Executing continuous event processing (CEP) queries in parallel

Information

  • Patent Grant
  • 10083210
  • Patent Number
    10,083,210
  • Date Filed
    Wednesday, June 8, 2016
    8 years ago
  • Date Issued
    Tuesday, September 25, 2018
    6 years ago
Abstract
A continuous event processing (CEP) query processor determines how and when a CEP query can be processed in a concurrent manner, such that multiple threads of execution can concurrently perform at least some of the CEP query's operations concurrently with each other. According to one technique, a user can instruct a CEP query processor to attempt to execute a CEP query in a concurrent manner. The CEP query processor responsively determines whether the CEP query's execution, or parts thereof, can be made concurrent based on certain constraints that can depend on inheritance and operation type. Based on this determination, the CEP query processor can execute at least certain parts of a CEP query in parallel relative to the same event within an event stream.
Description
BACKGROUND OF THE INVENTION

The present application relates to the processing of continuous event processing (CEP) queries.


Databases have traditionally been used in applications that require storage of data and querying capability on the stored data. Existing databases are thus best equipped to run queries over finite stored data sets. However, the traditional database model is not well suited for a growing number of modern applications in which data is received as a stream of data events instead of a bounded data set. A data stream, also referred to as an event stream, is characterized by a real-time, potentially continuous, sequence of events. A data or event stream thus represents unbounded sets of data. Examples of sources that generate data streams include sensors and probes (e.g., RFID sensors, temperature sensors, etc.) configured to send a sequence of sensor readings, financial tickers, network monitoring and traffic management applications sending network status updates, click stream analysis tools, and others.


CEP is a technology useful for processing data in an event stream. CEP is highly stateful. CEP involves receiving events continuously, and finding some pattern among those events. A significant amount of state maintenance is therefore involved in CEP. Because CEP involves the maintenance of so much state, processes which apply CEP queries to data within an event stream have always been single-threaded. In computer programming, single-threading is the processing of one command at a time.


CEP query processing generally involves the continuous execution of a query relative to events that are specified within an event stream. For example, CEP query processing might be used in order to continuously observe the average price of a stock over the most recent hour. Under such circumstances, CEP query processing can be performed relative to an event stream that contained events that each indicated the current price of the stock at various times. The query can aggregate the stock prices over the last hour and then calculate the average of those stock prices. The query can output each calculated average. As the hour-long window of prices moves, the query can be executed continuously, and the query can output various different average stock prices.


Because such CEP query processing has always been performed within a single thread, the scaling of CEP query processing can become problematic. When a computing machine has multiple processors that are capable of performing operations concurrently, or when a computing system has many nodes that are capable of performing operations concurrently, the concurrent processing power of such machine and systems may be wasted when CEP query processing is performed.


Additionally, during the execution of a CEP query, sometimes errors can occur. Traditionally, when an error has occurred during the execution of a CEP query, the error has simply caused the CEP query to stop executing. The continuous query language (CQL) developed out of the structured query language (SQL). In SQL, queries typically are executed once against a set of data, rather than continuously against events in continuous event stream. Because SQL queries typically were executed just once, the failure of a SQL query was usually remedied by having a database administrator investigate the problem manually, and then having the database administrator manually make whatever changes to the database or to the query were necessary in order to solved the problem, and then having the database administrator re-executed the query. In contrast, CQL queries can be executed continuously against events in an event stream. An error that caused a CQL query to halt execution might have been due simply to a single invalid event within the event stream. Unfortunately, even if the remaining events in the event stream are valid, those events will not be processed by the CQL query as long as the CQL query remains halted. Instead, those events may simply be lost as the event stream continues to flow with time. The CQL query will not be restarted unless an administrator restarts the CQL query manually. Often, an administrator will simply restart a CQL query without changing the CQL query at all, recognizing that the error was due to an invalid event. Under such circumstances, the halting of the CQL query, with its attendant resulting loss in event data, was unfortunate and unnecessary.


BRIEF SUMMARY OF THE INVENTION

Certain embodiments of the invention involve techniques for determining how and when a CEP query can be processed in a concurrent manner, such that multiple threads of execution can concurrently perform at least some of the CEP query's operations concurrently with each other. According to one technique, a user can instruct a CEP query processor to attempt to execute a CEP query in a concurrent manner. The CEP query processor responsively determines whether the CEP query's execution, or parts thereof, can be made concurrent based on certain constraints that can depend on inheritance and operation type. Based on this determination, the CEP query processor can execute at least certain parts of a CEP query in parallel relative to the same event within an event stream.


Certain embodiments of the invention involve techniques for adding the concept of faults and fault handling to the execution of CEP queries. By introducing fault handling techniques to the processing of CEP queries (CQL queries being a kind of CEP query), users are enabled to instruct a CEP query processor to respond to faults in a customized manner that does not necessarily involve the halting of the CEP query relative to which the faults occurred. For example, a fault might be due to a temporary problem. Under such circumstances, the CEP query processor can be instructed or programmed to ignore the fault and allow the execution of the CEP query to continue relative to the remainder of the event stream. Alternatively, if the fault is due to a problem with the CEP query itself, then the CEP query processor can be instructed or programmed to propagate the fault through the query processing system until the fault ultimately causes the problematic CEP query to be halted.


The foregoing, together with other features and embodiments will become more apparent when referring to the following specification, claims, and accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a flow diagram that illustrates an example technique for determining whether a CEP query can be executed in a concurrent manner based on the operators of that CEP query, according to an embodiment of the present invention.



FIG. 2 is a flow diagram that illustrates an example technique for determining a concurrency constraint for a particular operator in a directed graph of operators, according to an embodiment of the present invention.



FIG. 3 is a flow diagram that illustrates an example technique for adding operators to the beginning of a CEP query in order to allow or enforce maximum permissible concurrency in the execution of that CEP query, according to an embodiment of the present invention.



FIG. 4 is a flow diagram that illustrates an example technique whereby user-registered fault handlers of a CEP query processor can handle faults thrown by operators of CEP queries, according to an embodiment of the present invention.



FIG. 5 is a simplified block diagram illustrating components of a system environment that may be used in accordance with an embodiment of the present invention; and



FIG. 6 is a simplified block diagram of a computer system that may be used in accordance with embodiments of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

In the following description, for the purposes of explanation, specific details are set forth in order to provide a thorough understanding of embodiments of the invention. However, it will be apparent that the invention may be practiced without these specific details.


In one embodiment of the invention, a CEP query processor can evaluate the various components of a CEP query. Based on this evaluation, the CEP query processor can break the CEP query into separate pieces. The CEP query processor can then evaluate each such piece of the CEP query in order to determine whether that piece can be processed in a concurrent manner. Based on the results of this evaluation, certain pieces of the CEP query can be processed in a concurrent manner—such that those pieces of the CEP query can be applied to multiple events from the event stream at the same time—while other pieces of the CEP query can be processed in a non-concurrent, sequential manner.


Events in an event stream can be ordered by time, such that a query processor can receive the oldest events in the event stream before receiving the newest events in that event stream. According to an embodiment of the invention, the CEP query processor can receive, from a user, a directive indicating that none, all, or at least part of a specified CEP query can be processed in a concurrent manner, or in other words, in parallel. For example, the user can inform the CEP query processor that the specified CEP query is completely ordered. Under such circumstances, the CEP query processor can determine that no part of the specified CEP query can be processed in a concurrent manner, because concurrent processing of a completely ordered CEP query could cause the processed events to lose their order. For another example, the user can inform the CEP query processor that the specified CEP query is unordered. A CEP query is unordered if the order in which the CEP query processes and outputs the events from an event stream does not matter to the user. For yet another example, the user can inform the CEP query processor that the specified CEP query is partition-ordered. A CEP query is partition-ordered if, for each of the CEP query's partitions, the events within that partition must be processed in order relative to each other, but not necessarily in order relative to the events within other partitions. Based on the user's directive, the CEP query processor can determine which, if any, pieces of the CEP query can be processed in a concurrent manner. Each partition involved in partition-based processing might contain events from a different category. For example, partition-based processing might involve computing a separate average stock price for each separate company having stock price events represented within the same event stream. Under such circumstances, the CEP query is conceptually partitioned by stock symbol. A CEP query may indicate that it involves partition-based processing by its inclusion of a “group by” clause.


In an embodiment, concurrent processing of a CEP query does not cause multiple events in an event stream to be processed concurrently. Instead, concurrent processing of a CEP query can cause multiple portions, or operations, of that CEP query to be performed concurrently relative to a particular event within an event stream. For each such particular event in the event stream, those multiple portions of the CEP query can be performed concurrently relative to that particular event. In an embodiment of the invention, a CEP processor can process a portion of a CEP query relative to an event in a concurrent manner by executing multiple threads, each of which can perform an operation of the CEP query relative to the event concurrently. When this happens, there is no guarantee concerning which of the multiple threads will finish performing its operations first. A single thread can be devoted to extracting events from the event stream in order to prevent the events from inadvertently becoming out-of-order.


In an embodiment, the CEP query processor can receive input from a user indicating certain constraints that are possessed by an application of that user. For example, a user might have an application that displays a stock price on a dashboard. The stock price might be read from an event stream. It might be the case that the user does not care whether the stock prices from the event stream are displayed strictly in time order. Under such circumstances, the user's application can cope with unordered events. In other cases, a user's application might require that events remain ordered. For example, an application might involve the automatic sale of a stock in response to a determination that the stock's price has declined beneath a specified threshold. Under such circumstances, it would be important for the order of the stock price events to be processed in order. The user to whom the application belongs can inform the CEP query processor about the ordering constraints, if any, that the application possesses in this regard.


In an embodiment, after receiving such constraint information from a user, the CEP query processor can determine which pieces, or operations, of a CEP query can be performed in a concurrent manner while still upholding those constraints. In an embodiment, the CEP processor can apply a particular “calculus” to make this determination. In making this determination, the CEP processor can determine a manner in which the central processing units of a machine, and/or the nodes of a system, can be used maximally to execute the CEP query while still honoring the constraints.


Potentially, multiple different CEP queries can execute relative to the same event stream. In a CEP system, multiple different CEP queries can be registered with the CEP system and then continuously executed relative to an event stream. Each such CEP query can be conceived of conceptually as a tree of operators, each having an operation type. In an embodiment of the invention, the CEP query processor can mesh together all of the CEP queries that are to be executed relative to the same event stream, conceptually by meshing together the operator trees for those CEP queries. The CEP query processor can perform this meshing by first breaking down each CEP query into the low-level operators that make up that CEP query. Breaking down the CEP queries in this manner does not necessarily incur any extra cost in the CEP query processing system, because such CEP queries often are broken down in this manner for other reasons anyway. In an embodiment of the invention, the kinds of operations into which a CEP query processor can break down a CEP query include (1) filtering operations, (2) selection operations, (3) projection operations, and (4) join operations, among potentially other kinds of operations. These are the same kinds of operations that are typically found in a query that can be performed relative to a database system. The CEP query processor can then determine, based on the operation types of these low-level operators, which of these low-level operators, potentially from separate CEP queries, can be shared.


For example, multiple CEP queries might perform a filtering operation. A filtering operation can selectively output fewer than all events received from an event stream; a filtering operation can filter out other events, which do not satisfy operation-specified filtering criteria, from the event stream so that the filtering operation does not pass those events on to other query operations. In an embodiment, if multiple CEP queries in a set of CEP queries performs filtering operations relative to an event stream, then the CEP query processor can determine that all of the filtering operations in these CEP queries can share the same filtering operator, even if the filtering criteria for these filtering operations differ. In an embodiment, certain other types of operations, such as group-by operations and aggregation operations, are not allowed to share operators, even if multiple CEP queries executing relative to an event stream perform those types of operations. Thus, according to an embodiment of the invention, only certain specified types of operations, such as filtering operations, can share operators. In an embodiment of the invention, the CEP query processor can mesh together all operators that can be shared by multiple CEP queries executing relative to the same event stream, and leave unmeshed all other operators. Thus, multiple filtering operations from multiple CEP queries can be meshed together by causing those filtering operations to share a single filtering operator, while group-by operations, aggregation operations, and other kinds of un-shareable operations can retain separate operators. In an embodiment of the invention, the CEP query processor can attempt to make as many operations as possible share the same operator, limited by the operation type considerations discussed above.


In an embodiment of the invention, the CEP query processor can link together the set of operators determined and created in this manner, potentially with some sharing, into a directed graph of operators. In the graph, the operators can be linked together based on their inputs and outputs. Operators that output events to other operators can have outgoing links to those other operators in the graph. Operators that receive events from other operators can have incoming links from those other operators in the graph. A particular operator can have multiple incoming and/or outgoing links to and from other operators in the graph. This is especially likely to occur if the particular operator is an operator that is shared by multiple separate CEP queries executing relative to the event stream. Thus, an operator from a first CEP query and an operator from a second CEP query can both output events to a particular filtering operator that is shared by the first and second CEP queries. The particular filtering operator that is so shared can output events to another operator from the first CEP query and another operator from the second CEP query.


Overall, then, the directed graph of operators can have multiple root operators (one for each CEP query), multiple intermediary operators, and multiple leaf operators. Each root operator can receive events as input directly from the event stream and output those events to other operators. The leaf operators can receive events from other operators, perform operations relative to those events, and then output those events to an application's event consumers, such as application components that display output based on those events. The CEP query processor can organize these operators within the directed graph relative to each other based on their operation types. Thus, for example, the CEP query processor can ensure that an operator that extracts events from an event stream comes before, or passes output to, a filtering operator that filters those events. Likewise, for example, the CEP query processor can ensure that such a filtering operator comes before, or passes output to, an aggregation operator that aggregates data specified by those events (e.g., calculating an average). This organization can be based on the fact that filtering should be performed prior to aggregation in order for the aggregation to be performed properly, although this may potentially vary depending upon the particular syntax of the CEP query.


In an embodiment of the invention, the CEP query processor can perform a recursive technique relative to the operators in the directed graph of operators to determine which of the operators in graph can perform its operations in parallel with other operators in that graph. More specifically, the CEP processor can perform this technique to determine the extent to which each operator in the graph can perform its operations in parallel with other operators in that graph. As is discussed above, some of the operators in the directed graph of operators are leaf operators that are the furthest away in the graph from the event stream itself (the root operators being the closest to the event stream). According to one embodiment, the CEP query processor can begin by performing the recursive technique relative to each leaf operator in the directed graph of operators. The recursive technique can involve determining the extent to which the particular operator upon which the technique is being performed can be executed concurrently with other operators. This determination, in turn, can involve first performing the same technique, recursively, on all of the other operators from which the particular operator has an incoming link in the direct graph of operators. If the operator upon which the recursive technique is being performed is a root operator, which receives events directly from the event stream, then the technique can be recursively performed relative to the event stream itself. The event stream has certain properties. These properties indicate whether the event stream is completely ordered, unordered, or partition-ordered based on some specified partitioning. In an embodiment, these properties can be specified by the user of the application that receives events from the event stream, as discussed above.


According to an embodiment of the invention, during the performance of the recursive technique relative to a particular operator in the directed graph of operators, a constraint, which indicates the extent to which that particular operator can be executed concurrently with other operators, can be determined for the particular operator in the following manner. First, an “inherited” constraint for the particular operator can be determined based on the constraints of its “parents” (the operators from which it has incoming links, or from which it receives input) in the directed graph. Then, another, type-based constraint, which is based on the particular operator's own operation type, can be determined for the particular operator. The particular operator's final constraint can be based on its inherited constraint and its type-based constraint. For example, the particular operator's final constraint can be the most constrained of its inherited and type-based constraints.


To determine the particular operator's inherited constraint, first, according to the recursive technique, the final constraints of each of the other operators from which the particular operator has incoming links in the graph can be determined. The particular operator's inherited constraint then can become the most constrained final constraint of those other operators. In an embodiment, completely ordered is the most constrained constraint. In an embodiment, partition-ordered is a constraint that is less constrained that completely ordered, but more constrained than unordered. In an embodiment, unordered is the least constrained constraint.


Thus, for example, if a particular operator has incoming links from three other operators in the directed graph of operators, and if the final constraints of these other operators are completely ordered, partition-ordered, and unordered, then the inherited constraint of the particular operator can become completely ordered (the most constrained of the constraints of the other operators from which the particular operator has incoming links), meaning that the particular operator cannot be executed concurrently with other operators at all. For another example, if a particular operator has incoming links from two other operators in the directed graph of operators, and if the final constraints of these other operators are both unordered, then the inherited constraint of the particular operator similarly can become unordered. The constraint of the event stream itself can be determined based on its properties.


