her own wireless-enabled client device 335 (such as a computer or handheld device) to connect to the wireless network.
After the guest's client device 335 gets associated with one of the wireless access points 320 of the network using its assigned preshared key, authentication proceeds similarly to that described above. For example, the access point 320 sends a first message 340 including an A-Nonce to the client 335.
The client 335 response with a second message 342 including an S-Nonce and a MIC created using a PMK derived from the preshared key. In response to the second message 342, the wireless access point 320 or other network device will traverse list of PSKs or PMKs to match the received MIC with a validation MIC, thereby identifying the specific key used by the guest.
After the client's key is found, the wireless access point 320 will provide the username and password corresponding to the identified PSK or PMK to the RADIUS server 307 to do RADIUS authentication using PAP, CHAP, MSCHAPv2, EAP, or any other authentication technique. In an embodiment, the RADIUS server 307 may be embedded in a guest manager application 310.
If the RADIUS authentication succeeds, the wireless access point 320 will continue the 4-way handshake by sending the third message 344 to the client device 335. The client device 335 will reply fourth message 346 to complete the 4-way handshake.
The wireless access point 320 will send accounting start message 348 to an accounting server 350, which is optionally embedded in the guest manager application 310, to count the time or bandwidth used by the guest user 330. After the customer exhausts their time or bandwidth, the client device 335 of the guest user 330 will be disassociated from the wireless access point 320.
The administrator 405 will derive identical PSKs from username/password pairs and distribute 411 them to employees or other users, including guest user 420. The employees or administrators configure each client device, including guest user device 425 with its assigned PSK.
When the client device 425 starts to associate with one of the wireless access points 415, the wireless access point 415 will send the first message 432 of the 4-way handshake to the client 425. The client device 425 replies the second message 434 including the S-Nonce and MIC. The wireless access point 415 will traverse the PSK list (or PMK list) to find a verification MIC matching the MIC provided by the second message 434, thereby identifying the PSK used by the employee.
After the PSK is found, the wireless access point 415 will send the third message 436 to client device 425. The client device 425 replies with the fourth message 438 to complete the 4-way handshake.
For example, first, an administrator 505 will create a number (for example, 1024) of user accounts including username/password pairs, send them into the authentication server 510, such as an embedded RADIUS server of a manager application, and derive PSKs from these pairs and save 509 the PSKs in the PSK database of the manager application 515. The administrator 505 will also distribute these usernames and optionally passwords to wireless access points and other network devices, including wireless access point 520, either manually or automatically using a network device management application 515. Passwords may be automatically generated as described above. The administrator 505 derives PSKs from username/password pairs using the management application 515 and dispatches 511 the PSKs to employees, including guest user 525.
The employees or administrators configure each client device, including guest user device 530 with its assigned PSK. When the client device 530 starts to associate with one of the wireless access points 520, the wireless access point 520 will send the first message 532 of the 4-way handshake to the client 530. The first message 532 includes an A-Nonce.
The client responds with a second message 534 including an S-Nonce and a MIC created using a PMK derived from the preshared key. In response to the second message 534, the wireless access point 520 will traverse the stored PSKs or PMKs to match the received MIC with a validation MIC, thereby identifying the specific key used by the guest user device 530.
After the client's key is found, the wireless access point 520 will provide the username and password corresponding to the identified PSK or PMK to the authentication server, such as a RADIUS server 510, to authenticate the user via PAP, CHAP, MSCHAPv2, EAP, or any other authentication technique. In an embodiment, the authentication server may be embedded in a network device manager application 515.
If the RADIUS authentication succeeds, the wireless access point 520 will continue the 4-way handshake by sending the third message 536 to the client device 530, for example including a GTK. The client device 530 will reply with a fourth message 538 to complete the 4-way handshake. Upon establishing a connection between the guest user device 530 and the wireless access point 520, the wireless access point 520 may notify the accounting server 540 to allow tracking and possible billing for network usage.
In a further embodiment, PSKs may be assigned creation times and expiration times. In an embodiment, these assigned times are stored by wireless access points in addition to their respective PSKs or PMKs. Upon receiving a second message from a client during the 4-way authentication and identifying the PSK or PMK used by the client, an embodiment of the invention compares the current time with the creation and expiration times associated with the PSK or PMK. If the current time is between the creation and expiration times, then authentication proceeds; otherwise the authorization fails and the client is disassociated from the wireless access point.
