Data mining processes enable users to statistically analyze data related to their business. Data mining processes (e.g., filtering data, classifying data, clustering data) help in understanding data. For example, in generating predictive models that may be analyzed by the users to predict future of their business. Usually, data is fetched from a database onto an application server to perform data mining processes. Logics are executed on the application server to perform data mining. However, fetching data from the database and then filtering data on the application server to obtain relevant data for analysis may be a time consuming process. Further, frequent communication of data between the database and the application server requires larger bandwidth which reduces processing speed and efficiency.
In-database data mining may address the above problems. In in-database data mining, logics (e.g., filtering) are executed inside the database to fetch relevant data onto the application server for analysis. Therefore, in-database data mining is relatively efficient since logics are executed inside the database. The logics for performing data mining task are hardcoded by the users using scripting languages. Hardcoded scripts, e.g., SQL (Structured Query Language) scripts, are then executed by a database engine to perform data filtering or data mining. Different database vendors provide different algorithms with different scripts such as SQL scripts, R scripts, fuzzy logics, etc., for performing in-database data mining. Therefore, users are typically required to learn different scripts to hardcode logics for performing data mining.
Various embodiments of systems and methods for executing in-database data mining processes are described herein. In one aspect, the method executed by one or more computers in a network of computers includes identifying a newly created chain comprising a plurality of components connected together, generating an identifier (ID) for the newly created chain, identifying metadata related to the newly created chain, and storing the ID and the metadata related to the newly created chain into a repository. The chain may be altered or executed. Each component of the chain includes a parameterized script with one or more parameters. The components are executed by executing their respective script.
These and other benefits and features of embodiments of the invention will be apparent upon consideration of the following detailed description of preferred embodiments thereof, presented in connection with the following drawings.
The invention is illustrated by way of example and not by way of limitation in the figures of the accompanying drawings in which like references indicate similar elements. The embodiments, together with its advantages, may be best understood from the following detailed description taken in conjunction with the accompanying drawings.
Embodiments of techniques for executing in-database data mining processes are described herein. In the following description, numerous specific details are set forth to provide a thorough understanding of embodiments. One skilled in the relevant art will recognize, however, that the invention can be practiced without one or more of the specific details, or with other methods, components, materials, etc. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of the invention.
Reference throughout this specification to “one embodiment”, “this embodiment” and similar phrases, means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearances of these phrases in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
The DMT 320 helps user in analyzing data related to their business. The user may generate predictive models using the DMT 320. The predictive models help in predicting a behavior, e.g., an increasing trend or a decreasing trend of the data. Based upon the behavior of the data, various business decisions may be taken. In one embodiment, the DMT 320 may be a Predictive Analysis Process Designer (PAPD) tool developed by SAP® AG. The DMT 320 may include the list-of-predefined-components 400. The list-of-predefined-components 400 include the plurality of predefined components C1-CN which helps in performing data mining task.
The predefined components C1-CN helps in performing data mining task. Each component C1-CN represents a logical unit that performs an expertise task. For example, the components C1-CN may each be a procedure or a set of steps to perform a specific task. In one embodiment, each component C1-CN may be one of a data source component which retrieves data from a database table, an algorithm component comprising various data mining algorithms, a data writer component which is used to export or write an output onto a data file, a data preprocessor component which performs preprocessing operations such as sorting, filtering, merging, etc. In one embodiment, the algorithm component is one of a clustering algorithm, a classification algorithm, and a regression algorithm, etc. In one embodiment, a new component corresponding to a new algorithm or a new process may be plugged-in or included within the DMT 320.
The components C1-CN include the parameterized SQL script. The parameterized SQL script includes the one or more variables or parameters. A value of a parameter may be either predefined or specified by the user. For example, the component C1 may be the data source component that includes the parameterized SQL script with one or more parameters. The component C1 (data source component) may include the parameterized SQL script for retrieving data from the database 330, as shown below: insert into % OUTPUT_TABLE_NAME % (select % INPUT_COLS % from % INPUT TABLE %).