After the inherited constraint for the particular operator has been determined based on the constraints of the other operators from which the particular operator has incoming links, the final constraint for the particular operator can become its inherited constraint unless the particular operator's type-based constraint is more constrained than its inherited constraint. Each operator can have an operation type, and each operation type can have a constraint that is completely ordered, partition-ordered, or unordered. For example, a filtering operation type can have an unordered constraint; the order in which filtering is performed does not matter. However, for another example, a standard deviation operation type can have a completely ordered constraint. Thus, even if the standard deviation operator's inherited constraint is unordered or partition-ordered, the standard deviation operator's final constraint can become completely ordered, because the operator's type-based constraint is more constrained than the operator's inherited constraint. Thus, in one embodiment of the invention, a particular operator's final constraint can become the most constrained of: (a) the constraints of the operators from which the particular operator has incoming links in the directed graph of operators and (b) the particular operator's own type-based constraint. If the particular operator has outgoing links to other operators in the directed graph of operators, it can be this final constraint of the particular operator that is used to determine, at least partially, the inherited constraints of those other operators.


In this recursive manner, each of the operators in the directed graph of operators can obtain a property indicating an extent to which that operator can be executed concurrently with other operators in the directed graph of operators, that property being a final constraint that can be one of: completely ordered, partition-ordered, or unordered. Ultimately, each of the root operators in the directed graph of operators can obtain such a property. Inasmuch as each such root operator can correspond to a separate CEP query, the property for that root operator can become the property for the entire corresponding CEP query.


According to an embodiment of the invention, after each of the CEP queries has obtained a constraint property in the manner discussed above, the CEP query processor can spawn multiple separate threads of execution for each such CEP query that has an unordered constraint. In creating the query execution plan for a particular CEP query, the CEP query processor can ensure that each of these threads receives, in parallel, the same event from the event stream. These threads can then process those events in parallel and output their processed events to their consumer. In one embodiment, in order to cause these threads of execution to be spawned, prior to the execution of the particular CEP query, the CEP query processor can place thread-spawning operators at the beginning of the particular CEP query to be executed at the beginning of the execution of that CEP query.


Similarly, in one embodiment of the invention, the CEP query processor can spawn multiple separate threads of execution for each CEP query that has a partition-ordered constraint. These operations performed by these threads are specially segregated based on the specified partitions, such that each thread handles the operators of a different partition corresponding only to that thread, and such that within a thread, events are processed in a sequential manner. In creating the query execution plan for a particular CEP query, the CEP query processor can ensure that each of these threads only receives events that pertain to its partition (e.g., filtering stock prices for a specified company), but that these threads can operate on different events (for different partitions) from the event stream in parallel. In one embodiment, in order to cause these threads of execution to be spawned, prior to the execution of the particular CEP query, the CEP query processor can place thread-spawning operators at the beginning of the particular CEP query to be executed at the beginning of the execution of that CEP query.


In one embodiment of the invention, for each CEP query that has a completely ordered constraint, prior to the execution of that CEP query, the CEP query processor can place locking operators at the beginning of that CEP query to be executed at the beginning of the execution of that CEP query in order to ensure that the operations of each operator involved in that CEP query are performed sequentially, within a single thread, rather than in parallel.



FIG. 1 is a flow diagram that illustrates an example technique 100 for determining whether a CEP query can be executed in a concurrent manner based on the operators of that CEP query, according to an embodiment of the present invention. Although certain blocks are illustrated by way of example in FIG. 1, alternative embodiments of the invention may involve more, fewer, or different blocks, and/or blocks occurring in a different order. In block 102, a CEP query processor can receive, from a user, input indicating concurrency constraints that are to be imposed on an application that involves a group of CEP queries. In block 104, the CEP query processor can break each CEP query in the group into a separate tree of operators. In block 106, the CEP query processor can mesh together the trees of operators by sharing some operators between trees, thereby forming a directed graph of operators. In block 108, the CEP query processor can determine a concurrency constraint for each operator in the directed graph. In block 110, the CEP query processor can determine a concurrency constraint for each CEP query in the group based on the concurrency constraints for the operators of that CEP query. In block 112, the CEP query processor can add operators to the beginnings of the CEP queries to allow or prevent concurrent execution of those CEP queries based on the concurrency constraints for those CEP queries.



FIG. 2 is a flow diagram that illustrates an example technique 200 for determining a concurrency constraint for a particular operator in a directed graph of operators, according to an embodiment of the present invention. Technique 200 can be performed relative to each of the operators in a directed graph of operators after the meshing of block 106 of FIG. 1 has been performed, for example. Although certain blocks are illustrated by way of example in FIG. 2, alternative embodiments of the invention may involve more, fewer, or different blocks, and/or blocks occurring in a different order. In block 202, the CEP query processor can determine final concurrency constraints of each other operator from which the particular operator receives events. For example, the CEP query processor can use technique 200 recursively to determine the final concurrency constraints for each such other operator. In block 204, the CEP query processor can set the particular operator's inherited concurrency constraint to be the most constrained of the final concurrency constraints of the other operators from which the particular operator receives events. In block 206, the CEP query processor can set the particular operator's type-based concurrency constraint based on a type of operation performed by the operator. In block 208, the CEP query processor can set the particular operator's final concurrency constraint to be the most constrained of (a) the particular operator's inherited concurrency constraint and (b) the particular operator's type-based concurrency constraint.



FIG. 3 is a flow diagram that illustrates an example technique 300 for adding operators to the beginning of a CEP query in order to allow or enforce maximum permissible concurrency in the execution of that CEP query, according to an embodiment of the present invention. Technique 300 can be performed relative to each of the CEP queries in a group of CEP queries involved in an application after the application of technique 200 of FIG. 2 has been performed relative to all of the operators in the directed graph of operators, for example. Although certain blocks are illustrated by way of example in FIG. 3, alternative embodiments of the invention may involve more, fewer, or different blocks, and/or blocks occurring in a different order. In block 302, the CEP query processor can determine whether the final concurrency constraint of the CEP query's root operator in the directed graph of operators is unordered, partition-ordered, or completely ordered. If the final concurrency constraint is unordered, then control passes to block 306. If the final concurrency constraint is partition-ordered, then control passes to block 308. If the final concurrency constraint is completely ordered, then control passes to block 310.


In block 306, the CEP query processor can add, to the beginning of the CEP query, operators that cause multiple threads of execution to be spawned to permit execution of the CEP query in a concurrent manner. Alternatively, in block 308, the CEP query processor can add, to the beginning of the CEP query, operators that cause a separate thread of execution to be spawned for each of the event partitions that the CEP query processes. Alternatively, in block 310, the CEP query processor can add, to the beginning of the CEP query, locking operators that ensure that the operation of the CEP query will be performed sequentially rather than in parallel.


According to an embodiment of the invention, the CEP query processor can be modified to introduce fault-handling mechanisms into the CEP query processor. In one embodiment, these mechanisms involve an analysis of the directed graph of operators discussed above. The analysis can involve a determination of whether a particular operator in the directed graph is shared by multiple executing CEP queries or not.


In an embodiment of the invention, during the execution of multiple CEP queries relative to an event stream, the CEP query processor can detect the occurrence of a fault. This fault can be raised by one of the operators within the directed graph of operators discussed above. For example, a particular operator can raise a fault in response to determining that the event upon which that particular operator is attempting to perform its operation specifies invalid data. In response to detecting the occurrence of a fault, the CEP query processor can determine which one of the operators in the directed graph of operators raised the fault. The operator that raised the fault might be a filtering operator that performs filtering operations relative to events in the event stream, or the operator that raised the fault might be some other more complex type of operator, such as a join operator that performs join operations.


In an embodiment of the invention, the CEP query processor can include a registration facility through which a user of the CEP query processor can register a customized fault handler of the user's own specification. This fault handler can pertain in scope to all of the CEP queries that the CEP query processor executes, such that faults raised by the operator of any CEP query being executed by the CEP query processor can be handled by that fault handler. Multiple separate and different fault handlers can be registered with the same CEP query processor, in which case all of them can handle faults raised by any of the CEP query processor's executing CEP queries.


According to an embodiment of the invention, in response to any operator of any executing CEP query raising a fault, the fault handlers registered to the CEP query processors can be responsively invoked in the order of the registration of those fault handlers. The CEP query processor can provide some contextual information pertaining to the fault to each such fault handler. This contextual information can include an identity of the fault itself as well as an identity of the operator (from the directed graph of operators) that raised the fault. As each fault handler is invoked, that fault handler can determine, based on its internal instructions, whether to catch the fault or re-throw the fault. Some registered fault handlers can be customized to catch types of faults that other registered fault handlers have not been customized to catch. For example, a particular fault handler might be customized to catch faults raised by filtering operators but not faults raised by join operators. For another example, a particular fault handler might be customized to catch faults resulting from timestamp errors in event data but not faults resulting from other kinds of errors in event data.


In an embodiment of the invention, if a fault handler decides to catch the fault, then the fault handler can handle the fault in a manner that is based on its internal instructions pertaining to faults of the fault's type. These internal instructions can be customized by the fault handler's creator. Under such circumstances, the fault thereafter can be treated as though the fault had not occurred; the fault's existence can be removed from the system. The CEP query processor can continue to execute the CEP queries, permitting the CEP queries to process additional events from the event stream, without halting any CEP query. In an embodiment of the invention, any other registered fault handlers subsequently invoked responsive to the same fault detect no fault that they can catch.


Alternatively, in an embodiment of the invention, if a particular fault handler decides to re-throw the fault, meaning that the particular fault handler has decided not to handle the fault (potentially because the particular fault handler contains no instructions for handling faults of the fault's specific type), then the CEP query processor can invoke the next registered fault handler, if any, in order of registration. That next fault handler can then similarly decide whether to catch the fault or re-throw the fault, again based on its own internal instructions. This approach can continue repetitively, with the CEP query processor invoking subsequent registered fault handlers in the order of their registration, either until one of the registered fault handlers catches and handles the fault, thereby removing the fault's existence from the system, or until there are no further user-registered fault handlers for the CEP query processor to invoke.


According to an embodiment of the invention, the CEP query processor can include a default fault handler in addition to any user-registered, user-customized fault handlers. If a fault is not caught by any of the user-registered fault handlers, then the default fault handler can catch the fault. In an embodiment of the invention, the default fault handler does not re-throw any fault, but instead catches every fault that has been re-thrown by all of the user-registered fault handlers. In response to catching a fault, the default fault handler can halt execution of each CEP query that included the operator that raised the fault. Inasmuch as some operators can be shared by multiple CEP queries, the default fault handler can, under some circumstances, halt execution of multiple CEP queries in response to catching a single fault that was raised by an operator shared by all of those CEP queries.


As is discussed above, in one embodiment of the invention, the CEP query processor's default fault handler can halt execution of a CEP query in response to catching a fault. However, in an alternative embodiment of the invention, instead of halting execution of the CEP query in response to catching a fault, the default fault handler can throw the fault as a JAVA exception which can be caught by a fault handler of a JAVA adapter that is feeding the event stream's events to the CEP query processor. Thus, under such circumstances, the JAVA adapter that is the event stream source or producer can receive the fault as a JAVA exception from the CEP query processor's default fault handler. The manner in which the JAVA adapter handles the exception can vary based on the JAVA adapter's internal instructions and programming. For example, if the JAVA adapter is a JAVA messaging system (JMS) adapter, then the JAVA adapter can determine whether the event is invalid, and, in response to determining that the event is invalid, the JAVA adapter can ask the messaging system from whence the JAVA adapter obtained the event to re-send a valid version of the event to the JAVA adapter. Alternatively, the JAVA adapter can roll-back the event, and/or ignore the event and allow other events in the event stream to proceed to the CEP query processor.


Potentially, a single event can cause multiple separate operators in the directed graph of operators to raise faults in response to that event. For example, a filtering operator that outputs events to a join operator, and the join operator itself, both might raise a fault in response to a particular event. This occurrence may be especially likely under circumstances in which the CEP query processor is processing events in a concurrent manner. In one embodiment of the invention, when multiple faults are raised in response to the same event, the CEP query processor can group the faults together for handling in a unified manner. The CEP query processor can accomplish this grouping by creating a “parent” fault called “event processing fault.” This parent fault can specifies, as context within the parent fault, both an identity of the event that caused the faults to be raised, as well as an identity of each operator that raised a fault in response to the event. In an embodiment, the fact that multiple faults have been raised in response to the same event can be detected by a “parent” operator that receives events as input from the fault-raising operators, and the grouping can be performed at this parent operator. The parent fault can then caught or re-thrown by fault handlers in the manner discussed above, while the other faults that were grouped together within the parent fault can be removed from the system so as not to be separately caught by any fault handler. As a consequence of the grouping, the fault handlers can avoid unnecessary repetitious fault handling for faults arising from the same event. In one embodiment of the invention, fault handlers can be customized to handle these “compound” grouped faults in a manner that is different from the manner in which those faults handler handle “simple” faults.



FIG. 4 is a flow diagram that illustrates an example technique 400 whereby user-registered fault handlers of a CEP query processor can handle faults thrown by operators of CEP queries, according to an embodiment of the present invention. Although certain blocks are illustrated by way of example in FIG. 4, alternative embodiments of the invention may involve more, fewer, or different blocks, and/or blocks occurring in a different order. In block 402, an operator within a directed graph of operators representing concurrently executing CEP queries can raise a fault relative to an event being processed by that operator. In block 403, in response to detecting that the fault was raised, the CEP query processor can determine whether any user fault handlers are registered by users to handle the fault. If so, then control passes to block 404. If not, control passes to block 412. In block 404, the CEP query processor determines whether any of the user-registered faults handlers have not yet been invoked relative to the fault. If at least one user-registered fault handler has not yet been invoked relative to the fault, then control passes to block 406. Otherwise, technique 400 ends.


In block 406, the CEP query processor can invoke the next user-registered fault handler, in registration order, to handle the fault. In block 408, the most recently invoked user-registered fault handler can either catch and handle the fault or re-throw the fault. In block 410, a determination can be made as to whether the most recently invoked user-registered fault handler caught or re-threw the fault. If the fault was caught, then technique 400 is finished. Alternatively, if the fault was re-thrown, then control passes back to block 404.


Alternatively, in block 412, the CEP query processor can invoke a default fault handler (not user-registered) to handle the fault. In block 414, the default fault handler can catch the fault and responsively raise a JAVA exception. In block 416, an exception handler of a JAVA adapter, which is the source of the event stream that contained the event that caused the fault to be raised in block 402, catches the JAVA exception and causes a corrected version of the event to be re-issued to the CEP query processor. Control then passes back to block 402, in which another fault potentially pertaining to another event can be raised potentially by another operator.



FIG. 5 is a simplified block diagram illustrating components of a system environment 500 that may be used in accordance with an embodiment of the present invention. As shown, system environment 500 includes one or more client computing devices 502, 504, 506, 508, which are configured to operate a client application such as a web browser, proprietary client (e.g., Oracle Forms), or the like. In various embodiments, client computing devices 502, 504, 506, and 508 may interact with a server 512.


Client computing devices 502, 504, 506, 508 may be general purpose personal computers (including, by way of example, personal computers and/or laptop computers running various versions of Microsoft Windows and/or Apple Macintosh operating systems), cell phones or PDAs (running software such as Microsoft Windows Mobile and being Internet, e-mail, SMS, Blackberry, or other communication protocol enabled), and/or workstation computers running any of a variety of commercially-available UNIX or UNIX-like operating systems (including without limitation the variety of GNU/Linux operating systems). Alternatively, client computing devices 502, 504, 506, and 508 may be any other electronic device, such as a thin-client computer, Internet-enabled gaming system, and/or personal messaging device, capable of communicating over a network (e.g., network 510 described below). Although exemplary system environment 500 is shown with four client computing devices, any number of client computing devices may be supported. Other devices such as devices with sensors, etc. may interact with server 512.


System environment 500 may include a network 510. Network 510 may be any type of network familiar to those skilled in the art that can support data communications using any of a variety of commercially-available protocols, including without limitation TCP/IP, SNA, IPX, AppleTalk, and the like. Merely by way of example, network 510 can be a local area network (LAN), such as an Ethernet network, a Token-Ring network and/or the like; a wide-area network; a virtual network, including without limitation a virtual private network (VPN); the Internet; an intranet; an extranet; a public switched telephone network (PSTN); an infra-red network; a wireless network (e.g., a network operating under any of the IEEE 802.11 suite of protocols, the Bluetooth protocol known in the art, and/or any other wireless protocol); and/or any combination of these and/or other networks.


System environment 500 also includes one or more server computers 512 which may be general purpose computers, specialized server computers (including, by way of example, PC servers, UNIX servers, mid-range servers, mainframe computers, rack-mounted servers, etc.), server farms, server clusters, or any other appropriate arrangement and/or combination. In various embodiments, server 512 may be adapted to run one or more services or software applications described in the foregoing disclosure. For example, server 512 may correspond to a continuous event processing server.


Server 512 may run an operating system including any of those discussed above, as well as any commercially available server operating system. Server 512 may also run any of a variety of additional server applications and/or mid-tier applications, including HTTP servers, FTP servers, CGI servers, Java servers, database servers, and the like. Exemplary database servers include without limitation those commercially available from Oracle, Microsoft, Sybase, IBM and the like.