In an embodiment, multiple keys, such as PSKs, can be assigned to each user or client, to allow for seamless key changes when keys expire.
In an embodiment, a management application 515 can also revoke keys from clients. In this embodiment, a management application 515 directs wireless access points and other network devices to remove or mark invalid one or more specified keys. Once removed or marked invalid, a revoked key cannot be used by a client to access the network.
As described above, a wireless access point 520 generates and compares at least one and typically more validation MICs with a client supplied MIC to identify the client's assigned PSK. In a further embodiment, upon successfully identifying a client's assigned PSK, a wireless access point or other network device forwards the client's MAC address or other identifier, such as a user name, to a roaming cache data structure accessible to other wireless access points or other devices. A roaming cache is a data structure stored in a memory that associates client identifiers, such as client MAC addresses or user names, with PSKs or PMKs. If the client later roams and attempts to connect to another wireless access point, the roaming cache is checked against the client's MAC address. If there is matching entry, the associated PSK or PMK is used finish the authentication of the roaming client. Additionally, any RADIUS or other authentication may be skipped if the client matches the roaming cache. If there are no matching roaming cache entries, then the wireless access point or other network device traverses its key list to calculate validation MICs to identify the client's PSK or PMK.
In still a further embodiment, a wireless access point or other network device can use a roaming cache to store previously connected clients' MAC addresses or other identifiers and their associations with PSKs or PMKs. In this embodiment, if a previously-connected client reconnects with the same wireless access point or other network device, or any other network device having access to the same roaming cache data, the network device may identify this client's PSK or PMK using the roaming cache, rather than traversing the list of all PSKs or PMKs to compare validation MICs. This decreases the time and computational costs when clients frequently reconnect with the same wireless access point or other network device.
Computer system 2000 includes a central processing unit (CPU) 2005 for running software applications and optionally an operating system. CPU 2005 may be comprised of one or more processing cores. Memory 2010 stores applications and data for use by the CPU 2005. Examples of memory 2010 include dynamic and static random access memory. Storage 2015 provides non-volatile storage for applications and data and may include fixed or removable hard disk drives, flash memory devices, ROM memory, and CD-ROM, DVD-ROM, Blu-ray, HD-DVD, or other magnetic, optical, or solid state storage devices. Memory 2010 may store a firmware image comprising applications and data adapted to be executed by computer system 2000.
Optional user input devices 2020 communicate user inputs from one or more users to the computer system 2000, examples of which may include keyboards, mice, joysticks, digitizer tablets, touch pads, touch screens, still or video cameras, and/or microphones. In an embodiment, user input devices may be omitted and computer system 2000 may present a user interface to a user over a network, for example using a web page or network management protocol and network management software applications.
Computer system 2000 includes one or more network interfaces 2025 that allow computer system 2000 to communicate with other computer systems via an electronic communications network, and may include wired or wireless communication over local area networks and wide area networks such as the Internet. Computer system 2000 may support a variety of networking protocols at one or more levels of abstraction. For example, computer system may support networking protocols at one or more layers of the seven layer OSI network model. An embodiment of network interface 2025 includes one or more wireless network interfaces adapted to communicate with wireless clients and with other wireless networking devices using radio waves, for example using the 802.11 family of protocols, such as 802.11a, 802.11b, 802.11g, and 802.11n.
An embodiment of the computer system 2000 may also include a wired networking interface, such as one or more Ethernet connections to communicate with other networking devices via local or wide-area networks. In a further embodiment, computer system 2000 may be capable of receiving some or all of its required electrical power via the network interface 2025, for example using a wired networking interface power over Ethernet system.
The components of computer system 2000, including CPU 2005, memory 2010, data storage 2015, user input devices 2020, and network interface 2025 are connected via one or more data buses 2060. Additionally, some or all of the components of computer system 2000, including CPU 2005, memory 2010, data storage 2015, user input devices 2020, and network interface 2025 may be integrated together into one or more integrated circuits or integrated circuit packages. Furthermore, some or all of the components of computer system 2000 may be implemented as application specific integrated circuits (ASICS) and/or programmable logic.