The above parameterized SQL script of the component C1 includes the parameters namely INPUT_COLS and INPUT TABLE. The parameterized SQL script of the component C1 generates an output table. The output table is represented as “OUTPUT_TABLE_NAME” in the parameterized SQL script. The output table includes one or more columns “INPUT_COLS” from the database table “INPUT_TABLE.” The output table “OUTPUT_TABLE_NAME,” the database table “INPUT_TABLE,” and the columns “INPUT_COLS” are the parameters in the above parameterized SQL script of the component C1. The value of the parameters may be provided by the user.
For example, the user may provide the value of “INPUT_TABLE” as “Table 1.” The Table 1 as shown below may be a table from the database 330:
The user may also provide the value of the parameter “INPUT_COLS” as columns of Table 1 that is to be selected. For example, the user may provide the value of “INPUT-COLS” as “product name, country, sales revenue.” Based upon the above-mentioned values of the parameters, the component C1 generates the output table “output_table—1” including the columns “product name, country and revenue.”
Referring to
Referring back to
In one embodiment, the DMT 320 may suggest possible associations or connection between the components C1-C3. For example, the DMT 320 may suggest a direct link or connection between the component C1 and C3. The user may accept the connection suggested by the DMT 320 or the user may explicitly connect the components C1-C3 as per their requirement. For example, the user may connect the component C1 to C2 and the component C2 to the component C3, as illustrated in
Once the chain 410 is created, the tool engine 310 generates the ID for the chain 410. The ID is transferred to the database 330. The database 330 stores the ID in the repository 340. In one embodiment, as shown in
The repository 340 also stores the metadata related to the chain 410. For example, the repository 340 may store the metadata indicating connection between different components C1-C3 of the chain 410 and the values of the parameters related to the SQL script of the components C1-C3. The repository 340 may be accessed to retrieve various metadata related to the chain 410.
The chain 410 can be altered or executed. In one embodiment, the DMT 320 may include an icon ‘create chain’ 420, ‘alter chain’ 430, and ‘execute chain’ 440 for creating, altering, and executing chain, respectively. The chain 410 may be altered by selecting the icon ‘alter chain’ 430. The user can change the connectivity between the components C1-C3. Also, the user can remove or delete any component C1-C3 of the chain 410. Further, a new component, e.g., C5 can be easily dragged and included within the chain 410.
The chain 410 may be executed by selecting the icon ‘execute icon’ 440. Once the icon ‘execute chain’ 440 is selected, the tool engine 310 retrieves the metadata related to the chain 410 including the values of the parameters related to each component C1-C3 of the chain 410. The parameter within the SQL script of each component C1-C3 may be substituted with their corresponding values. Each component C1-C3 of the chain 410 is executed sequentially, e.g., from the component C1 to the component C3.
In one embodiment, the chain 410 may be represented in the hierarchical topology such as a tree structure. A first component C1 of the chain 410 is a root component (i.e., the component having no parent component) and a last component C3 of the chain 410 is a leaf component (i.e., component having no child component), with component C2 being a child component of the component C1. In one embodiment, the chain 410 may be executed sequentially from root component C1 to leaf component C3.
Each component C1-C3 of the chain 410 is executed by firing their respective SQL script onto the database engine 350. The database engine 350 executes the SQL script. Once the last component C3 (leaf component) of the chain 410 is executed, the final output is generated. In one embodiment, the final output is stored in the database 330. In another embodiment, based upon the user's request, the final output may be displayed on a user interface.
An execution of the exemplary chain 410 may be described in the following paragraphs. In one embodiment, the root component C1 of the chain 410 is executed first. At the time of execution of the component C1, the tool engine 310 retrieves the information related to the component C1. For example, the tool engine 310 may retrieve the values of the parameters INPUT_TABLE 520 and INPUT_COLS 530 included within the parameterized SQL script of the component C1 from the repository 340. The tool engine 310 may retrieve the values “Table 1” and “product name, country, sales revenue” from the repository 340. The parameters INPUT_TABLE and INPUT_COLS included within the parameterized SQL script of the component C1 is replaced by their corresponding values “Table 1” and “product name, country, sales revenue.” The completed SQL script of the component C1 with substituted parameters is generated, as shown below: insert into output_table—1 (select product name, country, sales revenue from Table 1).