System environment 500 may also include one or more databases 514, 516. Databases 514, 516 may reside in a variety of locations. By way of example, one or more of databases 514, 516 may reside on a storage medium local to (and/or resident in) server 512. Alternatively, databases 514, 516 may be remote from server 512, and in communication with server 512 via a network-based or dedicated connection. In one set of embodiments, databases 514, 516 may reside in a storage-area network (SAN) familiar to those skilled in the art. Similarly, any necessary files for performing the functions attributed to server 512 may be stored locally on server 512 and/or remotely, as appropriate. In one set of embodiments, databases 514, 516 may include relational databases, such as Oracle 10g, that are adapted to store, update, and retrieve data in response to SQL-formatted commands.



FIG. 6 is a simplified block diagram of a computer system 600 that may be used in accordance with embodiments of the present invention. For example, a continuous even processing server may be implemented using a system such as system 600. Computer system 600 is shown comprising hardware elements that may be electrically coupled via a bus 624. The hardware elements may include one or more central processing units (CPUs) 602, one or more input devices 604 (e.g., a mouse, a keyboard, etc.), and one or more output devices 606 (e.g., a display device, a printer, etc.). Computer system 600 may also include one or more storage devices 608. By way of example, the storage device(s) 608 may include devices such as disk drives, optical storage devices, and solid-state storage devices such as a random access memory (RAM) and/or a read-only memory (ROM), which can be programmable, flash-updateable and/or the like.


Computer system 600 may additionally include a computer-readable storage media reader 612, a communications subsystem 614 (e.g., a modem, a network card (wireless or wired), an infra-red communication device, etc.), and working memory 618, which may include RAM and ROM devices as described above. In some embodiments, computer system 600 may also include a processing acceleration unit 616, which can include a digital signal processor (DSP), a special-purpose processor, and/or the like.


Computer-readable storage media reader 612 can further be connected to a computer-readable storage medium 610, together (and, optionally, in combination with storage device(s) 608) comprehensively representing remote, local, fixed, and/or removable storage devices plus storage media for temporarily and/or more permanently containing computer-readable information. Communications system 614 may permit data to be exchanged with network 1610 and/or any other computer described above with respect to system environment 1600.


Computer system 600 may also comprise software elements, shown as being currently located within working memory 618, including an operating system 620 and/or other code 622, such as an application program (which may be a client application, Web browser, mid-tier application, RDBMS, etc.). In an exemplary embodiment, working memory 618 may include executable code and associated data structures (such as caches) used for the techniques described above. It should be appreciated that alternative embodiments of computer system 600 may have numerous variations from that described above. For example, customized hardware might also be used and/or particular elements might be implemented in hardware, software (including portable software, such as applets), or both. Further, connection to other computing devices such as network input/output devices may be employed.


Storage media and computer readable media for containing code, or portions of code, can include any appropriate media known or used in the art, including storage media and communication media, such as but not limited to volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage and/or transmission of information such as computer readable instructions, data structures, program modules, or other data, including RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, data signals, data transmissions, or any other medium which can be used to store or transmit the desired information and which can be accessed by a computer.


Although specific embodiments of the invention have been described, various modifications, alterations, alternative constructions, and equivalents are also encompassed within the scope of the invention. Embodiments of the present invention are not restricted to operation within certain specific data processing environments, but are free to operate within a plurality of data processing environments. Additionally, although embodiments of the present invention have been described using a particular series of transactions and steps, it should be apparent to those skilled in the art that the scope of the present invention is not limited to the described series of transactions and steps.


Further, while embodiments of the present invention have been described using a particular combination of hardware and software, it should be recognized that other combinations of hardware and software are also within the scope of the present invention. Embodiments of the present invention may be implemented only in hardware, or only in software, or using combinations thereof.


The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense. It will, however, be evident that additions, subtractions, deletions, and other modifications and changes may be made thereunto without departing from the broader spirit and scope as set forth in the claims. U.S. patent applications having the following serial numbers are incorporated by reference herein: Ser. Nos. 12/548,187; 12/396,008; 12/396,464; 12/395,871; 12/506,891; 12/548,209; 12/506,905; 12/534,384; 12/548,222; 12/534,398; 12/548,281; and 12/548,290.

Claims
  • 1. A computer-readable memory storing a plurality of instructions for causing a processor to perform operations, the plurality of instructions comprising: instructions that cause the processor to determine that multiple portions of a continuous event processing (CEP) query can be executed concurrently relative to an event in an event stream, the instructions comprising: instructions that cause the processor to split the CEP query into a plurality of separate operators;instructions that cause the processor to determine a separate constraint for each operator within the plurality of separate operators; andinstructions that cause the processor to determine, based at least in part on the separate constraint for each operator within the plurality of separate operators, whether at least a part of the CEP query can be executed in a concurrent manner;instructions that cause the processor to execute the multiple portions of the CEP query concurrently against a first event received via the event stream in response to determining that at least part of the CEP query can be executed in a concurrent manner; andinstructions that cause the processor to merge, into a single shared operator, (a) a first operator that is used by a first CEP query that processes at least the first event in the event stream, and (b) a second operator that is used by a second CEP query that also processes at least the first event in the event stream, in response to determining that the first operator and the second operator both perform a particular type of operation.
  • 2. The computer-readable memory of claim 1, wherein the plurality of instructions that cause the processor to execute the multiple portions of the CEP query concurrently against the first event received via the event stream further comprise instructions that cause the processor to spawn multiple threads of execution that concurrently process the multiple portions of the CEP query against the first event received via the event stream.
  • 3. The computer-readable memory of claim 1, wherein the plurality of instructions further comprise instructions that cause the processor to determine a constraint for the CEP query based at least in part on the separate constraint determined for each operator within the plurality of separate operators.
  • 4. The computer-readable memory of claim 1, wherein the plurality of instructions that cause the processor to determine the separate constraint for each operator within the plurality of separate operators comprise instructions that cause the processor to determine the separate constraint for the operator based at least in part on one or more constraints of one or more other operators from which the operator receives input.
  • 5. The computer-readable memory of claim 4, wherein the plurality of instructions that cause the processor to determine the separate constraint for each operator within the plurality of separate operators further comprise instructions that cause the processor to determine the separate constraint for the operator based at least in part on determining that an operation type of the operator is at least one of a filtering operation type, a selection operation type, a projection operation type, or a join operation type.
  • 6. The computer-readable memory of claim 1, wherein the plurality of instructions that cause the processor to determine the separate constraint for each operator within the plurality of separate operators comprise instructions that cause the processor to: determine a first constraint for the operator based on constraints of one or more operators from which the operator receives input;determine a second constraint for the operator based on an operation type of the operator; anddetermine a final constraint for the operator based at least in part on the first constraint and the second constraint.
  • 7. The computer-readable memory of claim 6, wherein the first constraint comprises an inherited constraint for the operator and the second constraint comprises a type-based constraint associated with the operator and wherein the final constraint for the operator is determined based at least in part on the inherited constraint for the operator and the type-based constraint associated with the operator.
  • 8. The computer-readable memory of claim 7, wherein the final constraint for the operator comprises at least one of a completely ordered constraint, a partition-ordered constrained, or an unordered constraint.
  • 9. The computer-readable memory of claim 1, wherein the instructions that cause the processor to determine the separate constraint for each operator within the plurality of separate operators comprise instructions that cause the processor to determine a constraint for a third operator, which receives input from the single shared operator, based at least in part on a constraint of the single shared operator; wherein the instructions that cause the processor to determine the constraint for each operator within the plurality of separate operators comprise instructions that cause the processor to determine a constraint for a fourth operator, which receives input from the single shared operator, based at least in part on the constraint of the single shared operator;wherein the third operator is used by the first CEP query and is not used by the second CEP query; andwherein the fourth operator is used by the second CEP query and is not used by the first CEP query.
  • 10. A system for processing a data stream of events, the system comprising: a memory storing a plurality of instructions; anda processor coupled to the memory, the processor configured to execute the plurality of instructions to: determine that multiple portions of a continuous event processing (CEP) query can be executed concurrently relative to an event in an event stream, the instructions to determine that multiple portions of the CEP query can be executed concurrently relative to an event in an event stream comprising instructions to: split the CEP query into a plurality of separate operators;determine a separate constraint for each operator within the plurality of separate operators; anddetermine, based at least in part on the separate constraint for each operator within the plurality of separate operators, whether at least a part of the CEP query can be executed in a concurrent manner;execute the multiple portions of the CEP query concurrently against a first event received via the event stream in response to determining that at least part of the CEP query can be executed in a concurrent manner; andmerge, into a single shared operator, (a) a first operator that is used by a first CEP query that processes at least the first event in the event stream, and (b) a second operator that is used by a second CEP query that also processes at least the first event in the event stream, in response to determining that the first operator and the second operator both perform a particular type of operation.
  • 11. The system of claim 10, wherein the processor is configured to execute the multiple portions of the CEP query concurrently against the first event received via the event stream by spawning multiple threads of execution that concurrently process the multiple portions of the CEP query against the first event received via the event stream.
  • 12. The system of claim 10, wherein the processor is configured to determine the separate constraint for each operator within the plurality of separate operators at least in part by determining the separate constraint for the operator based at least in part on one or more constraints of one or more other operators from which the operator receives input.
  • 13. The system of claim 12, wherein the processor is configured to determine the separate constraint for each operator within the plurality of separate operators at least in part by determining the separate constraint for the operator based at least in part on whether an operation type of the operator is a filtering operation type, a selection operation type, a projection operation type, or a join operation type.
  • 14. The system of claim 10, wherein the processor is configured to determine the separate constraint for each operator within the plurality of separate operators by: determining a first constraint for the operator based on constraints of one or more operators from which the operator receives input;determining a second constraint for the operator based on an operation type of the operator; anddetermining a final constraint for the operator based at least in part on the first constraint and the second constraint.
  • 15. The system of claim 14, wherein the first constraint comprises an inherited constraint for the operator and the second constraint comprises a type-based constraint associated with the operator.
  • 16. A method for processing a data stream of events, the method comprising: determining that multiple portions of a continuous event processing (CEP) query can be executed concurrently relative to an event in an event stream, the determining comprising: splitting the CEP query into a plurality of separate operators;determining a separate constraint for each operator within the plurality of separate operators; anddetermining, based on the separate constraint for each operator within the plurality of separate operators, whether at least a part of the CEP query can be executed in a concurrent manner;executing the multiple portions of the CEP query concurrently against a first event received via the event stream in response to determining that at least part of the CEP query can be executed in a concurrent manner; andmerging, into a single shared operator, (a) a first operator that is used by a first CEP query that processes at least the first event in the event stream, and (b) a second operator that is used by a second CEP query that also processes at least the first event in the event stream, in response to determining that the first operator and the second operator both perform a particular type of operation.
  • 17. The method of claim 16, further comprising executing the multiple portions of the CEP query concurrently against the first event received via the event stream by spawning multiple threads of execution that concurrently process the multiple portions of the CEP query against the first event received via the event stream.
  • 18. The method of claim 16, wherein determining the separate constraint for each operator within the plurality of separate operators comprises determining the separate constraint for the operator based at least in part on one or more constraints of one or more other operators from which the particular operator receives input.
  • 19. The method of claim 16, wherein determining the separate constraint for each operator within the plurality of separate operators comprises determining the separate constraint for the operator based at least in part on determining that an operation type of the operator is at least one of a filtering operation type, a selection operation type, a projection operation type, or a join operation type.
CROSS-REFERENCES TO RELATED APPLICATIONS

The present application is a continuation of, and claims the benefit of and priority to, U.S. patent application Ser. No. 13/770,961, filed Feb. 19, 2013, the entire contents of which are incorporated herein by reference for all purposes.