A power supply 2030 provides electrical power to the computer system 2000. Power supply 2030 may be adapted to draw electrical power from a connection with an electrical power distribution grid. In an embodiment, power supply 2030 is connected with network interface 2025 to draw electrical power for computer system 2000 from one or more wired network connections using a network power standard, such as IEEE 802.3af.
Although embodiments of the invention are discussed with reference to the IEEE 802.11i standard, embodiments of the invention are equally applicable to other standard and proprietary network authentication standards. Additionally, embodiments of the invention are not limited to 802.1x wireless network connections and may be utilized for any type of communication network where user authentication and/or network security is required.
Further embodiments can be envisioned to one of ordinary skill in the art from the specification and figures. In other embodiments, combinations or sub-combinations of the above disclosed invention can be advantageously made. The block diagrams of the architecture and flow charts are grouped for ease of understanding. However it should be understood that combinations of blocks, additions of new blocks, re-arrangement of blocks, and the like are contemplated in alternative embodiments of the present invention. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense. It will, however, be evident that various modifications and changes may be made thereunto without departing from the broader spirit and scope of the invention as set forth in the claims.
This application is a continuation application of U.S. patent application Ser. No. 12/485,041, filed Jun. 16, 2009, which claims priority to U.S. Provisional Patent Application No. 61/111,210, filed Nov. 4, 2008, both of which are incorporated by reference herein for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
5471671 | Wang et al. | Nov 1995 | A |
5697059 | Carney | Dec 1997 | A |
5726984 | Kubler et al. | Mar 1998 | A |
5956643 | Benveniste | Sep 1999 | A |
6061799 | Eldridge et al. | May 2000 | A |
6112092 | Benveniste | Aug 2000 | A |
6154655 | Borst et al. | Nov 2000 | A |
6201792 | Lahat | Mar 2001 | B1 |
6233222 | Wallentin | May 2001 | B1 |
6314294 | Benveniste | Nov 2001 | B1 |
6473413 | Chiou et al. | Oct 2002 | B1 |
6496699 | Benveniste | Dec 2002 | B2 |
6519461 | Andersson et al. | Feb 2003 | B1 |
6628623 | Noy | Sep 2003 | B1 |
6628938 | Rachabathuni et al. | Sep 2003 | B1 |
6636498 | Leung | Oct 2003 | B1 |
6775549 | Benveniste | Aug 2004 | B2 |
6865393 | Baum et al. | Mar 2005 | B1 |
6957067 | Iyer et al. | Oct 2005 | B1 |
7002943 | Bhagwat et al. | Feb 2006 | B2 |
7057566 | Theobold | Jun 2006 | B2 |
7085224 | Oran | Aug 2006 | B1 |
7085241 | O'Neill et al. | Aug 2006 | B1 |
7130629 | Leung et al. | Oct 2006 | B1 |
7154874 | Bhagwat et al. | Dec 2006 | B2 |
7164667 | Rayment et al. | Jan 2007 | B2 |
7174170 | Steer et al. | Feb 2007 | B2 |
7177646 | O'Neill et al. | Feb 2007 | B2 |
7181530 | Halasz et al. | Feb 2007 | B1 |
7216365 | Bhagwat et al. | May 2007 | B2 |