The component C1 fires the completed SQL script onto the database engine 350. The database engine 350 executes the completed SQL script and generates the output_table—1 shown below as Table 2:
In one embodiment, based upon the user's request, the output_table—1 may be displayed on the user interface. In another embodiment, the tool engine 310 passes the output_table—1 generated by the component C1 to the next component in the hierarchy, i.e., the component C2 of the chain 410.
The component C2 may be a filtering logic which is meant for filtering the information of the output_table—1 generated by the component C1. The component C2 filters the output_table—1 based upon some parameters. For example, the component C2 filters data of the ouput_table—1 based upon the value of the column “country” as “country=X.” The parameterized SQL script of the component C2 may be as shown below:
insert into % OUTPUT_TABLE_NAME % (SELECT % INPUT_COLS % from % INPUT_TABLE_NAME % where % COLUMN_NAME %=% VALUE %).
The above parameterized SQL script of the component C2 generates the output “OUTPUT_TABLE_NAME.” The “OUTPUT_TABLE_NAME” includes one or more columns “INPUT_COLS” having “COLUMN_NAME=VALUE” from the “INPUT_TABLE_NAME.” The value of the parameters “INPUT_COLS” and “COLUMN_NAME=VALUE” may be provided by the user. For example, the user may provide the value of “INPUT_COLS” as {product name, country, sales revenue} and the value of the “COLUMN_NAME=VALUE” as {country=X}. In one embodiment, the tool engine 310 internally assigns a name of the “OUTPUT_TABLE_NAME” as output—2. The tool engine 310 automatically replaces the parameter “INPUT_TABLE_NAME” with the output of the component C1, i.e., output_table—1.
The tool engine 310 replaces the parameters “OUTPUT_TABLE_NAME,” “INPUT_COLS,” “INPUT_TABLE_NAME,” and “COLUMN_NAME=VALUE” in the parameterized SQL script of the component C2 with output—2, {product name, country, sales revenue}, output_table—1, and {country=X}, respectively. The completed SQL script with replaced parameters is generated, as shown below:
insert into output—2 (SELECT product name, country, sales revenue from output_table—1 where country=“X”).
The component C2 fires the completed SQL script onto the database engine 350. The database engine 350 executes the completed SQL script and generates the output (output—2). In one embodiment, the output—2 may be the Table 3 as shown below:
In another embodiment, the output—2 may be a pointer pointing to one or more fields of the output_table—1. A field may comprise a row or a column. In one embodiment, the field may be an intersection of the one or more rows and the one or more columns. For example, the output—2 may points to rows 1, 4-5, 7-8, and 11 of the output_table—1. In one embodiment, if the user request to display the output—2, the tool engine 310 generates the table (Table 3 shown above) corresponding to the pointer information and displays to the user.
In one embodiment, the tool engine 310 passes the output 2, generated by the component C2, as the input to the next component C3 of the chain 410. The component C3 may be the clustering algorithm to group input data into different groups or clusters. The parameterized SQL script of the component C3 may be as shown below:
In the above SQL script, ‘IN’ indicates ‘input,’ ‘OUT’ indicates ‘output,’ and dataset indicates the input table upon which clustering is to be performed. For example, the output table of the component C2 (output—2) may be the dataset or input table for the component C3. ‘nClusters’ indicates a number of clusters or groups the dataset is to be divided into and the ‘outTableName’ is the final output generated by the component C3 as the result of clustering. The function “pal::kmeans(dataset, nClusters, outTableName)” is an exemplary function used to perform clustering using a kmeans algorithm. The function clusters the ‘dataset’ into ‘nClusters’ to generate the output table ‘outTableName.’ The function may vary depending upon the type of the database implemented. The value of the parameter “NUMBER_OF_CLUSTERS” may be provided by the user. For example, the user may provide the “NUMBER_OF_CLUSTERS” as “3.”