US Referenced Citations (542)
Number Name Date Kind
4996687 Hess et al. Feb 1991 A
5051947 Messenger et al. Sep 1991 A
5339392 Risberg et al. Aug 1994 A
5495600 Terry et al. Feb 1996 A
5691917 Harrison Nov 1997 A
5706494 Cochrane et al. Jan 1998 A
5802262 Van De Vanter Sep 1998 A
5802523 Jasuja et al. Sep 1998 A
5822750 Jou et al. Oct 1998 A
5826077 Blakeley et al. Oct 1998 A
5850544 Parvathaneny et al. Dec 1998 A
5857182 Demichiel et al. Jan 1999 A
5918225 White et al. Jun 1999 A
5920716 Johnson et al. Jul 1999 A
5937195 Ju et al. Aug 1999 A
5937401 Hillegas Aug 1999 A
6006235 Macdonald et al. Dec 1999 A
6011916 Moore et al. Jan 2000 A
6041344 Bodamer et al. Mar 2000 A
6081801 Cochrane et al. Jun 2000 A
6092065 Floratos et al. Jul 2000 A
6108666 Floratos et al. Aug 2000 A
6112198 Lohman et al. Aug 2000 A
6128415 Hultgren, III et al. Oct 2000 A
6128610 Srinivasan et al. Oct 2000 A
6158045 You Dec 2000 A
6212673 House et al. Apr 2001 B1
6219660 Haderle et al. Apr 2001 B1
6263332 Nasr et al. Jul 2001 B1
6278994 Fuh et al. Aug 2001 B1
6282537 Madnick et al. Aug 2001 B1
6341281 MacNicol et al. Jan 2002 B1
6353821 Gray Mar 2002 B1
6367034 Novik et al. Apr 2002 B1
6370537 Gilbert et al. Apr 2002 B1
6389436 Chakrabarti et al. May 2002 B1
6397262 Hayden et al. May 2002 B1
6418448 Sarkar Jul 2002 B1
6438540 Nasr et al. Aug 2002 B2
6438559 White et al. Aug 2002 B1
6439783 Antoshenkov Aug 2002 B1
6449620 Draper et al. Sep 2002 B1
6453314 Chan et al. Sep 2002 B1
6507834 Kabra et al. Jan 2003 B1
6523102 Dye et al. Feb 2003 B1
6546381 Subramanian et al. Apr 2003 B1
6615203 Lin et al. Sep 2003 B1
6633867 Kraft et al. Oct 2003 B1
6681343 Nakabo Jan 2004 B1
6708186 Claborn et al. Mar 2004 B1
6718278 Steggles Apr 2004 B1
6748386 Li Jun 2004 B1
6751619 Rowstron et al. Jun 2004 B1
6766330 Chen et al. Jul 2004 B1
6785677 Fritchman Aug 2004 B1
6826566 Lewak et al. Nov 2004 B2
6836778 Manikutty et al. Dec 2004 B2
6850925 Chaudhuri et al. Feb 2005 B2
6856981 Wyschogrod et al. Feb 2005 B2
6904019 Heinen et al. Jun 2005 B2
6985904 Kaluskar et al. Jan 2006 B1
6986019 Bagashev et al. Jan 2006 B1
6996557 Leung et al. Feb 2006 B1
7020696 Perry et al. Mar 2006 B1
7035914 Payne et al. Apr 2006 B1
7047249 Vincent May 2006 B1
7051034 Ghosh et al. May 2006 B1
7062749 Cyr et al. Jun 2006 B2
7080062 Leung et al. Jul 2006 B1
7093023 Lockwood et al. Aug 2006 B2
7145938 Takeuchi et al. Dec 2006 B2
7146352 Brundage et al. Dec 2006 B2
7167848 Boukouvalas et al. Jan 2007 B2
7203927 Al-Azzawe et al. Apr 2007 B2
7224185 Campbell et al. May 2007 B2
7225188 Gai et al. May 2007 B1
7236972 Lewak et al. Jun 2007 B2
7284041 Nakatani et al. Oct 2007 B2
7305391 Wyschogrod et al. Dec 2007 B2
7308561 Cornet et al. Dec 2007 B2
7310638 Blair Dec 2007 B1
7348981 Buck Mar 2008 B1
7376656 Blakeley et al. May 2008 B2
7383253 Tsimelzon et al. Jun 2008 B1
7403959 Nishizawa et al. Jul 2008 B2
7430549 Zane et al. Sep 2008 B2
7440461 Sahita et al. Oct 2008 B2
7451143 Sharangpani et al. Nov 2008 B2
7475058 Kakivaya et al. Jan 2009 B2
7483976 Ross Jan 2009 B2
7516121 Liu et al. Apr 2009 B2
7519577 Brundage et al. Apr 2009 B2
7519962 Aman Apr 2009 B2
7526804 Shelest et al. Apr 2009 B2
7533087 Liu et al. May 2009 B2
7546284 Martinez et al. Jun 2009 B1
7552365 Marsh et al. Jun 2009 B1
7567953 Kadayam et al. Jul 2009 B2
7580946 Mansour et al. Aug 2009 B2
7587383 Koo et al. Sep 2009 B2
7603674 Cyr et al. Oct 2009 B2
7613848 Amini et al. Nov 2009 B2
7620851 Leavy et al. Nov 2009 B1
7630982 Boyce Dec 2009 B2
7634501 Yabloko Dec 2009 B2
7636703 Taylor Dec 2009 B2
7644019 Woda et al. Jan 2010 B2
7644066 Krishnaprasad et al. Jan 2010 B2
7653645 Stokes Jan 2010 B1
7672964 Yan et al. Mar 2010 B1
7673065 Srinivasan et al. Mar 2010 B2
7676461 Chkodrov et al. Mar 2010 B2
7689622 Liu et al. Mar 2010 B2
7693891 Stokes et al. Apr 2010 B2
7702629 Cytron et al. Apr 2010 B2
7702639 Stanley et al. Apr 2010 B2
7711782 Kim et al. May 2010 B2
7716210 Ozcan et al. May 2010 B2
7739265 Jain et al. Jun 2010 B2
7805445 Boyer et al. Sep 2010 B2
7814111 Levin Oct 2010 B2
7818313 Tsimelzon Oct 2010 B1
7823066 Kuramura Oct 2010 B1
7827146 De Landstheer et al. Nov 2010 B1
7827190 Pandya Nov 2010 B2
7844829 Meenakshisundaram Nov 2010 B2
7870124 Liu et al. Jan 2011 B2
7870167 Lu et al. Jan 2011 B2
7877381 Ewen et al. Jan 2011 B2
7895187 Bowman Feb 2011 B2
7912853 Agrawal Mar 2011 B2
7917299 Buhler Mar 2011 B2
7930322 MacLennan Apr 2011 B2
7945540 Park et al. May 2011 B2
7953728 Hu et al. May 2011 B2
7954109 Durham et al. May 2011 B1
7979420 Jain et al. Jul 2011 B2
7984043 Waas Jul 2011 B1
7987204 Stokes Jul 2011 B2
7991766 Srinivasan et al. Aug 2011 B2
7996388 Jain et al. Aug 2011 B2
8019060 Martino Sep 2011 B2
8019747 Srinivasan et al. Sep 2011 B2
8032544 Jing et al. Oct 2011 B2
8046747 Cyr et al. Oct 2011 B2
8099400 Haub et al. Jan 2012 B2
8122006 de Castro Alves et al. Feb 2012 B2
8134184 Becker et al. Mar 2012 B2
8145686 Raman et al. Mar 2012 B2
8145859 Park et al. Mar 2012 B2
8155880 Patel et al. Apr 2012 B2
8190738 Ruehle May 2012 B2
8195648 Zabback et al. Jun 2012 B2
8204873 Chavan Jun 2012 B2
8260803 Hsu et al. Sep 2012 B2
8290776 Moriwaki et al. Oct 2012 B2
8296316 Jain et al. Oct 2012 B2
8307343 Chaudhuri et al. Nov 2012 B2
8315990 Barga et al. Nov 2012 B2
8316012 Abouzied et al. Nov 2012 B2
8321450 Thatte et al. Nov 2012 B2
8332502 Neuhaus et al. Dec 2012 B1
8346511 Schoning et al. Jan 2013 B2
8352517 Park et al. Jan 2013 B2
8370812 Feblowitz et al. Feb 2013 B2
8386466 Park et al. Feb 2013 B2
8387076 Thatte et al. Feb 2013 B2
8392402 Mihaila et al. Mar 2013 B2
8396886 Tsimelzon et al. Mar 2013 B1
8447739 Naibo May 2013 B2
8447744 de Castro Alves et al. May 2013 B2
8458175 Stokes Jun 2013 B2
8498956 Srinivasan et al. Jul 2013 B2
8527458 Park et al. Sep 2013 B2
8572589 Cataldo et al. Oct 2013 B2
8589436 Srinivasan et al. Nov 2013 B2
8595840 Malibiran et al. Nov 2013 B1
8676841 Srinivasan et al. Mar 2014 B2
8713038 Cohen et al. Apr 2014 B2
8713049 Jain et al. Apr 2014 B2
8719207 Ratnam et al. May 2014 B2
8738572 Bird et al. May 2014 B2
8745070 Krishnamurthy et al. Jun 2014 B2
8762369 Macho et al. Jun 2014 B2
8880493 Chen et al. Nov 2014 B2
8959106 De Castro Alves et al. Feb 2015 B2
8990416 Shukla et al. Mar 2015 B2
9015102 van Lunteren Apr 2015 B2
9047249 De Castro Alves et al. Jun 2015 B2
9058360 De Castro Alves et al. Jun 2015 B2
9098587 Deshmukh et al. Aug 2015 B2
9110945 Jain Aug 2015 B2
9189280 Park et al. Nov 2015 B2
9244978 Alves et al. Jan 2016 B2
9256646 Deshmukh et al. Feb 2016 B2
9262258 Alves et al. Feb 2016 B2
9262479 Deshmukh et al. Feb 2016 B2
9286352 Park et al. Mar 2016 B2
9292574 Hsiao et al. Mar 2016 B2
9305057 De Castro Alves et al. Apr 2016 B2
9305238 Srinivasan et al. Apr 2016 B2
9390135 Alves et al. Jul 2016 B2
9430494 Park et al. Aug 2016 B2
9535761 Park et al. Jan 2017 B2
9563663 Shukla et al. Feb 2017 B2
9703836 Hsiao et al. Jul 2017 B2
9712645 de Castro Alves et al. Jul 2017 B2
9715529 Park et al. Jul 2017 B2
9756104 Shukla et al. Sep 2017 B2
9804892 Park et al. Oct 2017 B2
9805095 Deshmukh et al. Oct 2017 B2
9852186 Herwadkar et al. Dec 2017 B2
9886486 De Castro Alves et al. Feb 2018 B2
20020023211 Roth et al. Feb 2002 A1
20020032804 Hunt Mar 2002 A1
20020038306 Griffin et al. Mar 2002 A1
20020038313 Klein et al. Mar 2002 A1
20020049788 Lipkin et al. Apr 2002 A1
20020056004 Smith et al. May 2002 A1
20020073399 Golden Jun 2002 A1
20020116362 Li et al. Aug 2002 A1
20020116371 Dodds et al. Aug 2002 A1
20020133484 Chau et al. Sep 2002 A1
20020169788 Lee et al. Nov 2002 A1
20030014408 Robertson Jan 2003 A1
20030037048 Kabra et al. Feb 2003 A1
20030046673 Copeland et al. Mar 2003 A1
20030065655 Syeda-mahmood Apr 2003 A1
20030065659 Agarwal et al. Apr 2003 A1
20030120682 Bestgen et al. Jun 2003 A1
20030135304 Sroub et al. Jul 2003 A1
20030200198 Chandrasekar et al. Oct 2003 A1
20030212664 Breining et al. Nov 2003 A1
20030229652 Bakalash et al. Dec 2003 A1
20030236766 Fortuna et al. Dec 2003 A1
20040010496 Behrendt et al. Jan 2004 A1
20040019592 Crabtree Jan 2004 A1
20040024773 Stoffel et al. Feb 2004 A1
20040064466 Manikutty et al. Apr 2004 A1
20040073534 Robson Apr 2004 A1
20040088404 Aggarwal May 2004 A1
20040117359 Snodgrass et al. Jun 2004 A1
20040136598 Le Leannec et al. Jul 2004 A1
20040151382 Stellenberg et al. Aug 2004 A1
20040153329 Casati et al. Aug 2004 A1
20040167864 Wang et al. Aug 2004 A1
20040168107 Sharp et al. Aug 2004 A1
20040177053 Donoho et al. Sep 2004 A1
20040201612 Hild et al. Oct 2004 A1
20040205082 Fontoura et al. Oct 2004 A1
20040220896 Finlay et al. Nov 2004 A1
20040220912 Manikutty et al. Nov 2004 A1
20040220927 Murthy et al. Nov 2004 A1
20040243590 Gu et al. Dec 2004 A1
20040267760 Brundage et al. Dec 2004 A1
20040268314 Kollman et al. Dec 2004 A1
20050010896 Meliksetian et al. Jan 2005 A1
20050055338 Warner et al. Mar 2005 A1
20050065949 Warner et al. Mar 2005 A1
20050096124 Stronach May 2005 A1
20050097128 Ryan et al. May 2005 A1
20050108368 Mohan et al. May 2005 A1
20050120016 Midgley Jun 2005 A1
20050154740 Day et al. Jul 2005 A1
20050174940 Iny Aug 2005 A1
20050177579 Blakeley et al. Aug 2005 A1
20050192921 Chaudhuri et al. Sep 2005 A1
20050204340 Ruminer et al. Sep 2005 A1
20050229158 Thusoo et al. Oct 2005 A1
20050273352 Moffat et al. Dec 2005 A1
20050273450 McMillen et al. Dec 2005 A1
20050289125 Liu et al. Dec 2005 A1
20060007308 Ide et al. Jan 2006 A1
20060015482 Beyer et al. Jan 2006 A1
20060031204 Liu et al. Feb 2006 A1
20060047696 Larson et al. Mar 2006 A1
20060064487 Ross Mar 2006 A1
20060080646 Aman Apr 2006 A1
20060085592 Ganguly et al. Apr 2006 A1
20060089939 Broda et al. Apr 2006 A1
20060100957 Buttler et al. May 2006 A1
20060100969 Wang et al. May 2006 A1
20060106786 Day et al. May 2006 A1
20060106797 Srinivasa et al. May 2006 A1
20060129554 Suyama et al. Jun 2006 A1
20060167704 Nicholls et al. Jun 2006 A1
20060155719 Mihaeli et al. Jul 2006 A1
20060166704 Benco et al. Jul 2006 A1
20060167856 Angele et al. Jul 2006 A1
20060212441 Tang et al. Sep 2006 A1
20060224576 Liu et al. Oct 2006 A1
20060230029 Yan Oct 2006 A1
20060235840 Manikutty et al. Oct 2006 A1
20060242180 Graf et al. Oct 2006 A1
20060282429 Hernandez-Sherrington et al. Dec 2006 A1
20060294095 Berk et al. Dec 2006 A1
20070016467 John et al. Jan 2007 A1
20070022092 Nishizawa et al. Jan 2007 A1
20070039049 Kupferman et al. Feb 2007 A1
20070050340 von Kaenel et al. Mar 2007 A1
20070076314 Rigney Apr 2007 A1
20070118600 Arora May 2007 A1
20070136239 Lee et al. Jun 2007 A1
20070136254 Choi et al. Jun 2007 A1
20070156787 MacGregor Jul 2007 A1
20070156964 Sistla Jul 2007 A1
20070168154 Ericson Jul 2007 A1
20070192301 Posner Aug 2007 A1
20070198479 Cai et al. Aug 2007 A1
20070214171 Behnen et al. Sep 2007 A1
20070226188 Johnson et al. Sep 2007 A1
20070226239 Johnson et al. Sep 2007 A1
20070250487 Reuther Oct 2007 A1
20070271280 Chandasekaran Nov 2007 A1
20070294217 Chen et al. Dec 2007 A1
20080005093 Liu et al. Jan 2008 A1
20080010093 LaPlante et al. Jan 2008 A1
20080010241 McGoveran Jan 2008 A1
20080016095 Bhatnagar et al. Jan 2008 A1
20080028095 Lang et al. Jan 2008 A1
20080033914 Cherniack et al. Feb 2008 A1
20080034427 Cadambi et al. Feb 2008 A1
20080046401 Lee et al. Feb 2008 A1
20080071904 Schuba et al. Mar 2008 A1
20080077570 Tang et al. Mar 2008 A1
20080077587 Wyschogrod et al. Mar 2008 A1
20080077780 Zingher Mar 2008 A1
20080082484 Averbuch et al. Apr 2008 A1
20080082514 Khorlin et al. Apr 2008 A1
20080086321 Walton Apr 2008 A1
20080098359 Ivanov et al. Apr 2008 A1
20080098370 Fontoura et al. Apr 2008 A1
20080114787 Kashiyama et al. May 2008 A1
20080120283 Liu et al. May 2008 A1
20080120321 Liu et al. May 2008 A1
20080162583 Brown et al. Jul 2008 A1
20080195577 Fan et al. Aug 2008 A1
20080235298 Lin et al. Sep 2008 A1
20080243451 Feblowitz et al. Oct 2008 A1
20080243675 Parsons et al. Oct 2008 A1
20080250073 Nori et al. Oct 2008 A1
20080255847 Moriwaki et al. Oct 2008 A1
20080263039 Van Lunteren Oct 2008 A1
20080270764 McMillen et al. Oct 2008 A1
20080275891 Park et al. Nov 2008 A1
20080281782 Agrawal Nov 2008 A1
20080301086 Gupta Dec 2008 A1
20080301124 Alves et al. Dec 2008 A1
20080301125 Alves et al. Dec 2008 A1
20080301135 Alves et al. Dec 2008 A1
20080301256 McWilliams et al. Dec 2008 A1
20080313131 Friedman et al. Dec 2008 A1
20090006320 Ding et al. Jan 2009 A1
20090006346 C N et al. Jan 2009 A1
20090007098 Chevrette et al. Jan 2009 A1
20090019045 Amir et al. Jan 2009 A1
20090024622 Chkodrov et al. Jan 2009 A1
20090043729 Liu et al. Feb 2009 A1
20090070355 Cadarette et al. Mar 2009 A1
20090070785 Alvez et al. Mar 2009 A1
20090070786 Alves et al. Mar 2009 A1
20090076899 Gbodimowo Mar 2009 A1
20090088962 Jones Apr 2009 A1
20090100029 Jain et al. Apr 2009 A1
20090106189 Jain et al. Apr 2009 A1
20090106190 Srinivasan et al. Apr 2009 A1
20090106198 Srinivasan et al. Apr 2009 A1
20090106214 Jain et al. Apr 2009 A1
20090106215 Jain et al. Apr 2009 A1
20090106218 Srinivasan et al. Apr 2009 A1
20090106321 Das et al. Apr 2009 A1
20090106440 Srinivasan et al. Apr 2009 A1
20090112779 Wolf et al. Apr 2009 A1
20090112802 Srinivasan et al. Apr 2009 A1
20090112803 Srinivasan et al. Apr 2009 A1
20090112853 Nishizawa et al. Apr 2009 A1
20090125550 Barga et al. May 2009 A1
20090125916 Lu et al. May 2009 A1
20090132503 Sun et al. May 2009 A1
20090133041 Rahman et al. May 2009 A1
20090144696 Andersen Jun 2009 A1
20090172014 Huetter Jul 2009 A1
20090182779 Johnson Jul 2009 A1
20090187584 Johnson et al. Jul 2009 A1
20090192981 Papaemmanouil et al. Jul 2009 A1
20090216747 Li et al. Aug 2009 A1
20090216860 Li et al. Aug 2009 A1
20090222730 Wixson et al. Sep 2009 A1
20090228431 Dunagan et al. Sep 2009 A1
20090228434 Krishnamurthy et al. Sep 2009 A1
20090228465 Krishnamurthy et al. Sep 2009 A1
20090245236 Scott et al. Oct 2009 A1
20090248749 Gu et al. Oct 2009 A1
20090254522 Chaudhuri et al. Oct 2009 A1
20090257314 Davis et al. Oct 2009 A1
20090265324 Mordvinov et al. Oct 2009 A1
20090271529 Kashiyama et al. Oct 2009 A1
20090282021 Bennett Nov 2009 A1
20090292979 Aggarwal Nov 2009 A1
20090293046 Cheriton Nov 2009 A1
20090300093 Griffiths et al. Dec 2009 A1
20090300181 Marques Dec 2009 A1