7224697 | Banerjea et al. | May 2007 | B2 |
7251238 | Joshi et al. | Jul 2007 | B2 |
7336670 | Calhoun | Feb 2008 | B1 |
7339914 | Bhagwat et al. | Mar 2008 | B2 |
7346338 | Calhoun et al. | Mar 2008 | B1 |
7366894 | Kalimuthu et al. | Apr 2008 | B1 |
7369489 | Bhattacharya | May 2008 | B1 |
7370362 | Olson et al. | May 2008 | B2 |
7440434 | Chaskar et al. | Oct 2008 | B2 |
7512379 | Nguyen | Mar 2009 | B2 |
7536723 | Bhagwat et al. | May 2009 | B1 |
7562384 | Huang | Jul 2009 | B1 |
7593356 | Friday et al. | Sep 2009 | B1 |
7656822 | Abdelaziz et al. | Feb 2010 | B1 |
7706789 | Qi et al. | Apr 2010 | B2 |
7716370 | Devarapalli | May 2010 | B1 |
7751393 | Chaskar et al. | Jul 2010 | B2 |
7768952 | Lee | Aug 2010 | B2 |
7793104 | Iheng et al. | Sep 2010 | B2 |
7804808 | Bhagwat et al. | Sep 2010 | B2 |
7843907 | Abou-Emara et al. | Nov 2010 | B1 |
7844057 | Meier et al. | Nov 2010 | B2 |
7856209 | Rawat | Dec 2010 | B1 |
7921185 | Chawla et al. | Apr 2011 | B2 |
7949342 | Cuffaro et al. | May 2011 | B2 |
7961725 | Nagarajan et al. | Jun 2011 | B2 |
7970894 | Patwardhan | Jun 2011 | B1 |
8000308 | Dietrich et al. | Aug 2011 | B2 |
8069483 | Matlock | Nov 2011 | B1 |
8219688 | Wang | Jul 2012 | B2 |
8249606 | Neophytou et al. | Aug 2012 | B1 |
8493918 | Karaoguz et al. | Jul 2013 | B2 |
8553612 | Alexandre | Oct 2013 | B2 |
8788707 | Su | Jul 2014 | B1 |
8789191 | Bhagwat et al. | Jul 2014 | B2 |
8824448 | Narayana et al. | Sep 2014 | B1 |
8948046 | Kang et al. | Feb 2015 | B2 |
8953453 | Xiao | Feb 2015 | B1 |
9003527 | Bhagwat et al. | Apr 2015 | B2 |
10492071 | Havaralu Rama Chandra Adiga | Nov 2019 | B1 |
20010006508 | Pankaj et al. | Jul 2001 | A1 |
20020012320 | Ogier et al. | Jan 2002 | A1 |
20020021689 | Robbins et al. | Feb 2002 | A1 |
20020041566 | Yang | Apr 2002 | A1 |
20020071422 | Amicangioli | Jun 2002 | A1 |
20020091813 | Lamberton et al. | Jul 2002 | A1 |
20020114303 | Crosbie | Aug 2002 | A1 |
20020116463 | Hart | Aug 2002 | A1 |
20020128984 | Mehta et al. | Sep 2002 | A1 |
20030005100 | Barnard et al. | Jan 2003 | A1 |
20030039212 | Lloyd et al. | Feb 2003 | A1 |
20030084104 | Salem | May 2003 | A1 |
20030087629 | Juitt | May 2003 | A1 |
20030104814 | Gwon et al. | Jun 2003 | A1 |
20030129988 | Lee et al. | Jul 2003 | A1 |
20030145091 | Peng et al. | Jul 2003 | A1 |
20030179742 | Ogier et al. | Sep 2003 | A1 |
20030198207 | Lee | Oct 2003 | A1 |
20040003285 | Whelan et al. | Jan 2004 | A1 |
20040013118 | Borella | Jan 2004 | A1 |
20040022222 | Clisham | Feb 2004 | A1 |
20040054774 | Barber et al. | Mar 2004 | A1 |
20040064467 | Kola et al. | Apr 2004 | A1 |
20040077341 | Chandranmenon et al. | Apr 2004 | A1 |
20040103282 | Meier et al. | May 2004 | A1 |
20040109466 | Van Ackere et al. | Jun 2004 | A1 |
20040125781 | Walter | Jul 2004 | A1 |
20040162037 | Shpak | Aug 2004 | A1 |
20040185876 | Groenendaal et al. | Sep 2004 | A1 |
20040192312 | Li et al. | Sep 2004 | A1 |
20040196977 | Johnson et al. | Oct 2004 | A1 |
20040236939 | Watanabe et al. | Nov 2004 | A1 |
20040255028 | Chu et al. | Dec 2004 | A1 |
20050053003 | Cain et al. | Mar 2005 | A1 |
20050074015 | Chari et al. | Apr 2005 | A1 |