The tool engine 310 substitutes the parameters “INPUT_TABLE_NAME,” “NUMBER_OF_CLUSTERS,” and “OUTPUT_TABLE” in the parameterized SQL script of the component C3 by the values “output—2,” “3,” and “output—3,” respectively. The completed SQL script of the component C3 with substituted parameters is generated. The completed SQL script of the component C3 may be as shown below:
The component C3 fires the completed SQL script onto the database engine 350. The database engine 350 executes the completed SQL script and generates the final output, i.e., output—3 may be shown as Table 4 below:
The final output may be stored in the database 330. In one embodiment, the final output may be transmitted to the user interface or DMT 320 for further analysis.
In one embodiment, the processing starts from the leaf component C3. The leaf component C3 queries its parent component C2 for the required input (i.e., output—2). The parent component C2 in turn queries its parent component C1 for the required input (i.e., output_table—1). As the parent component C1 is the root component which is not dependent upon the output of any other component. Therefore, the root component C1 is executed to generate the output (e.g., output_table—1). The output_table—1 generated by the root component C1 is passed to its child component C2. Upon receiving the output_table—1, the component C2 is executed to generate the output—2. The output—2 generated by the component C2 is passed as the input to its child component C3. In one embodiment, the tool engine 310 passes the output generated by the component C1 (output_table—1) and the output generated by the component C2 (output—2) as the inputs to the component C3. As the component C3 is the leaf component, the component C3 is executed to generate the final output, e.g., output—3. The final output may be stored in the database 330. In one embodiment, the final output may be displayed on the user interface or the DMT 320.
In another embodiment, the chain may be a complex chain 600, as illustrated in
In one embodiment, if the tool engine 310 is embedded inside the database 330, the users not having the predefined components C1-CN (e.g., the non PAPD users) may still create or execute the chain using SQL constructs. Typically, the user can create and/or execute the chain by hardcoing SQL scripts. The user can write SQL scripts for creating chain, altering chain, and executing chain similar to writing SQL scripts for creating table, altering table, and executing table. The capability of the database engine 350 increases and the database engine 350 starts recognizing create chain, alter chain, and execute chain.
For example, the user may write the following SQL script for creating chain comprising the component C1 and the component C2:
Once the user writes the SQL script for creating chain, the tool engine 310 generates the ID corresponding to the chain. The ID and the various parameters related to the chain are stored in the repository 340. The user may execute the chain by writing the following SQL script:
If the VALUE OF CHAINID is “1,” the user may execute the chain by writing EXECUTE CHAIN<CHAINID=“1”>
The database engine 350 parse the line ‘EXECUTE CHAIN,’ and coordinate with the tool engine 310 to execute the chain with ID=1 using any of the methods described above.
Embodiments described above enable a user to easily create the chain for performing data mining tasks. The user can select the predefined components and connects the components to create the chain as per their requirement. The chain can be easily executed, e.g., on a single click, to perform the data mining task. Each component includes the predefined parameterized script for performing a specific data mining task. Consequently, it is not required to explicitly hardcode the process for performing the data mining task. Also, it is not required to be well versed with various scripting languages. The user acquainted with the data mining task can easily use the tool to perform data mining, without need to know the complex scripting languages. Therefore, the system is user friendly and saves resource, time, and effort that might be wasted in learning various scripting languages. Also, the system is very flexible and the users can easily mix-and-match the components to alter the chain when required. Additionally, the output or pointer generated while executing the intermediate components of the chain are not required to be stored. The output (e.g., pointer) can be easily and quickly accessed that increases speed and makes system more efficient. The generation of views also avoids duplication of data or generation of various intermediate tables. Again, as the output views are generated upon the original database table, there is no movement of data. The data may not leave the database until the final output is generated. Therefore, the system avoids unnecessarily duplication and communication of data that reduces bandwidth and increases efficiency. Moreover, the output generated by each component of the chain may be viewed or analyzed separately, when required.