20090300580 Heyhoe et al. Dec 2009 A1
20090300615 Andrade et al. Dec 2009 A1
20090313198 Kudo et al. Dec 2009 A1
20090319501 Goldstein et al. Dec 2009 A1
20090327102 Maniar et al. Dec 2009 A1
20090327257 Abouzeid et al. Dec 2009 A1
20100017379 Naibo et al. Jan 2010 A1
20100017380 Naibo et al. Jan 2010 A1
20100022627 Scherer Jan 2010 A1
20100023498 Dettinger et al. Jan 2010 A1
20100036803 Vemuri et al. Feb 2010 A1
20100036831 Vemuri Feb 2010 A1
20100049710 Young, Jr. et al. Feb 2010 A1
20100057663 Srinivasan et al. Mar 2010 A1
20100057727 Srinivasan et al. Mar 2010 A1
20100057735 Srinivasan et al. Mar 2010 A1
20100057736 Srinivasan et al. Mar 2010 A1
20100057737 Srinivasan et al. Mar 2010 A1
20100094838 Kozak Apr 2010 A1
20100106710 Nishizawa et al. Apr 2010 A1
20100106946 Imaki et al. Apr 2010 A1
20100125572 Poblete et al. May 2010 A1
20100125574 Navas May 2010 A1
20100125584 Navas May 2010 A1
20100138405 Mihaila Jun 2010 A1
20100161589 Nica et al. Jun 2010 A1
20100223283 Lee et al. Sep 2010 A1
20100223305 Park et al. Sep 2010 A1
20100223437 Park et al. Sep 2010 A1
20100223606 Park et al. Sep 2010 A1
20100250572 Chen Sep 2010 A1
20100312756 Zhang et al. Dec 2010 A1
20100318652 Samba Dec 2010 A1
20100332401 Prahlad et al. Dec 2010 A1
20110004621 Kelley et al. Jan 2011 A1
20110016123 Pandey et al. Jan 2011 A1
20110016160 Zhang et al. Jan 2011 A1
20110023055 Thatte et al. Jan 2011 A1
20110029484 Park et al. Feb 2011 A1
20110029485 Park et al. Feb 2011 A1
20110035253 Mason et al. Feb 2011 A1
20110040746 Handa et al. Feb 2011 A1
20110055197 Chavan Mar 2011 A1
20110084967 De Pauw et al. Apr 2011 A1
20110093162 Nielsen et al. Apr 2011 A1
20110093491 Zabback Apr 2011 A1
20110105857 Zhang et al. May 2011 A1
20110131588 Allam et al. Jun 2011 A1
20110161321 De Castro et al. Jun 2011 A1
20110161328 Park et al. Jun 2011 A1
20110161352 De Castro et al. Jun 2011 A1
20110161356 De Castro et al. Jun 2011 A1
20110161397 Bekiares et al. Jun 2011 A1
20110173231 Drissi et al. Jul 2011 A1
20110173235 Aman et al. Jul 2011 A1
20110196839 Smith et al. Aug 2011 A1
20110196891 De Castro et al. Aug 2011 A1
20110213802 Singh et al. Sep 2011 A1
20110246445 Mishra et al. Oct 2011 A1
20110270879 Srinivasan et al. Nov 2011 A1
20110282812 Chandramouli et al. Nov 2011 A1
20110295841 Sityon et al. Dec 2011 A1
20110302164 Krishnamurthy et al. Dec 2011 A1
20110313844 Chandramouli et al. Dec 2011 A1
20110314019 Jimenez Peris et al. Dec 2011 A1
20110321057 Mejdrich et al. Dec 2011 A1
20120016866 Dunagan et al. Jan 2012 A1
20120041934 Srinivasan et al. Feb 2012 A1
20120072455 Jain et al. Mar 2012 A1
20120116982 Yoshida et al. May 2012 A1
20120130963 Luo et al. May 2012 A1
20120131139 Siripurapu et al. May 2012 A1
20120166417 Chandramouli et al. Jun 2012 A1
20120166421 Cammert et al. Jun 2012 A1
20120166469 Cammert et al. Jun 2012 A1
20120191697 Sherman et al. Jul 2012 A1
20120233107 Roesch et al. Sep 2012 A1
20120259910 Andrade et al. Oct 2012 A1
20120278473 Griffiths Nov 2012 A1
20120284420 Shukla et al. Nov 2012 A1
20120290715 Dinger et al. Nov 2012 A1
20120291049 Park et al. Nov 2012 A1
20120324453 Chandramouli et al. Dec 2012 A1
20130014088 Park et al. Jan 2013 A1
20130031567 Nano et al. Jan 2013 A1
20130046725 Cammert et al. Feb 2013 A1
20130117317 Wolf May 2013 A1
20130144866 Jerzak et al. Jun 2013 A1
20130191370 Chen et al. Jul 2013 A1
20130191413 Yan et al. Jul 2013 A1
20130262399 Eker et al. Oct 2013 A1
20130275452 Krishnamurthy et al. Oct 2013 A1
20130332240 Patri et al. Dec 2013 A1
20140019194 Anne Jan 2014 A1
20140059109 Jugel Feb 2014 A1
20140082013 Wolf et al. Mar 2014 A1
20140095425 Sipple et al. Apr 2014 A1
20140095444 Deshmukh et al. Apr 2014 A1
20140095445 Deshmukh et al. Apr 2014 A1
20140095446 Deshmukh et al. Apr 2014 A1
20140095447 Deshmukh et al. Apr 2014 A1
20140095462 Park et al. Apr 2014 A1
20140095471 Deshmukh et al. Apr 2014 A1
20140095473 Srinivasan et al. Apr 2014 A1
20140095483 Toillion et al. Apr 2014 A1
20140095525 Hsiao et al. Apr 2014 A1
20140095529 Deshmukh et al. Apr 2014 A1
20140095533 Shukla et al. Apr 2014 A1
20140095535 Deshmukh et al. Apr 2014 A1
20140095537 Park et al. Apr 2014 A1
20140095540 Hsiao et al. Apr 2014 A1
20140095541 Herwadkar et al. Apr 2014 A1
20140095543 Hsiao et al. Apr 2014 A1
20140136514 Jain et al. May 2014 A1
20140156683 de Castro Alves Jun 2014 A1
20140172506 Parsell et al. Jun 2014 A1
20140172914 Elnikety et al. Jun 2014 A1
20140201225 Deshmukh et al. Jul 2014 A1
20140201355 Bishnoi et al. Jul 2014 A1
20140236983 Alves et al. Aug 2014 A1
20140237289 de Castro Alves et al. Aug 2014 A1
20140237487 Prasanna et al. Aug 2014 A1
20140324530 Thompson et al. Oct 2014 A1
20140358959 Bishnoi et al. Dec 2014 A1
20140379712 Lafuente Alvarez Dec 2014 A1
20150007320 Liu et al. Jan 2015 A1
20150156241 Shukla et al. Jun 2015 A1
20150161214 Kali et al. Jun 2015 A1
20150227415 Alves et al. Aug 2015 A1
20150363464 Alves et al. Dec 2015 A1
20150381712 De Castro Alves et al. Dec 2015 A1
20160034311 Park et al. Feb 2016 A1
20160085809 De Castro et al. Mar 2016 A1
20160085810 De Castro et al. Mar 2016 A1
20160103882 Deshmukh et al. Apr 2016 A1
20160127517 Shcherbakov et al. May 2016 A1
20160140180 Park et al. May 2016 A1
20160154855 Hsiao et al. Jun 2016 A1
20170024912 De Castro et al. Jan 2017 A1
20170075726 Park et al. Mar 2017 A1
Foreign Referenced Citations (31)
Number Date Country
101866353 Oct 2010 CN
102135984 Jul 2011 CN
102665207 Sep 2012 CN
102892073 Jan 2013 CN
1241589 Sep 2002 EP
2474922 Jul 2012 EP
2002251233 Sep 2002 JP
2006338432 Dec 2006 JP
2007328716 Dec 2007 JP
2008541225 Nov 2008 JP
2009134689 Jun 2009 JP
2009171193 Jul 2009 JP
2010108073 May 2010 JP
2011039818 Feb 2011 JP
2011039820 Feb 2011 JP
0049533 Aug 2000 WO
0118712 Mar 2001 WO
0159602 Aug 2001 WO
0165418 Sep 2001 WO
03030031 Apr 2003 WO
2007122347 Nov 2007 WO
2009119811 Oct 2009 WO
2010050582 May 2010 WO
2012037511 Mar 2012 WO
2012050582 Apr 2012 WO
2012154408 Nov 2012 WO
2012158360 Nov 2012 WO
2014000819 Jan 2014 WO
2014113273 Jan 2015 WO
2015191120 Dec 2015 WO
2016048912 Mar 2016 WO
Non-Patent Literature Citations (473)
Entry
U.S. Appl. No. 13/770,961, Notice of Allowance dated Apr. 4, 2016, 8 pages.
U.S. Appl. No. 13/770,961, Final Office Action dated Aug. 31, 2015, 28 pages.
U.S. Appl. No. 13/770,961, Non-Final Office Action dated Feb. 4, 2015, 22 pages.
International Application No. PCT/US2014/017061, International Preliminary Report on Patentability dated May 28, 2015, 7 pages.
International Application No. PCT/US2014/017061, International Search Report dated Sep. 9, 2014, 4 pages.
International Application No. PCT/US2014/017061, Written Opinion dated Feb. 3, 2015, 6 pages.
“Oracle Complex Event Processing Exalogic Performance Study” an Oracle White Paper, Sep. 2011, 16 pages.
Arasu, A., et al., “The CQL Continuous Query Language: Semantic Foundations and Query Execution,” Stanford University, The VLDB Journal—The International Journal on Very Large Data Bases, vol. 15, Issue 2, Springer-Verlag New York, Inc., Jun. 2006, pp. 1-32.
Babu et al., “Exploiting k-Constraints to Reduce Memory Overhead in Continuous Queries Over Data Streams”, ACM Transactions on Database Systems (TODS) vol. 29 Issue 3, Sep. 2004.
Chen, J., et al., “NiagaraCQ: A Scalable Continuous Query System for Internet Databases,” Proceedings of the 2000 SIGMOD International Conference on Management of Data, May 2000, pp. 379-390.
“SQL Subqueries”—Dec. 3, 2011, 2 pages.
Buza , Extension of CQL over Dynamic Databases, Journal of Universal Computer Science, vol. 12, No. 9, Sep. 28, 2006, pp. 1165-1176.
U.S. Appl. No. 11/873,407, Notice of Allowance dated Mar. 7, 2011, 8 pages.
U.S. Appl. No. 11/874,202, Notice of Allowance dated Mar. 31, 2011, 8 pages.
U.S. Appl. No. 11/977,437, Notice of Allowance dated Jul. 10, 2013, 11 pages.
U.S. Appl. No. 11/977,439, Notice of Allowance dated Aug. 18, 2010, 11 pages.
U.S. Appl. No. 13/829,958, Final Office Action dated Jun. 26, 2017, 22 pages.
U.S. Appl. No. 13/830,378, Non-Final Office Action dated Jul. 5, 2017, 44 pages.
U.S. Appl. No. 13/830,502, Non-Final Office Action dated Apr. 7, 2017, 28 pages.
U.S. Appl. No. 13/830,735, Non-Final Office Action dated Apr. 4, 2017, 16 pages.
U.S. Appl. No. 13/838,259, Final Office Action dated Jul. 7, 2017, 69 pages.
U.S. Appl. No. 14/036,500, Notice of Allowance dated Jun. 30, 2017, 14 pages.
U.S. Appl. No. 14/036,659, Non-Final Office Action dated Jun. 2, 2017, 28 pages.
U.S. Appl. No. 14/559,550, Final Office Action dated Jul. 12, 2017, 21 pages.
U.S. Appl. No. 14/610,971, Notice of Allowance dated Apr. 12, 2017, 11 pages.
U.S. Appl. No. 14/621,098, Notice of Allowance dated May 3, 2017, 9 pages.
U.S. Appl. No. 14/755,088, Non-Final Office Action dated Jun. 14, 2017, 13 pages.
U.S. Appl. No. 14/866,512, Non-Final Office Action dated Apr. 10, 2017, 24 pages.
U.S. Appl. No. 15/003,646, Notice of Allowance dated May 19, 2017, 16 pages.
U.S. Appl. No. 15/015,933, Notice of Allowance dated May 17, 2017, 16 pages.
Akama et al., Design and Evaluation of a Data Management System for WORM Data Processing, Journal of Information Processing, Information Processing Society of Japan, vol. 49, No. 2, Feb. 15, 2008, pp. 749-764.
Chinese Application No. 201380056012.X, Office Action dated Jun. 1, 2017, 22 pages (10 pages for the original document and 12 pages for the English translation).
Japanese Application No. 2015-534676, Office Action dated Jun. 27, 2017, 9 pages.
Sadana, Interactive Scatterplot for Tablets, AVI, https://vimeo.com/97798460), 2014, 2 pages.
Oracle Application Server, Enterprise Deployment Guide, 10g Release 3 (10.1.3.2.0), B32125-02, Oracle, Apr. 2007, 120 pages.
Oracle Database, SQL Language Reference 11 g Release 1 (11.1), B28286-02, Oracle, Sep. 2007, 1496 pages.
Esper Reference Documentation, Copyright 2007, Ver. 1.12.0, 2007, 158 pages.
Esper Reference Documentation, Copyright 2008, ver. 2.0.0, 2008, 202 pages.
Oracle Database Data Cartridge Developer's Guide, B28425-03, 11 g Release 1 (11.1), Oracle, Mar. 2008, 372 pages.
Oracle Application Server, Administrator's Guide, 10g Release 3 (10.1.3.2.0), B32196-01, Oracle, Jan. 2007, 376 pages.
Stream Query Repository: Online Auctions, at URL: http://wwwdb.stanford.edu/stream/sqr/onauc.html#queryspecsend, Dec. 2, 2002, 4 pages.
Oracle Application Server 10g, Release 2 and 3, New Features Overview, An Oracle White Paper, Oracle, Oct. 2005, 48 pages.
Oracle™ Complex Event Processing CQL Language Reference, 11g Release 1 (11.1.1.4.0) E12048-04, Jan. 2011, pp. pp. 6.1 to 6.12.
Bottom-up parsing, Wikipedia, downloaded from: http://en.wikipedia.org/wiki/Bottom-up_parsing, Sep. 8, 2014, pp. 1-2.
Branch Predication, Wikipedia, downloaded from: http://en.wikipedia.org/wiki/Branch_predication, Sep. 8, 2014, pp. 1-4.
Business Process Management (BPM), Datasheet [online]. IBM, [retrieved on Jan. 28, 2013]. Retrieved from the Internet: <URL: http://www-142.ibm.com/software/products/us/en/category/BPM-SOFTWARE>, No Date Given.
Caching Data with SqIDataSource Control, retrieved from the internet <URL:https://web.archive.org/web/20110704142936/http://msdn.microsoft.com/en-us/library/z56y8ksb(v=VS.1OO).aspx>, Jul. 4, 2011.
Call User Defined Functions from Pig, Amazon Elastic MapReduce, Mar. 2009, 2 pages.
Complex Event Processing in the Real World, An Oracle White Paper., Sep. 2007, 13 pages.
Coral8 Complex Event Processing Technology Overview, Coral8, Inc., Make it Continuous, Copyright 2007 Coral8, Inc., 2007, 1-8 pages.
Creating WebLogic Domains Using the Configuration Wizard, BEA Products, version 10.0, Dec. 2007, 78 pages.
Creating Weblogic Event Server Applications, BEA WebLogic Event Server, Version. 2.0, Jul. 2007, 90 pages.
Data stream management system, Wikipedia, downloaded from en.wikipedia.org/wiki/Data_stream_management_system, pp. 1-5.
Dependency Injection, Dec. 30, 2008, pp. 1-7.
Deploying Applications to WebLogic Server, Mar. 30, 2007, 164 pages.
Developing Applications with WebLogic Server, Mar. 30, 2007, 254 pages.
EPL Reference, BEA WebLogic Event Server, Jul. 2007, 82 pages.
Esper Reference Documentation Version 3.1.0, EsperTech, retrieved from internet at URL:http://esper.codehaus.org/esper-3.1.0/doc/reference/en/pdf/esper_reference.pdf, 2009, 293 pages.
Fast Track Deployment and Administrator Guide for BEA WebLogic Server, BEA WebLogic Server 10.0 Documentation, printed on May 10, 2010, at URL:http://download.oracle.com/docs/cd/E13222_01/wls/docs100/quickstart/quick_start. html, May 10, 2010, 1 page.
Getting Started with WebLogic Event Server, BEA WebLogic Event Server ver. 2.0, Jul. 2007, 66 pages.
High Availability Guide, Oracle Application Server, 10g Release 3 (10.1.3.2.0), B32201-01, Jan. 2007, 314 pages.
Installing Weblogic Real Time, BEA WebLogic Real Time, Ver. 2.0, Jul. 2007, 64 pages.
Introduction to BEA WebLogic Server and BEA WebLogic Express, BEA WebLogic Server, Ver. 10.0, Mar. 2007, 34 pages.
Introduction to WebLogic Real Time, Jul. 2007, 20 pages.
Jboss Enterprise Application Platform 4.3 Getting Started Guide CP03, for Use with Jboss Enterprise Application Platform 4.3 Cumulative Patch 3, Jboss a division of Red Hat, Red Hat Documentation Group, Copyright 2008, Red Hat, Inc., Sep. 2007, 68 pages.
Managing Server Startup and Shutdown, Bea WebLogic Server, ver. 10.0, Mar. 30, 2007, 134 pages.
Map Reduce, Wikipedia, The Free Encyclopedia, 2016, 11 pages.
Matching Behavior, .NET Framework Developer's Guide, Microsoft Corporation, Retrieved on: Jul. 1, 2008, URL: http://msdn.microsoft.com/en-us/library/Oyzc2ybO(printer).aspx,, 2008, pp. 1-2.
Microsoft Computer Dictionary, 5th Edition, Microsoft Press, Redmond, WA, ©, 2002, pp. 238-239 and 529.
New Project Proposal for Row Pattern Recognition—Amendment to SQL with Application to Streaming Data Queries, H2-2008-027, H2 Teleconference Meeting, Jan. 9, 2008, pp. 1-6.
Oracle CEP Getting Started, Release 11 gR1 (11.1.1) E14476-01, May 2009, 172 pages.
Oracle Complex Event Processing CQL Language Reference, 11g Release 1 (11.1.1) E12048-01, Apr. 2010, 540 pages.
Oracle Database, SQL Reference, 10g Release 1 (10.1), Part No. B10759-01, Dec. 2003, 2003, pp. 7-1 to 7-17; 7-287 to 7-290; 14-61 to 14-74.