20050085235 | Park | Apr 2005 | A1 |
20050099983 | Nakamura et al. | May 2005 | A1 |
20050122946 | Won | Jun 2005 | A1 |
20050154774 | Giaffreda et al. | Jul 2005 | A1 |
20050207417 | Ogawa et al. | Sep 2005 | A1 |
20050259682 | Yosef et al. | Nov 2005 | A1 |
20050262266 | Wiberg et al. | Nov 2005 | A1 |
20050265288 | Liu et al. | Dec 2005 | A1 |
20050266848 | Kim | Dec 2005 | A1 |
20060010250 | Eisl et al. | Jan 2006 | A1 |
20060013179 | Yamane | Jan 2006 | A1 |
20060026289 | Lyndersay et al. | Feb 2006 | A1 |
20060062250 | Payne, III | Mar 2006 | A1 |
20060107050 | Shih | May 2006 | A1 |
20060117018 | Christiansen et al. | Jun 2006 | A1 |
20060140123 | Conner et al. | Jun 2006 | A1 |
20060146748 | Ng et al. | Jul 2006 | A1 |
20060146846 | Yarvis et al. | Jul 2006 | A1 |
20060165015 | Melick et al. | Jul 2006 | A1 |
20060187949 | Seshan et al. | Aug 2006 | A1 |
20060221920 | Gopalakrishnan et al. | Oct 2006 | A1 |
20060233128 | Sood et al. | Oct 2006 | A1 |
20060234701 | Wang et al. | Oct 2006 | A1 |
20060245442 | Srikrishna et al. | Nov 2006 | A1 |
20060251256 | Asokan et al. | Nov 2006 | A1 |
20060268802 | Faccin | Nov 2006 | A1 |
20060294246 | Stieglitz et al. | Dec 2006 | A1 |
20070004394 | Chu et al. | Jan 2007 | A1 |
20070010231 | Du | Jan 2007 | A1 |
20070025274 | Rahman et al. | Feb 2007 | A1 |
20070025298 | Jung | Feb 2007 | A1 |
20070030826 | Zhang | Feb 2007 | A1 |
20070049323 | Wang et al. | Mar 2007 | A1 |
20070050839 | Dharanikota | Mar 2007 | A1 |
20070077937 | Ramakrishnan et al. | Apr 2007 | A1 |
20070078663 | Grace | Apr 2007 | A1 |
20070082656 | Stieglitz et al. | Apr 2007 | A1 |
20070087756 | Hoffberg | Apr 2007 | A1 |
20070091859 | Sethi et al. | Apr 2007 | A1 |
20070115847 | Strutt et al. | May 2007 | A1 |
20070116011 | Lim et al. | May 2007 | A1 |
20070121947 | Sood et al. | May 2007 | A1 |
20070133407 | Choi et al. | Jun 2007 | A1 |
20070140191 | Kojima | Jun 2007 | A1 |
20070150720 | Oh et al. | Jun 2007 | A1 |
20070153697 | Kwan | Jul 2007 | A1 |
20070153741 | Blanchette et al. | Jul 2007 | A1 |
20070156804 | Mo | Jul 2007 | A1 |
20070160017 | Meier et al. | Jul 2007 | A1 |
20070171885 | Bhagwat et al. | Jul 2007 | A1 |
20070192862 | Vermeulen et al. | Aug 2007 | A1 |
20070195761 | Tatar et al. | Aug 2007 | A1 |
20070206552 | Yaqub | Sep 2007 | A1 |
20070247303 | Payton | Oct 2007 | A1 |
20070248014 | Xie | Oct 2007 | A1 |
20070249324 | Jou et al. | Oct 2007 | A1 |
20070263532 | Mirtorabi et al. | Nov 2007 | A1 |
20070280481 | Eastlake | Dec 2007 | A1 |
20070288997 | Meier et al. | Dec 2007 | A1 |
20080002642 | Borkar et al. | Jan 2008 | A1 |
20080022392 | Karpati | Jan 2008 | A1 |
20080037552 | Dos Remedios et al. | Feb 2008 | A1 |
20080080369 | Sumioka | Apr 2008 | A1 |
20080080377 | Sasaki et al. | Apr 2008 | A1 |
20080090575 | Barak et al. | Apr 2008 | A1 |
20080095094 | Innami | Apr 2008 | A1 |
20080095163 | Chen et al. | Apr 2008 | A1 |
20080107027 | Allan et al. | May 2008 | A1 |
20080109879 | Bhagwat et al. | May 2008 | A1 |
20080130495 | Dos Remedios et al. | Jun 2008 | A1 |
20080146240 | Trudeau | Jun 2008 | A1 |
20080151751 | Ponnuswamy et al. | Jun 2008 | A1 |