Some embodiments may include the above-described methods being written as one or more software components. These components, and the functionality associated with each, may be used by client, server, distributed, or peer computer systems. These components may be written in a computer language corresponding to one or more programming languages such as, functional, declarative, procedural, object-oriented, lower level languages and the like. They may be linked to other components via various application programming interfaces and then compiled into one complete application for a server or a client. Alternatively, the components maybe implemented in server and client applications. Further, these components may be linked together via various distributed programming protocols. Some example embodiments may include remote procedure calls being used to implement one or more of these components across a distributed programming environment. For example, a logic level may reside on a first computer system that is remotely located from a second computer system containing an interface level (e.g., a graphical user interface). These first and second computer systems can be configured in a server-client, peer-to-peer, or some other configuration. The clients can vary in complexity from mobile and handheld devices, to thin clients and on to thick clients or even other servers.
The above-illustrated software components are tangibly stored on a computer readable storage medium as instructions. The term “computer readable storage medium” should be taken to include a single medium or multiple media that stores one or more sets of instructions. The term “computer readable storage medium” should be taken to include any physical article that is capable of undergoing a set of physical changes to physically store, encode, or otherwise carry a set of instructions for execution by a computer system which causes the computer system to perform any of the methods or process steps described, represented, or illustrated herein. Examples of computer readable storage media include, but are not limited to: magnetic media, such as hard disks, floppy disks, and magnetic tape; optical media such as CD-ROMs, DVDs and holographic indicator devices; magneto-optical media; and hardware devices that are specially configured to store and execute, such as application-specific integrated circuits (“ASICs”), programmable logic devices (“PLDs”) and ROM and RAM devices. Examples of computer readable instructions include machine code, such as produced by a compiler, and files containing higher-level code that are executed by a computer using an interpreter. For example, an embodiment may be implemented using Java, C++, or other object-oriented programming language and development tools. Another embodiment may be implemented in hard-wired circuitry in place of, or in combination with machine readable software instructions.
A data source is an information resource. Data sources include sources of data that enable data storage and retrieval. Data sources may include databases, such as, relational, transactional, hierarchical, multi-dimensional (e.g., OLAP), object oriented databases, and the like. Further data sources include tabular data (e.g., spreadsheets, delimited text files), data tagged with a markup language (e.g., XML data), transactional data, unstructured data (e.g., text files, screen scrapings), hierarchical data (e.g., data in a file system, XML data), files, a plurality of reports, and any other data source accessible through an established protocol, such as, Open Database Connectivity (ODBC), produced by an underlying software system, e.g., an ERP system, and the like. Data sources may also include a data source where the data is not tangibly stored or otherwise ephemeral such as data streams, broadcast data, and the like. These data sources can include associated data foundations, semantic layers, management systems, security systems and so on.
In the above description, numerous specific details are set forth to provide a thorough understanding of embodiments. One skilled in the relevant art will recognize, however that the invention can be practiced without one or more of the specific details or with other methods, components, techniques, etc. In other instances, well-known operations or structures are not shown or described in details to avoid obscuring aspects of the invention.
Although the processes illustrated and described herein include series of steps, it will be appreciated that the different embodiments are not limited by the illustrated ordering of steps, as some steps may occur in different orders, some concurrently with other steps apart from that shown and described herein. In addition, not all illustrated steps may be required to implement a methodology in accordance with the present invention. Moreover, it will be appreciated that the processes may be implemented in association with the apparatus and systems illustrated and described herein as well as in association with other systems not illustrated.
The above descriptions and illustrations of embodiments, including what is described in the Abstract, is not intended to be exhaustive or to limit the invention to the precise forms disclosed. While specific embodiments of, and examples for, the invention are described herein for illustrative purposes, various equivalent modifications are possible within the scope of the invention, as those skilled in the relevant art will recognize. These modifications can be made to the invention in light of the above detailed description. Rather, the scope of the invention is to be determined by the following claims, which are to be interpreted in accordance with established doctrines of claim construction.