Oracle Event Processing Hadoop Data Cartridge—11g Release 1 (11.1.1.7), Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing 11g Release 1 (11.1.1.7). Retrieved from the Internet: URL:https:jjweb.archive.orgjweb/20130925035955/http://docs.oracle.comjcd/E2828001/apirefs.1111/e12048/datacarthadoo, Sep. 25, 2013, 4 pages.
Oracle Event Processing NoSQL Database Data Cartridge—11g Release 1(11.1.1. 7), Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing 11g Release 1 (11.1.1.7), Sep. 25, 2013, 4 pages.
Oracle Fusion Middleware CQL Language Reference, 11g Release 1 (11.1.1.6.3), E12048-10, Aug. 2012, pp. 6-1 to 6-12.
Oracle® Complex Event Processing EPL Language Reference 11g Release 1 (11.1.1.4.0), E14304-02, Jan. 2011, 80 pages.
OSGI Service Platform Core Specification, The OSGI Alliance, OSGI Alliance, Apr. 2007, 288 pages.
Pattern Recognition With Match_Recognize, Oracle™ Complex Event Processing CQL Language Reference, 11g Release 1 (11.1.1) E12048-03, May 2009, pp. 15.1 to 15.20.
Pig (programming tool), Wikipedia, The Free Encyclopedia, 2016, 4 pages.
Release Notes, BEA WebLogic Event Server, Ver. 2.0, Jul. 2007, 8 pages.
SCD—Slowing Changing Dimensions in a Data Warehouse, retrieved from the internet <URL:https://web.archive.org/web/2011 0807085325/http:/!etl-tools.info/en/scd.html>, Aug. 7, 2011.
Spring Dynamic Modules for OSGi Service Platforms product documentation, Jan. 2008, 71 pages.
SQL Tutorial-In, Tizag.com, http://web.archive.org/web/20090216215219/http://www.tizag.com/sqiTutorial/sqlin.php, Feb. 16, 2009, pp. 1-3.
Stream: The Stanford Stream Data Manager, Retrieved from: URL: http://infolab.stanford.edu/stream/, May 5, 2006, pp. 1-9.
StreamBase New and Noteworthy, StreamBase, Jan. 12, 2010, 878 pages.
Strings in C, retrieved from the Internet: <URL: https://web.archive.org/web/20070612231205/http:l/web.cs.swarthmore.edu/-newhall/unixhelp/C_strings.html> [retrieved on May 13, 2014], Swarthmore College, Jun. 12, 2007, 3 pages.
Supply Chain Event Management: Real-Time Supply Chain Event Management, product information Manhattan Associates, 2009-2012.
The Stanford Stream Data Manager, IEEE Data Engineering Bulletin, Mar. 2003, pp. 1-8.
Understanding Domain Configuration, BEA WebLogic Server, Ver. 10.0, Mar. 30, 2007, 38 pages.
WebLogic Event Server Administration and Configuration Guide, BEA WebLogic Event D Server, Version. 2.0, Jul. 2007, 108 pages.
WebLogic Event Server Reference, BEA WebLogic Event Server, Version. 2.0, Jul. 2007, 52 pages.
WebLogic Server Performance and Tuning, BEA WebLogic Server, Ver. 10.0, Mar. 30, 2007, 180 pages.
WebSphere Application Server V6.1 Problem Determination: IBM Redpaper Collection, Dec. 2007, 634 pages.
What is BPM, Datasheet [online]. IBM, [retrieved on Jan. 28, 2013]. Retrieved from the Internet: <URL: http://www-01.ibm.com/software/info/bpm/whatis-bpm/>, No Date Given.
U.S. Appl. No. 10/948,523, Final Office Action dated Jul. 6, 2007, 37 pages.
U.S. Appl. No. 10/948,523, Non-Final Office Action dated Jan. 22, 2007, 32 pages.
U.S. Appl. No. 10/948,523, Non-Final Office Action dated Dec. 11, 2007, 48 pages.
U.S. Appl. No. 10/948,523, Notice of Allowance dated Dec. 1, 2010, 17 pages.
U.S. Appl. No. 10/948,523, Notice of Allowance dated Jul. 8, 2008, 5 pages.
U.S. Appl. No. 11/601,415, Final Office Action dated May 17, 2016, 17 pages.
U.S. Appl. No. 11/601,415, Final Office Action dated Oct. 6, 2014, 18 pages.
U.S. Appl. No. 11/601,415, Final Office Action dated May 27, 2009, 27 pages.
U.S. Appl. No. 11/601,415, Final Office Action dated Jun. 30, 2010, 45 pages.
U.S. Appl. No. 11/601,415, Final Office Action dated Jul. 2, 2012, 59 pages.
U.S. Appl. No. 11/601,415, Non-Final Office Action dated Sep. 17, 2008, 11 pages.
U.S. Appl. No. 11/601,415, Non-Final Office Action dated Nov. 13, 2015, 18 pages.
U.S. Appl. No. 11/601,415, Non-Final Office Action dated Nov. 30, 2009, 33 pages.
U.S. Appl. No. 11/601,415, Non-Final Office Action dated Dec. 9, 2011, 45 pages.
U.S. Appl. No. 11/601,415, Non-Final Office Action dated Dec. 11, 2013, 58 pages.
U.S. Appl. No. 11/873,407, Final Office Action dated Apr. 26, 2010, 12 pages.
U.S. Appl. No. 11/873,407, Non-Final Office Action dated Nov. 13, 2009, 8 pages.
U.S. Appl. No. 11/873,407, Notice of Allowance dated Nov. 10, 2010, 14 pages.
U.S. Appl. No. 11/874,197, Final Office Action dated Jun. 29, 2010, 18 pages.
U.S. Appl. No. 11/874,197, Final Office Action dated Aug. 12, 2011, 22 pages.
U.S. Appl. No. 11/874,197, Non-Final Office Action dated Nov. 10, 2009, 15 pages.
U.S. Appl. No. 11/874,197, Non-Final Office Action dated Dec. 22, 2010, 23 pages.
U.S. Appl. No. 11/874,197, Notice of Allowance dated Jun. 22, 2012, 20 pages.
U.S. Appl. No. 11/874,202, Final Office Action dated Jun. 8, 2010, 18 pages.
U.S. Appl. No. 11/874,202, Non-Final Office Action dated Dec. 3, 2009, 15 pages.
U.S. Appl. No. 11/874,202, Notice of Allowance dated Dec. 22, 2010, 13 pages.
U.S. Appl. No. 11/874,850, Notice of Allowance dated Nov. 24, 2009, 13 pages.
U.S. Appl. No. 11/874,896, Final Office Action dated Jul. 23, 2010, 25 pages.
U.S. Appl. No. 11/874,896, Non-Final Office Action dated Dec. 8, 2009, 16 pages.
U.S. Appl. No. 11/874,896, Non-Final Office Action dated Nov. 22, 2010, 26 pages.
U.S. Appl. No. 11/874,896, Notice of Allowance dated Jun. 23, 2011, 23 pages.
U.S. Appl. No. 11/927,681, Non-Final Office Action dated Mar. 24, 2011, 15 pages.
U.S. Appl. No. 11/927,681, Notice of Allowance dated Jul. 1, 2011, 8 pages.
U.S. Appl. No. 11/927,683, Final Office Action dated Sep. 1, 2011, 18 pages.
U.S. Appl. No. 11/927,683, Non-Final Office Action dated Mar. 24, 2011, 11 pages.
U.S. Appl. No. 11/927,683, Notice of Allowance dated Nov. 9, 2011, 7 pages.
U.S. Appl. No. 11/977,437, Final Office Action dated Apr. 8, 2010, 19 pages.
U.S. Appl. No. 11/977,437, Non-Final Office Action dated Oct. 13, 2009, 10 pages.
U.S. Appl. No. 11/977,437, Non-Final Office Action dated Aug. 3, 2012, 17 pages.
U.S. Appl. No. 11/977,437, Notice of Allowance dated Mar. 4, 2013, 10 pages.
U.S. Appl. No. 11/977,439, Non-Final Office Action dated Apr. 13, 2010, 8 pages.
U.S. Appl. No. 11/977,439, Notice of Allowance dated Mar. 16, 2011, 10 pages.
U.S. Appl. No. 11/977,440, Notice of Allowance dated Oct. 7, 2009, 7 pages.
U.S. Appl. No. 12/395,871, Final Office Action dated Oct. 19, 2011, 9 pages.
U.S. Appl. No. 12/395,871, Non-Final Office Action dated May 27, 2011, 7 pages.
U.S. Appl. No. 12/395,871, Notice of Allowance dated May 4, 2012, 27 pages.
U.S. Appl. No. 12/396,008, Non-Final Office Action dated Jun. 8, 2011, 10 pages.
U.S. Appl. No. 12/396,008, Notice of Allowance dated Nov. 16, 2011, 5 pages.
U.S. Appl. No. 12/396,464, Final Office Action dated May 16, 2014, 16 pages.
U.S. Appl. No. 12/396,464, Final Office Action dated Jan. 16, 2013, 17 pages.
U.S. Appl. No. 12/396,464, Non-Final Office Action dated Dec. 31, 2013, 16 pages.
U.S. Appl. No. 12/396,464, Non-Final Office Action dated Sep. 7, 2012, 18 pages.
U.S. Appl. No. 12/396,464, Notice of Allowance dated Sep. 3, 2014, 7 pages.
U.S. Appl. No. 12/506,891, Non-Final Office Action dated Dec. 14, 2011, 18 pages.
U.S. Appl. No. 12/506,891, Notice of Allowance dated Jul. 25, 2012, 8 pages.
U.S. Appl. No. 12/506,905, Final Office Action dated Aug. 9, 2012, 34 pages.
U.S. Appl. No. 12/506,905, Non-Final Office Action dated Mar. 26, 2012, 61 pages.
U.S. Appl. No. 12/506,905, Notice of Allowance dated Dec. 14, 2012, 9 pages.
U.S. Appl. No. 12/534,384, Final Office Action dated Feb. 12, 2013, 14 pages.
U.S. Appl. No. 12/534,384, Non-Final Office Action dated Feb. 28, 2012, 13 pages.
U.S. Appl. No. 12/534,384, Notice of Allowance dated May 7, 2013, 12 pages.
U.S. Appl. No. 12/534,398, Final Office Action dated Jun. 5, 2012, 17 pages.
U.S. Appl. No. 12/534,398, Non-Final Office Action dated Nov. 1, 2011, 15 pages.
U.S. Appl. No. 12/534,398, Notice of Allowance dated Nov. 27, 2012, 10 pages.
U.S. Appl. No. 12/548,187, Advisory Action dated Sep. 26, 2014, 6 pages.
U.S. Appl. No. 12/548,187, Final Office Action dated Jun. 10, 2013, 18 pages.
U.S. Appl. No. 12/548,187, Final Office Action dated Jun. 20, 2012, 22 pages.
U.S. Appl. No. 12/548,187, Final Office Action dated Jun. 4, 2014, 64 pages.
U.S. Appl. No. 12/548,187, Non-Final Office Action dated Sep. 27, 2011, 19 pages.
U.S. Appl. No. 12/548,187, Non-Final Office Action dated Apr. 9, 2013, 17 pages.
U.S. Appl. No. 12/548,187, Non-Final Office Action dated Feb. 6, 2014, 54 pages.
U.S. Appl. No. 12/548,187, Notice of Allowance dated Aug. 17, 2015, 18 pages.
U.S. Appl. No. 12/548,209, Non-Final Office Action dated Apr. 16, 2012, 17 pages.
U.S. Appl. No. 12/548,209, Notice of Allowance dated Oct. 24, 2012, 13 pages.
U.S. Appl. No. 12/548,222, Final Office Action dated Jun. 20, 2012, 20 pages.
U.S. Appl. No. 12/548,222, Non-Final Office Action dated Apr. 10, 2013, 16 pages.
U.S. Appl. No. 12/548,222, Non-Final Office Action dated Oct. 19, 2011, 19 pages.
U.S. Appl. No. 12/548,222, Notice of Allowance dated Jul. 18, 2013, 12 pages.
U.S. Appl. No. 12/548,281, Final Office Action dated Aug. 13, 2014, 19 pages.
U.S. Appl. No. 12/548,281, Final Office Action dated Jun. 20, 2012, 20 pages.
U.S. Appl. No. 12/548,281, Final Office Action dated Oct. 10, 2013, 21 pages.
U.S. Appl. No. 12/548,281, Non-Final Office Action dated Apr. 12, 2013, 16 pages.
U.S. Appl. No. 12/548,281, Non-Final Office Action dated Feb. 13, 2014, 16 pages.
U.S. Appl. No. 12/548,281, Non-Final Office Action dated Oct. 3, 2011, 20 pages.
U.S. Appl. No. 12/548,290, Final Office Action dated Jul. 30, 2012, 21 pages.
U.S. Appl. No. 12/548,290, Non-Final Office Action dated Apr. 15, 2013, 17 pages.
U.S. Appl. No. 12/548,290, Non-Final Office Action dated Oct. 3, 2011, 17 pages.
U.S. Appl. No. 12/548,290, Notice of Allowance dated Sep. 11, 2013, 6 pages.
U.S. Appl. No. 12/913,636, Final Office Action dated Jan. 8, 2013, 21 pages.
U.S. Appl. No. 12/913,636, Non-Final Office Action dated Jun. 7, 2012, 16 pages.
U.S. Appl. No. 12/913,636, Non-Final Office Action dated Apr. 1, 2015, 22 pages.
U.S. Appl. No. 12/913,636, Non-Final Office Action dated Jul. 24, 2014, 22 pages.
U.S. Appl. No. 12/913,636, Notice of Allowance dated Oct. 27, 2015, 22 pages.
U.S. Appl. No. 12/949,081, Final Office Action dated Aug. 27, 2013, 13 pages.
U.S. Appl. No. 12/949,081, Final Office Action dated Nov. 17, 2015, 19 pages.
U.S. Appl. No. 12/949,081, Non-Final Office Action dated Jan. 9, 2013, 13 pages.
U.S. Appl. No. 12/949,081, Non-Final Office Action dated Jan. 28, 2015, 20 pages.
U.S. Appl. No. 12/949,081, Notice of Allowance dated May 3, 2016, 6 pages.
U.S. Appl. No. 12/957,194, Non-Final Office Action dated Dec. 7, 2012, 13 pages.
U.S. Appl. No. 12/957,194, Notice of Allowance dated Mar. 20, 2013, 9 pages.
U.S. Appl. No. 12/957,201, Final Office Action dated Apr. 25, 2013, 11 pages.
U.S. Appl. No. 12/957,201, Non-Final Office Action dated Jul. 30, 2014, 12 pages.
U.S. Appl. No. 12/957,201, Non-Final Office Action dated Dec. 19, 2012, 15 pages.
U.S. Appl. No. 12/957,201, Notice of Allowance dated Jan. 21, 2015, 5 pages.
U.S. Appl. No. 13/089,556, Final Office Action dated Aug. 29, 2013, 10 pages.
U.S. Appl. No. 13/089,556, Final Office Action dated Jun. 13, 2014, 14 pages.
U.S. Appl. No. 13/089,556, Non-Final Office Action dated Apr. 10, 2013, 10 pages.
U.S. Appl. No. 13/089,556, Non-Final Office Action dated Nov. 6, 2012, 13 pages.
U.S. Appl. No. 13/089,556, Non-Final Office Action dated Jan. 9, 2014, 14 pages.
U.S. Appl. No. 13/089,556, Notice of Allowance dated Oct. 6, 2014, 7 pages.
U.S. Appl. No. 13/102,665, Final Office Action dated Jul. 9, 2013, 17 pages.
U.S. Appl. No. 13/102,665, Non-Final Office Action dated Feb. 1, 2013, 14 pages.
U.S. Appl. No. 13/102,665, Notice of Allowance dated Nov. 24, 2014, 9 pages.
U.S. Appl. No. 13/107,742, Final Office Action dated Jul. 3, 2013, 19 pages.
U.S. Appl. No. 13/107,742, Final Office Action dated Jan. 21, 2015, 23 pages.
U.S. Appl. No. 13/107,742, Non-Final Office Action dated Feb. 14, 2013, 16 pages.
U.S. Appl. No. 13/107,742, Non-Final Office Action dated Jun. 19, 2014, 20 pages.
U.S. Appl. No. 13/107,742, Notice of Allowance dated Jul. 8, 2015, 9 pages.
U.S. Appl. No. 13/177,748, Final Office Action dated Mar. 20, 2014, 23 pages.
U.S. Appl. No. 13/177,748, Final Office Action dated Aug. 21, 2015, 24 pages.
U.S. Appl. No. 13/177,748, Non-Final Office Action dated Feb. 3, 2015, 22 pages.
U.S. Appl. No. 13/177,748, Non-Final Office Action dated Aug. 30, 2013, 25 pages.
U.S. Appl. No. 13/177,748, Notice of Allowance dated Jan. 6, 2016, 9 pages.
U.S. Appl. No. 13/184,528, Notice of Allowance dated Mar. 1, 2012, 11 pages.
U.S. Appl. No. 13/193,377, Final Office Action dated Jan. 17, 2013, 25 pages.
U.S. Appl. No. 13/193,377, Non-Final Office Action dated Aug. 23, 2012, 21 pages.
U.S. Appl. No. 13/193,377, Notice of Allowance dated Aug. 30, 2013, 19 pages.
U.S. Appl. No. 13/244,272, Final Office Action dated Mar. 28, 2013, 30 pages.
U.S. Appl. No. 13/244,272, Non-Final Office Action dated Oct. 4, 2012, 30 pages.
U.S. Appl. No. 13/244,272, Notice of Allowance dated Aug. 12, 2013, 12 pages.
U.S. Appl. No. 13/764,560, Final Office Action dated Apr. 15, 2015, 19 pages.
U.S. Appl. No. 13/764,560, Final Office Action dated Apr. 14, 2016, 20 pages.
U.S. Appl. No. 13/764,560, Non-Final Office Action dated Sep. 12, 2014, 23 pages.
U.S. Appl. No. 13/764,560, Non-Final Office Action dated Oct. 6, 2015, 18 pages.
U.S. Appl. No. 13/770,969, Non-Final Office Action dated Aug. 7, 2014, 9 pages.
U.S. Appl. No. 13/770,969, Notice of Allowance dated Jan. 22, 2015, 5 pages.
U.S. Appl. No. 13/827,631, Final Office Action dated Apr. 3, 2015, 11 pages.
U.S. Appl. No. 13/827,631, Non-Final Office Action dated Feb. 16, 2017, 16 pages.
U.S. Appl. No. 13/827,631, Non-Final Office Action dated Nov. 13, 2014, 10 pages.
U.S. Appl. No. 13/827,631, Non-Final Office Action dated Feb. 11, 2016, 12 pages.
U.S. Appl. No. 13/827,987, Final Office Action dated Jun. 19, 2015, 10 pages.
U.S. Appl. No. 13/827,987, Non-Final Office Action dated Nov. 6, 2014, 9 pages.
U.S. Appl. No. 13/827,987, Notice of Allowance dated Jan. 4, 2016, 16 pages.