20080159128 | Shaffer | Jul 2008 | A1 |
20080159135 | Caram | Jul 2008 | A1 |
20080170527 | Lundsgaard et al. | Jul 2008 | A1 |
20080186932 | Do et al. | Aug 2008 | A1 |
20080194271 | Bedekar et al. | Aug 2008 | A1 |
20080207215 | Chu et al. | Aug 2008 | A1 |
20080209186 | Boden | Aug 2008 | A1 |
20080212562 | Bedekar et al. | Sep 2008 | A1 |
20080219286 | Ji et al. | Sep 2008 | A1 |
20080225857 | Lange | Sep 2008 | A1 |
20080229095 | Kalimuthu et al. | Sep 2008 | A1 |
20080240128 | Elrod | Oct 2008 | A1 |
20080253370 | Cremin et al. | Oct 2008 | A1 |
20080273520 | Kim et al. | Nov 2008 | A1 |
20080279161 | Stirbu et al. | Nov 2008 | A1 |
20090019521 | Vasudevan | Jan 2009 | A1 |
20090028052 | Stater et al. | Jan 2009 | A1 |
20090040989 | da Costa et al. | Feb 2009 | A1 |
20090043901 | Mizikovsky et al. | Feb 2009 | A1 |
20090082025 | Song | Mar 2009 | A1 |
20090088152 | Orlassino | Apr 2009 | A1 |
20090097436 | Vasudevan et al. | Apr 2009 | A1 |
20090111468 | Burgess et al. | Apr 2009 | A1 |
20090113018 | Thomson et al. | Apr 2009 | A1 |
20090141692 | Kasslin et al. | Jun 2009 | A1 |
20090144740 | Gao | Jun 2009 | A1 |
20090168645 | Tester et al. | Jul 2009 | A1 |
20090172151 | Davis | Jul 2009 | A1 |
20090197597 | Kotecha | Aug 2009 | A1 |
20090207806 | Makela et al. | Aug 2009 | A1 |
20090239531 | Andreasen et al. | Sep 2009 | A1 |
20090240789 | Dandabany | Sep 2009 | A1 |
20090247170 | Balasubramanian et al. | Oct 2009 | A1 |
20090257380 | Meier | Oct 2009 | A1 |
20090303883 | Kucharczyk et al. | Dec 2009 | A1 |
20090307751 | Lin | Dec 2009 | A1 |
20090310557 | Shinozaki | Dec 2009 | A1 |
20100020753 | Fulknier | Jan 2010 | A1 |
20100046368 | Kaempfer et al. | Feb 2010 | A1 |
20100057930 | DeHaan | Mar 2010 | A1 |
20100061234 | Pai et al. | Mar 2010 | A1 |
20100067379 | Zhao et al. | Mar 2010 | A1 |
20100112540 | Gross et al. | May 2010 | A1 |
20100115278 | Shen | May 2010 | A1 |
20100115576 | Hale et al. | May 2010 | A1 |
20100132040 | Bhagwat et al. | May 2010 | A1 |
20100195585 | Horn | Aug 2010 | A1 |
20100208614 | Harmatos | Aug 2010 | A1 |
20100228843 | Ok et al. | Sep 2010 | A1 |
20100238871 | Tosic | Sep 2010 | A1 |
20100240313 | Kawai | Sep 2010 | A1 |
20100254316 | Sendrowicz | Oct 2010 | A1 |
20100260091 | Seok | Oct 2010 | A1 |
20100290397 | Narayana et al. | Nov 2010 | A1 |
20100304738 | Lim et al. | Dec 2010 | A1 |
20100311420 | Reza et al. | Dec 2010 | A1 |
20100322217 | Jin et al. | Dec 2010 | A1 |
20100325720 | Etchegoyen | Dec 2010 | A1 |
20110004913 | Nagarajan et al. | Jan 2011 | A1 |
20110040867 | Kalbag | Feb 2011 | A1 |
20110051677 | Jetcheva et al. | Mar 2011 | A1 |
20110055326 | Michaelis et al. | Mar 2011 | A1 |
20110055928 | Brindza | Mar 2011 | A1 |
20110058524 | Hart et al. | Mar 2011 | A1 |
20110064065 | Nakajima et al. | Mar 2011 | A1 |
20110085464 | Nordmark et al. | Apr 2011 | A1 |
20110182225 | Song et al. | Jul 2011 | A1 |
20110185231 | Balestrieri et al. | Jul 2011 | A1 |
20110222484 | Pedersen | Sep 2011 | A1 |
20110258641 | Armstrong et al. | Oct 2011 | A1 |
20110292897 | Wu et al. | Dec 2011 | A1 |
20120014386 | Xiong et al. | Jan 2012 | A1 |