U.S. Appl. No. 13/828,640, Final Office Action dated Jun. 17, 2015, 11 pages.
U.S. Appl. No. 13/828,640, Non-Final Office Action dated Dec. 2, 2014, 11 pages.
U.S. Appl. No. 13/828,640, Notice of Allowance dated Jan. 6, 2016, 16 pages.
U.S. Appl. No. 13/829,958, Final Office Action dated Jun. 19, 2015, 17 pages.
U.S. Appl. No. 13/829,958, Final Office Action dated Jun. 30, 2016, 19 pages.
U.S. Appl. No. 13/829,958, Non-Final Office Action dated Dec. 11, 2014, 15 pages.
U.S. Appl. No. 13/829,958, Non-Final Office Action dated Dec. 27, 2016, 20 pages.
U.S. Appl. No. 13/829,958, Non-Final Office Action dated Feb. 1, 2016, 20 pages.
U.S. Appl. No. 13/830,129, Non-Final Office Action dated Feb. 27, 2015, 19 pages.
U.S. Appl. No. 13/830,129, Notice of Allowance dated Sep. 22, 2015, 9 pages.
U.S. Appl. No. 13/830,378, Final Office Action dated Nov. 5, 2015, 28 pages.
U.S. Appl. No. 13/830,378, Non-Final Office Action dated Feb. 25, 2015, 23 pages.
U.S. Appl. No. 13/830,428, Final Office Action dated Jun. 4, 2015, 21 pages.
U.S. Appl. No. 13/830,428, Final Office Action dated May 26, 2016, 26 pages.
U.S. Appl. No. 13/830,428, Non-Final Office Action dated Dec. 5, 2014, 23 pages.
U.S. Appl. No. 13/830,428, Non-Final Office Action dated Jan. 5, 2016, 25 pages.
U.S. Appl. No. 13/830,428, Non-Final Office Action dated Mar. 22, 2017, 25 pages.
U.S. Appl. No. 13/830,502, Final Office Action dated Jun. 30, 2015, 25 pages.
U.S. Appl. No. 13/830,502, Final Office Action dated Jul. 6, 2016, 28 pages.
U.S. Appl. No. 13/830,502, Non-Final Office Action dated Nov. 20, 2014, 25 pages.
U.S. Appl. No. 13/830,502, Non-Final Office Action dated Dec. 11, 2015, 25 pages.
U.S. Appl. No. 13/830,735, Final Office Action dated Dec. 21, 2015, 20 pages.
U.S. Appl. No. 13/830,735, Non-Final Office Action dated May 26, 2015, 19 pages.
U.S. Appl. No. 13/830,759, Final Office Action dated Feb. 18, 2016, 18 pages.
U.S. Appl. No. 13/830,759, Non-Final Office Action dated Aug. 7, 2015, 23 pages.
U.S. Appl. No. 13/830,759, Non-Final Office Action dated Feb. 10, 2017, 23 pages.
U.S. Appl. No. 13/838,259, Final Office Action dated Feb. 19, 2016, 47 pages.
U.S. Appl. No. 13/838,259, Non-Final Office Action dated Oct. 24, 2014, 21 pages.
U.S. Appl. No. 13/838,259, Non-Final Office Action dated Jun. 9, 2015, 37 pages.
U.S. Appl. No. 13/838,259, Non-Final Office Action dated Jan. 4, 2017, 65 pages.
U.S. Appl. No. 13/839,288, Non-Final Office Action dated Dec. 4, 2014, 30 pages.
U.S. Appl. No. 13/839,288, Notice of Allowance dated Apr. 3, 2015, 12 pages.
U.S. Appl. No. 13/906,162, Final Office Action dated Jun. 10, 2015, 10 pages.
U.S. Appl. No. 13/906,162, Non-Final Office Action dated Dec. 29, 2014, 10 pages.
U.S. Appl. No. 13/906,162, Non-Final Office Action dated Oct. 28, 2015, 11 pages.
U.S. Appl. No. 13/906,162, Notice of Allowance dated Apr. 5, 2016, 7 pages.
U.S. Appl. No. 14/036,500, Final Office Action dated Mar. 17, 2016, 35 pages.
U.S. Appl. No. 14/036,500, Non-Final Office Action dated Aug. 14, 2015, 26 pages.
U.S. Appl. No. 14/036,500, Non-Final Office Action dated Feb. 9, 2017, 34 pages.
U.S. Appl. No. 14/036,659, Final Office Action dated Apr. 22, 2016, 38 pages.
U.S. Appl. No. 14/036,659, Non-Final Office Action dated Aug. 13, 2015, 33 pages.
U.S. Appl. No. 14/037,072, Non-Final Office Action dated Jul. 9, 2015, 12 pages.
U.S. Appl. No. 14/037,072, Notice of Allowance dated Feb. 16, 2016, 18 pages.
U.S. Appl. No. 14/037,153, Final Office Action dated Jan. 21, 2016, 31 pages.
U.S. Appl. No. 14/037,153, Non-Final Office Action dated Jun. 19, 2015, 23 pages.
U.S. Appl. No. 14/037,171, Non-Final Office Action dated Jun. 3, 2015, 15 pages.
U.S. Appl. No. 14/037,171, Notice of Allowance dated Oct. 15, 2015, 15 pages.
U.S. Appl. No. 14/077,230, Non-Final Office Action dated Dec. 4, 2014, 30 pages.
U.S. Appl. No. 14/077,230, Notice of Allowance dated Apr. 16, 2015, 16 pages.
U.S. Appl. No. 14/079,538, Final Office Action dated Jul. 27, 2016, 28 pages.
U.S. Appl. No. 14/079,538, Non-Final Office Action dated Mar. 31, 2017, 24 pages.
U.S. Appl. No. 14/079,538, Non-Final Office Action dated Oct. 22, 2015, 34 pages.
U.S. Appl. No. 14/302,031, Final Office Action dated Apr. 22, 2015, 23 pages.
U.S. Appl. No. 14/302,031, Non-Final Office Action dated Aug. 27, 2014, 19 pages.
U.S. Appl. No. 14/302,031, Notice of Allowance dated Nov. 3, 2015, 17 pages.
U.S. Appl. No. 14/559,550, Non-Final Office Action dated Jan. 27, 2017, 16 pages.
U.S. Appl. No. 14/621,098, Final Office Action dated Apr. 21, 2016, 16 pages.
U.S. Appl. No. 14/621,098, Non-Final Office Action dated Oct. 15, 2015, 21 pages.
U.S. Appl. No. 14/692,674, Non-Final Office Action dated Jun. 5, 2015, 10 pages.
U.S. Appl. No. 14/692,674, Notice of Allowance dated Oct. 15, 2015, 10 pages.
U.S. Appl. No. 14/883,815, Non-Final Office Action dated May 10, 2016, 32 pages.
U.S. Appl. No. 14/883,815, Notice of Allowance dated Aug. 30, 2016, 13 pages.
U.S. Appl. No. 15/015,933, Non-Final Office Action dated Jan. 30, 2017, 11 pages.
U.S. Appl. No. 15/360,650, Non-Final Office Action dated Mar. 9, 2017, 34 pages.
Abadi et al., Aurora: a new model and architecture for data stream management, The VLDB Journal the International Journal on Very Large Data Bases, vol. 12, No. 2, Jul. 16, 2003, pp. 120-139.
Abadi et al., Yes Aurora: A Data Stream Management System, International Conference on Management of Data, Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data, 2003, 4 pages.
Agrawal et al., Efficient pattern matching over event streams, Proceedings of the 2008 ACM SIGMOD international conference on Management of data, Jun. 9-12, 2008, pp. 147-160.
Aho et al., Efficient String Matching: An Aid to Bibliographic Search, Communications of the ACM, vol. 18, No. 6, Association for Computing, Machinery, Inc., Jun. 1975, pp. 333-340.
Arasu et al., An Abstract Semantics and Concrete Language for Continuous Queries over Streams and Relations, 9th International Workshop on Database programming languages, Nov. 2002, pp. 1-12.
Arasu et al., CQL: A language for Continuous Queries over Streams and Relations, Lecture Notes in Computer Science, vol. 2921, 2004, pp. 1-19.
Arasu et al., STREAM: The Stanford Data Stream Management System., Department of Computer Science, Stanford University, 2004, 21 pages.
Avnur et al., Eddies: Continuously Adaptive Query Processing, In Proceedings of the 2000 ACM SIGMOD International Conference on Data, Dallas TX, May 2000, 12 pages.
Avnur et al., Eddies: Continuously Adaptive Query Processing, 2007, 4 pages.
Babock et al., Models and Issues in Data Streams, Proceedings of the 21st ACM SIGMOD-SIGACT-SIDART symposium on Principles f database systems, 2002, 30 pages.
Babu et al., Continuous Queries over Data Streams, SIGMOD Record, vol. 30, No. 3, Sep. 2001, pp. 109-120.
Bai et al., A Data Stream Language and System Designed for Power and Extensibility, Conference on Information and Knowledge Management, Proceedings of the 15th ACM D International Conference on Information and Knowledge Management, Arlington, Virginia, Copyright 2006, ACM Press., Nov. 5-11, 2006, 10 pages.
Balkesen et al., Scalable Data Partitioning Techniques for Parallel Sliding Window Processing over Data Streams, 8th International Workshop on Data Management for Sensor Networks, Aug. 29, 2011, pp. 1-6.
Bestehorn, Fault-tolerant query processing in structured P2P-systems, Distributed and Parallel Databases, vol. 28, Issue 1, Aug. 2010, pp. 33-66.
Bose et al., A Query Algebra for Fragmented XML Stream Data, 9th International Conference on Data Base Programming Languages (DBPL), Sep. 2003, 11 pages.
Cadonna et al., Efficient event pattern matching with match windows, Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, Aug. 2012, pp. 471-479.
Carpenter, User Defined Functions., Retrieved from: URL: http://www.sqlteam.comitemprint.aspItemID=979, Oct. 12, 2000, 4 pages.
Chan et al., Efficient Filtering of XML documents with Xpath expressions, 2002, pp. 354-379.
Chandramouli et al., High-Performance Dynamic Pattern Matching over Disordered Streams, Proceedings of the VLDB Endowment, vol. 3 Issue 1-2, Sep. 2010, pp. 220-231.
Chandrasekaran et al., PSoup: a system for streaming queries over streaming data, The VLDB Journal the International Journal on Very Large Data Bases, vol. 12, No. 2, Aug. 1, 2003, pp. 140-156.
Chandrasekaran et al., TelegraphCQ: Continuous Dataflow Processing for an UncertainWorld, Proceedings of CIDR, 2003, 12 pages.
Chapple, Combining Query Results with the UNION Command, ask.com Computing Databases, downloaded from: http://databases.about.com/od/sql/a/union.htm, Apr. 28, 2009, 2 pages.
Chaudhuri et al., Variance Aware Optimization of Parameterized Queries, ACM SIGMOD, Jun. 2010, 12 pages.
Chui, WebSphere Application Server V6.1—Class loader problem determination, IBM.com, 2007.
Chinese Application No. 201180053021.4, Office Action dated Oct. 28, 2015, 17 pages (8 pages for the original document and 9 pages for the English translation).
Chinese Application No. 201180053021.4, Office Action dated May 27, 2016, 8 pages (4 pages for the original document and 4 pages for the English translation).
Chinese Application No. 201280022008.7, Office Action dated Dec. 3, 2015, 19 pages (9 pages for the original document and 10 pages for the English translation).
Chinese Application No. 201480030482.3, Office Action dated Feb. 4, 2017, 5 pages.
Colyer et al., Spring Dynamic Modules Reference Guide, Copyright, ver. 1.0.3, 2006-2008, 73 pages.
Colyer et al., Spring Dynamic Modules Reference Guide, Ver. 1.1.3, 2006-2008, 123 pages.
Conway, An Introduction to Data Stream Query Processing, Truviso, Inc., May 24, 2007, 71 pages.
Cooperativesystems, Combined WLAN and Inertial Indoor Pedestrian Positioning System, Available online at: https://www.youtube.com/watchv= mEt88WaH ZvU, Nov. 15, 2010.
Cranor et al., Gigascope: a stream database for network applications, Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data SIGMOD '03, Jun. 9, 2003, pp. 647-651.
De Castro Alves , A General Extension System for Event Processing Languages, DEBS '11, New York, NY, USA, Jul. 11-15, 2011, pp. 1-9.
Demers et al., Towards Expressive Publish/Subscribe Systems, Proceedings of the 10th International Conference on Extending Database Technology (EDBT 2006),Munich, Germany, Mar. 2006, pp. 1-18.
Demichiel et al., JSR 220: Enterprise JavaBeans™, EJB 3.0 Simplified API, EJB 3.0 Expert Group, Sun Microsystems, Ver. 3.0, May 2, 2006, 59 pages.
Deshpande et al., Adaptive Query Processing, Slide show believed to be prior to Oct. 17, 2007, Oct. 17, 2007, 27 pages.
Dewson, Beginning SOL Server 2008 for Developers: From Novice to Professional, A Press, Berkeley, CA, 2008, pp. 337-349 and 418-438.
Diao et al., Query Processing for High-Volume XML Message Brokering, Proceedings of the 29th VLDB Conference, Berlin, Germany, 2003, 12 pages.
Diao, Query Processing for Large-Scale XML Message Brokering, University of California Berkeley, 2005, 226 pages.
Dindar et al., Event Processing Support for Cross-Reality Environments, Pervasive Computing, IEEE CS, Jul.-Sep. 2009, Copyright 2009, IEEE, Jul.-Sep. 2009, pp. 2-9.
European Application No. 12783063.6, Extended European Search Report dated Mar. 24, 2015, 6 pages.
European Application No. 12783063.6, Office Action dated Nov. 11, 2015, 8 pages.
Fantozzi, A Strategic Approach to Supply Chain Event Management, Master of Engineering in Logistics at the Massachusetts Institute of Technology, Jun. 2003, pp. 1-36.
Fernandez et al., Build your own XQuery processor, slide show, at URL: http://www.galaxquery.org/slides/edbt-summer-school2004.pdf, 2004, 116 pages.
Fernandez et al., Implementing XQuery 1.0: The Galax Experience, Proceedings of the 29th VLDB Conference, Berlin, Germany, 2003, 4 pages.
Florescu et al., The BEA/XQRL Streaming XQuery Processor, Proceedings of the 29th VLDB Conference, 2003, 12 pages.
Frank et al., Development and Evaluation of a Combined WLAN & Inertial Indoor Pedestrian Positioning System, Proceedings of the 22nd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2009)., Sep. 25, 2009, pp. 538-546.
Ghazal et al., Dynamic plan generation for parameterized queries, Proceedings of the 2009 ACM SIGMOD International Conference on Management of data, Jul. 2009, pp. 909-916.
Gilani, Design and implementation of stream operators, query instantiator and stream buffer manager, Dec. 2003, 137 pages.
Golab et al., Issues in Data Stream Management, ACM SIGMOD Record, vol. 32, issue 2, ACM Press, Jun. 2003, pp. 5-14.
Golab et al., Sliding Window Query Processing Over Data Streams, Aug. 2006, 182 pages.
Gosling et al., The Java Language Specification, 1996-2005, 684 pages.
Hao et al., Achieving high performance web applications by service and database replications at edge servers, Performance Computing and communications conference(IPCCC), IEEE 28th International, IEEE, Piscataway, NJ, USA, 2009, pp. 153-160.
Harish D et al., Identifying robust plans through plan diagram reduction, PVLDB '08, Auckland, New Zealand, Aug. 23-28, 2008, pp. 1124-1140.
Hasan et al., Towards unified and native enrichment in event processing systems, Distributed event-based systems. ACM 2penn plaza. Suite 701 New York NY 10121-0701 USA, Jun. 29, 2013, pp. 171-182.
Hirzel et al., SPL Stream Processing Language Report, IBM Research Report RC24897 (W0911-044), Nov. 5, 2009, 19 pages.
Hopcroft, Introduction to Automata Theory, Languages, and Computation, Second Edition, Addison-Wesley, Copyright 2001, 524 pages.
Hulten et al., Mining Time-Changing Data Stream, Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining., Aug. 2001, 10 pages.
Jin et al., ARGUS: Efficient Scalable Continuous Query Optimization for Large-Volume Data Streams, 10th International Database Engineering and Applications Symposium (IDEAS'06),, 2006, 7 pages.
Josifovsky et al., Querying XML Streams, The VLDB Journal, vol. 14, 2005, pp. 197-210.
Japanese Application No. 2013-529376, Office Action dated Aug. 18, 2015, 2 pages.
Japanese Application No. 2014-509315, Office Action dated Mar. 15, 2016, 5 pages.