20120290650 | Montuno et al. | Nov 2012 | A1 |
20120322435 | Erceg | Dec 2012 | A1 |
20130003729 | Raman et al. | Jan 2013 | A1 |
20130003739 | Raman et al. | Jan 2013 | A1 |
20130003747 | Raman et al. | Jan 2013 | A1 |
20130028158 | Lee et al. | Jan 2013 | A1 |
20130059570 | Hara et al. | Mar 2013 | A1 |
20130086403 | Jenne et al. | Apr 2013 | A1 |
20130103833 | Ringland et al. | Apr 2013 | A1 |
20130188539 | Han | Jul 2013 | A1 |
20130227306 | Santos et al. | Aug 2013 | A1 |
20130227645 | Lim | Aug 2013 | A1 |
20130230020 | Backes | Sep 2013 | A1 |
20130250811 | Vasseur et al. | Sep 2013 | A1 |
20140269327 | Fulknier et al. | Sep 2014 | A1 |
20140298467 | Bhagwat et al. | Oct 2014 | A1 |
20150120864 | Unnimadhavan et al. | Apr 2015 | A1 |
Number | Date | Country |
---|---|---|
1642143 | Jul 2005 | CN |
0940999 | Sep 1999 | EP |
1732276 | Dec 2006 | EP |
1771026 | Apr 2007 | EP |
1490773 | Jan 2013 | EP |
0059251 | Oct 2000 | WO |
0179992 | Oct 2001 | WO |
2004042971 | May 2004 | WO |
2006129287 | Dec 2006 | WO |
WO 2006129287 | Dec 2006 | WO |
2009141016 | Nov 2009 | WO |
Entry |
---|
IEEE 802.11i, Jul. 23, 2004. |
“Wi-Fi Protected Access 2 (WPA 2) Configuration Example,” Jan. 21, 2008. (Year: 2008). |
Wikipedia, “Client (computing).” |
Chirumamilla, Mohan K. et al., “Agent Based Intrustion Detection and Response System for Wireless LANs,” CSE Conference and Workshop Papers, Paper 64, Jan. 1, 2003. |
Clausen, T., et al., “Optimized Link State Routing Protocol (OLSR),” Network Working Group, pp. 1-71, Oct. 2003. |
Craiger, J. Philip, “802.11, 802.1x, and Wireless Security,” SANS Institute InfoSec Reading Room, Jun. 23, 2002. |
Finlayson, Ross et al., “A Reverse Address Resolution Protocol,” Nework Working Group, Request for Comments: 903 (RFC 903), Jun. 1984. |
He, Changhua et al., “Analysis of the 802.11i 4-Way Handshake,” Proceedings of the 3rd ACM Workshop on Wireless Security, pp. 43-50, Oct. 2004. |
Lee, Jae Woo et al, “z2z: Discovering Zeroconf Services Beyond Local Link,” 2007 IEEE Globecom Workshops, pp. 1-7, Nov. 26, 2007. |
Perkins, C., et al., “Ad hoc On-Demand Distance Vector (AODV) Routing,” Network Working Group, pp. 1-35, Oct. 2003. |
Wu, Haitao et al., “Layer 2.5 SoftMAC: End-System Based Media Streaming Support on Home Networks,” IEEE Global Telecommunications Conference (Globecom '05), vol. 1, pp. 235-239, Nov. 2005. |
European Patent Application No. 11823931.8, Search Report dated Aug. 29, 2016. |
European Patent Application No. 12879114.2, Search Report dated Jan. 21, 2016. |
International Application No. PCT/US2008/061674, International Search Report and Written Opinion dated Oct. 14, 2008. |
International Application No. PCT/US2011/047591, International Search Report and Written Opinion dated Dec. 19, 2011. |
International Application No. PCT/US2012/059093, International Search Report and Written Opinion dated Jan. 4, 2013. |
Number | Date | Country | |
---|---|---|---|
20170230824 A1 | Aug 2017 | US |
Number | Date | Country | |
---|---|---|---|
61111210 | Nov 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12485041 | Jun 2009 | US |
Child | 15496522 | US |