Katsov, In-Stream Big Data Processing: Highly Scalable Blog, Retrieved from the Internet: URL: https://web.archive.orgjweb/20140829054527/http://highlyscalable.wordpress.com/2013/08/20/in-stream-big-data-processing/, Aug. 29, 2014, 19 pages.
Katsov, In-Stream Big Data Processing : Highly Scalable Blog, Retrieved from the Internet: URL: https://highlyscalable .wordpress.com/2013/08/20/in-stream-big-data-processing/, Aug. 20, 2013, 20 pages.
Kawaguchi et al., Java Architecture for XML Binding (JAXB) 2.2, Sun Microsystems, Inc., Dec. 10, 1999, 384 pages.
Kitagawa et al., Sensing Network, Information Processing, Information Processing Society of Japan, vol. 51, No. 9, Sep. 15, 2010, pp. 1119-1126.
Knuth et al., Fast Pattern Matching in Strings, Siam Journal of Computers, vol. 6(2), Jun. 1977, pp. 323-350.
Komazec et al., Towards Efficient Schema-Enhanced Pattern Matching over RDF Data Streams, Proceedings of the 1st International Workshop on Ordering and Reasoning (OrdRing 2011), Bonn, Germany, Oct. 2011, pp. 1-6.
Kraemer, Continuous Queries Over Data Streams—Semantics and Implementation, Fachbereich Mathematik und Informatik der Philipps-Universitat Marburg, Germany Retrieved from the Internet: URL:http://archiv.ub.uni-marburg.de/dissjz2007/0671/pdfjdjk.pdf, Jan. 1, 2007.
Kramer, Semantics and Implementation of Continuous Sliding Window Queries over Data Streams, ACM Transactions on Database Systems, vol. 34, Apr. 2009, pp. 4:1-4:49.
Kuwata et al., Stream Data Analysis Application for Customer Behavior with Complex Event Processing, IEICE Technical Report, The Institute of Electronics, Information and Communication Engineers, vol. 110, No. 107, Jun. 21, 2010, pp. 13-18.
Lakshmanan et al., On efficient matching of streaming XML documents and queries, 2002, 18 pages.
Lindholm et al., Java Virtual Machine Specification, 2nd Edition Prentice Hall, Apr. 1999, 484 pages.
Liu et al., Efficient XSLT Processing in Relational Database System, Proceeding of the 32nd. International Conference on Very Large Data Bases (VLDB), Sep. 2006, pp. 1106-1116.
Liu, HBaseCon 2014: HBase Design Patterns@ Yahoo!, Retrieved from the Internet: URL:https://vimeo.com/100518742, May 5, 2014, 1 page.
Luckham, What's the Difference Between ESP and CEP, Complex Event Processing, downloaded, at URL:http://complexevents.com/p=103, Apr. 29, 2011, 5 pages.
Madden et al., Continuously Adaptive Continuous Queries (CACQ) over Streams, SIGMOD 2002, Jun. 4-6, 2002, 12 pages.
Martin et al., Finding Application Errors and Security Flaws Using PQL, a Program Query Language, OOPSLA'05, Oct. 16, 2005, pp. 1-19.
Motwani et al., Query Processing Resource Management, and Approximation in a Data Stream Management System, Proceedings of CIDR 2003, Jan. 2003, pp. 245-256.
Munagala et al., Optimization of Continuous Queries with Shared Expensive Filters, Proceedings of the 26th ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, Oct. 17, 2007, 14 pages.
Nah et al., A Cluster-Based TMO-Structured Scalable Approach for Location Information Systems, Object-Oriented Real-Time Dependable Systems, 2003. WORDS 2003 Fall. Proceedings. Ninth IEEE International Workshop on Date of Conference: Oct. 1-3, 2003, Jan. 1, 2003, pp. 225-233.
Nichols et al., A faster closure algorithm for pattern matching in partial-order event data, IEEE International Conference on Parallel and Distributed Systems, Dec. 2007, pp. 1-9.
Novick, Creating a User Defined Aggregate with SQL Server 2005, URL: http://novicksoftware.com/Articles/sql-2005-product-user-defined-aggregate.html, 2005, 6 pages.
Ogrodnek, Custom UDFs and hive, Bizo development blog http://dev.bizo.com, Jun. 23, 2009, 2 pages.
Olston et al., Pig Latin, A Not-So-Foreign Language for Data Processing, 2008, 12 pages.
International Application No. PCT/RU2015/000468, International Search Report and Written Opinion dated Apr. 25, 2016, 9 pages.
International Application No. PCT/US2011/052019, International Preliminary Report on Patentability dated Mar. 28, 2013, 6 pages.
International Application No. PCT/US2011/052019, International Search Report and Written Opinion dated Nov. 17, 2011, 9 pages.
International Application No. PCT/US2012/034970, International Preliminary Report on Patentability dated Nov. 21, 2013, 7 pages.
International Application No. PCT/US2012/034970, International Search Report and Written Opinion dated Jul. 16, 2012, 9 pages.
International Application No. PCT/US2012/036353, International Preliminary Report on Patentability dated Nov. 28, 2013, 6 pages.
International Application No. PCT/US2012/036353, International Search Report and Written Opinion dated Sep. 12, 2012, 11 pages.
International Application No. PCT/US2013/062047, International Preliminary Report on Patentability dated Apr. 9, 2015, 10 pages.
International Application No. PCT/US2013/062047, International Search Report and Written Opinion dated Jul. 16, 2014, 12 pages.
International Application No. PCT/US2013/062050, International Search Report & Written Opinion dated Jul. 2, 2014, 13 pages.
International Application No. PCT/US2013/062052, International Preliminary Report on Patentability dated Apr. 9, 2015, 8 pages.
International Application No. PCT/US2013/062052, International Search Report & Written Opinion dated Jul. 3, 2014, 12 pages.
International Application No. PCT/US2013/073086, International Preliminary Report on Patentability dated Jun. 18, 2015, 6 pages.
International Application No. PCT/US2013/073086, International Search Report and Written Opinion dated Mar. 14, 2014, 9 pages.
International Application No. PCT/US2014/010832, International Search Report and Written Opinion dated Apr. 3, 2014, 8 pages.
International Application No. PCT/US2014/010832, Written Opinion dated Dec. 15, 2014, 5 pages.
International Application No. PCT/US2014/010920, International Preliminary Report on Patentability dated Jul. 29, 2015, 7 pages.
International Application No. PCT/US2014/010920, International Search Report and Written Opinion dated Dec. 15, 2014, 10 pages.
International Application No. PCT/US2014/039771, International Preliminary Report on Patentability dated Jul. 29, 2015, 24 pages.
International Application No. PCT/US2014/039771, International Search Report and Written Opinion dated Sep. 24, 2014, 12 pages.
International Application No. PCT/US2014/039771, Written Opinion dated Apr. 29, 2015, 6 pages.
International Application No. PCT/US2014/068641, International Preliminary Report on Patentability dated Jun. 16, 2016, 7 pages.
International Application No. PCT/US2014/068641, International Search Report and Written Opinion dated Feb. 26, 2015, 11 pages.
International Application No. PCT/US2015/016346, International Search Report and Written Opinion dated May 4, 2015, 10 pages.
International Application No. PCT/US2015/016346, Written Opinion dated May 24, 2016, 5 pages.
International Application No. PCT/US2015/051268, International Preliminary Report on Patentability dated Dec. 8, 2016, 12 pages.
International Application No. PCT/US2015/051268, International Search Report and Written Opinion dated Dec. 15, 2015, 17 pages.
International Application No. PCT/US2015/051268, Written Opinion dated Aug. 18, 2016, 7 pages.
Peng et al., Xpath Queries on Streaming Data, 2003, pp. 1-12.
Peterson, Petri Net Theory and the Modeling of Systems, Prentice Hall, 1981, 301 pages.
Postgressql, Documentation: Manuals: Postgres SQL 8.2: User-Defined Aggregates believed D to be prior to Apr. 21, 2007, 4 pages.
Pradhan, Implementing and Configuring SAP® Event Management, Galileo Press, 2010, pp. 17-21.
Purvee , Optimizing SPARQLeR Using Short Circuit Evaluation of Filter Clauses, Master of Science Thesis, Univ. of Georgia, Athens, GA, 2009, 66 pages.
Rao et al., Compiled Query Execution Engine using JVM, ICDE '06, Atlanta, GA, Apr. 3-7, 2006, 12 pages.
Ray et al., Optimizing complex sequence pattern extraction using caching, Data Engineering Workshops (ICDEW), 27th International Conference on IEEE, Apr. 11, 2011, pp. 243-248.
Sadri et al., Expressing and Optimizing Sequence Queries in Database Systems, ACM Transactions on Database Systems, vol. 29, No. 2, ACM Press, Copyright 2004., Jun. 2004, 282-318.
Sadtler et al., WebSphere Application Server Installation Problem Determination, Copyright 2007, IBM Corp., 2007, pp. 1-48.
Sansoterra, Empower SQL with Java User-Defined Functions, ITJungle.com, Oct. 9, 2003, 9 pages.
Seshadri et al., SmartCQL: Semantics to Handle Complex Queries over Data Streams, Wireless Communications Networking and Mobile Computing, Sep. 23-25, 2010, 5 pages.
Shah et al., Flux: an adaptive partitioning operator for continuous query systems, Proceedings of the 19th International Conference on Data Engineering, Mar. 5-8, 2003, pp. 25-36.
Sharaf et al., Efficient Scheduling of Heterogeneous Continuous Queries, VLDB '06, Sep. 12-15, 2006, pp. 511-522.
Stillger et al., LEO—DB2's Learning Optimizer, Proc. of the VLDB, Roma, Italy, Sep. 2001, pp. 19-28.
Stolze et al., User-defined Aggregate Functions in DB2 Universal Database, retrieved from: <http://www.128.ibm.com/deve10perworks/db2/library/tachartic1e/0309stolze/0309stolze.html>, Sep. 11, 2003, pp. 1-11.
Stump et al., Proceedings, The 2006 Federated Logic Conference, IJCAR '06 Workshop, PLPV '06: Programming Languages meets Program Verification., 2006, pp. 1-113.
Takenaka et al., A scalable complex event processing framework for combination of SQL-based continuous queries and C/C++ functions, FPL 2012, Oslo, Norway, Aug. 29-31, 2012, pp. 237-242.
Terry et al., Continuous queries over append-only database, Proceedings of ACM SIGMOD, 1992, pp. 321-330.
Tho et al., Zero-latency data warehousing for heterogeneous data sources and continuous data streams, 5th International Conference on Information Integrationand Web-based Applications Services, Sep. 2003, 12 pages.
Tomàs et al., RoSeS: A Continuous Content-Based Query Engine for RSS Feeds, DEXA 2011, Toulouse, France, Sep. 2, 2011, pp. 203-218.
Ullman et al., Introduction to JDBC, Stanford University, 2005, 7 pages.
Vajjhala et al., The Java Architecture for XML Binding (JAXB) 2.0, Apr. 19, 2006, 384 pages.
Vijayalakshmi et al., Processing Location Dependent Continuous Queries in Distributed Mobile Databases Using Mobile Agents, IET-UK International Conference on Information and Communication Technology in Electrical Sciences (ICTES 2007), Dec. 2007, pp. 1023-1030.
W3C, XML Path Language (Xpath), W3C Recommendation, Version. 1.0, Retrieved from: URL: http://www.w3.org/TR/xpath, Nov. 16, 1999, 37 pages.
Wang et al., Distributed continuous range query processing on moving objects, DEXA'06 Proceedings of the 17th international conference on Database and Expert Systems Applications, 2006, pp. 655-665.
Watanabe et al., Development of a Data Stream Integration System with a Multiple Query Optimizer, Journal articles of the 15th Data Engineering Workshop (DEWS2004), The Institute of Electronics, Information and Communication Engineers, Technical Committee on Data Engineering, Aug. 11, 2009, pp. 1-8.
Weidong et al., LeoXSS: An Efficient XML Stream System for Processing Complex XPaths, CIT 2006, Seoul, Korea, 2006, 6 pages.
White et al., WebLogic Event Server: A Lightweight, Modular Application Server for Event Processing, Proceedings of the Second International Conference on Distributed Event-based systems, Jul. 2008, pp. 193-200.
Widom et al., CQL: A Language for Continuous Queries over Streams and Relations, Oct. 17, 2007, 62 pages.
Widom et al., The Stanford Data Stream Management System, PowerPoint Presentation, Oct. 17, 2007, 110 pages.
Wilson et al., SAP Event Management, an Overview, Q Data USA, Inc., 2009.
Wu et al., Dynamic Data Management for Location Based Services in Mobile Environments, Database Engineering and Applications Symposium, Jul. 2003, pp. 180-189.
Yang et al., Map-Reduce-Merge, Simplified Relational Data Processing on Large Clusters, 2007, 12 pages.
Zemke, XML Query, H2 ad hoc subcommittee on SQL/XML, Mar. 2004, pp. 1-29.
U.S. Appl. No. 11/977,439, Notice of Allowance dated Nov. 24, 2010, 8 pages.
U.S. Appl. No. 13/827,631, Final Office Action dated Aug. 30, 2017, 18 pages.
U.S. Appl. No. 13/830,428, Final Office Action dated Oct. 5, 2017, 33 pages.
U.S. Appl. No. 13/830,735, Final Office Action dated Sep. 29, 2017, 16 pages.
U.S. Appl. No. 13/830,759, Notice of Allowance dated Aug. 23, 2017, 14 pages.
U.S. Appl. No. 14/037,153, Non-Final Office Action dated Aug. 10, 2017, 45 pages.
U.S. Appl. No. 14/755,088, Notice of Allowance dated Oct. 11, 2017, 5 pages.
U.S. Appl. No. 14/861,687, Non-Final Office Action dated Oct. 11, 2017, 10 pages.
U.S. Appl. No. 14/866,512, Final Office Action dated Sep. 13, 2017, 25 pages.
U.S. Appl. No. 15/360,650, Notice of Allowance dated Jul. 24, 2017, 13 pages.
Chinese Application No. 201380056017.2, Office Action dated Jul. 17, 2017, 25 pages (16 pages for the original document and 9 pages for the English translation).
Chinese Application No. 201380056099.0, Office Action dated Jul. 4, 2017, 26 pages (14 pages for the original document and 12 pages for the English translation).
European Patent Application EP14825489.9, Office Action dated Jul. 28, 2017, 7 pages.
U.S. Appl. No. 13/829,958, Non-Final Office Action dated Jan. 8, 2018, 22 pages.
U.S. Appl. No. 13/830,502, Final Office Action dated Nov. 8, 2017, 27 pages.
U.S. Appl. No. 13/830,735, Notice of Allowance dated Jan. 26, 2018, 9 pages.
U.S. Appl. No. 13/838,259, Non-Final Office Action dated Nov. 27, 2017, 69 pages.
U.S. Appl. No. 14/036,659, Notice of Allowance dated Nov. 30, 2017, 13 pages.
U.S. Appl. No. 14/079,538, Final Office Action dated Nov. 16, 2017, 26 pages.
U.S. Appl. No. 14/559,550, Notice of Allowance dated Dec. 5, 2017, 6 pages.
U.S. Appl. No. 14/973,377, Non-Final Office Action dated Nov. 30, 2017, 17 pages.
U.S. Appl. No. 14/866,512, Notice of Allowance dated Feb. 15, 2018, 5 pages.
Chinese Application No. 201480004736.4, Office Action dated Nov. 29, 2017, 13 pages (7 pages of English translation and 6 pages of Original document).
Related Publications (1)
Number Date Country
20160283555 A1 Sep 2016 US
Continuations (1)
Number Date Country
Parent 13770961 Feb 2013 US
Child 15177147 US