Execution of auxiliary functions in an on-demand network code execution system

Information

  • Patent Grant
  • 11875173
  • Patent Number
    11,875,173
  • Date Filed
    Monday, November 30, 2020
    3 years ago
  • Date Issued
    Tuesday, January 16, 2024
    5 months ago
Abstract
Systems and methods are described for providing auxiliary functions in an on-demand code execution system in a manner that enables efficient execution of code. A user may generate a task on the system by submitting code. The system may determine the auxiliary functions that the submitted code may require when executed on the system, and may provide these auxiliary functions by provisioning or configuring sidecar virtualized execution environments that work in conjunction with the main virtualized execution environment executing the submitted code. Sidecar virtualized execution environments may be identified and obtained from a library of preconfigured sidecar virtualized execution environments, or a sidecar agent that provides the auxiliary function may be identified from a library, and then a virtualized execution environment may be provisioned with the agent and/or configured to work in conjunction with the main virtualized execution environment.
Description
BACKGROUND

Computing devices can utilize communication networks to exchange data. Companies and organizations operate computer networks that interconnect a number of computing devices to support operations or to provide services to third parties. The computing systems can be located in a single geographic location or located in multiple, distinct geographic locations (e.g., interconnected via private or public communication networks). Specifically, data centers or data processing centers, herein generally referred to as a “data center,” may include a number of interconnected computing systems to provide computing resources to users of the data center. The data centers may be private data centers operated on behalf of an organization or public data centers operated on behalf, or for the benefit of, the general public.


To facilitate increased utilization of data center resources, virtualization technologies allow a single physical computing device to host one or more instances of virtual machines that appear and operate as independent computing devices to users of a data center. With virtualization, the single physical computing device can create, maintain, delete, or otherwise manage virtual machines in a dynamic manner. In turn, users can request computer resources from a data center, including single computing devices or a configuration of networked computing devices, and be provided with varying numbers of virtual machine resources.


In some scenarios, virtual machine instances may be configured according to a number of virtual machine instance types to provide specific functionality. For example, various computing devices may be associated with different combinations of operating systems or operating system configurations, virtualized hardware resources and software applications to enable a computing device to provide different desired functionalities, or to provide similar functionalities more efficiently. These virtual machine instance type configurations are often contained within a device image, which includes static data containing the software (e.g., the OS and applications together with their configuration and data files, etc.) that the virtual machine will run once started. The device image is typically stored on the disk used to create or initialize the instance. Thus, a computing device may process the device image in order to implement the desired software configuration.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram depicting an illustrative environment in which an on-demand code execution system can operate to execute tasks corresponding to code, which may be submitted by users of the on-demand code execution system, and to provision and execute sidecar virtual machine instances to facilitate execution of the submitted code;



FIG. 2 depicts a general architecture of a computing device providing a sidecar configuration system that is configured to facilitate configuration of sidecar virtual machine instances used to facilitate execution of tasks on the on-demand code execution system of FIG. 1;



FIG. 3 is a flow diagram depicting illustrative interactions for submitting code corresponding to a task to the on-demand code execution system of FIG. 1, and for the on-demand code execution system to determine sidecar configurations to facilitate execution of the task on the on-demand code execution system;



FIG. 4 is a flow diagram depicting illustrative interactions for executing a task utilizing the determined sidecar configuration provided on the on-demand code execution system of FIG. 1;



FIG. 5 is a flow diagram depicting illustrative interactions for managing the lifecycles of sidecar virtual machine instances on the on-demand code execution system of FIG. 1;



FIG. 6 is a flow diagram depicting illustrative interactions between sidecar virtual machine instances and virtual machine instances that execute code corresponding to tasks on the on-demand code execution system of FIG. 1;



FIG. 7 is a flow chart depicting an illustrative routine for determining a sidecar configuration based on code submitted to the on-demand code execution system of FIG. 1; and



FIG. 8 is a flow chart depicting an illustrative routine for managing lifecycles of sidecars during execution of tasks on the on-demand code execution system of FIG. 1.





DETAILED DESCRIPTION

Generally described, aspects of the present disclosure relate to an on-demand code execution system. The on-demand code execution system enables rapid execution of code, which may be supplied by users of the on-demand code execution system. More specifically, embodiments of the present disclosure relate to implementing auxiliary functions for an on-demand code execution system through the use of “sidecar” virtual machine instances. As described in detail herein, the on-demand code execution system may provide a network-accessible service enabling users to submit or designate computer-executable code to be executed by virtual machine instances on the on-demand code execution system. Each set of code on the on-demand code execution system may define a “task,” and implement specific functionality corresponding to that task when executed on a virtual machine instance of the on-demand code execution system. Individual implementations of the task on the on-demand code execution system may be referred to as an “execution” of the task (or a “task execution”). The on-demand code execution system can further enable users to trigger execution of a task based on a variety of potential events, such as detecting new data at a network-based storage system, transmission of an application programming interface (“API”) call to the on-demand code execution system, or transmission of a specially formatted hypertext transport protocol (“HTTP”) packet to the on-demand code execution system. Thus, users may utilize the on-demand code execution system to execute any specified executable code “on-demand,” without requiring configuration or maintenance of the underlying hardware or infrastructure on which the code is executed. Further, the on-demand code execution system may be configured to execute tasks in a rapid manner (e.g., in under 100 milliseconds [ms]), thus enabling execution of tasks in “real-time” (e.g., with little or no perceptible delay to an end user).


The on-demand code execution system may instantiate virtual machine instances to execute the specified tasks on demand. The on-demand code execution system may further instantiate “sidecar” virtual machine instances, which enable users to control or monitor the execution of a task and the virtual machine instance upon which it executes. Illustratively, a sidecar virtual machine instance (which may be referred to herein as a “sidecar”) may implement one or more functions for controlling, securing, filtering, monitoring, or managing the virtual machine instance that executes the task code. By implementing these functions in a sidecar or sidecars, the on-demand code execution system can effectively separate these functions from the virtual machine instances executing task code. The sidecar implementation thus improves efficiency with regard to resource utilization, since (as described in more detail below) the sidecars can be made available only when needed. The sidecar implementation further improves security for individual users, since an attacker who compromises one sidecar does not gain access to the sidecars or virtual machine instances of other users.


As used herein, “auxiliary functions” may refer generally to functions that facilitate the execution of user-submitted task code. For example, auxiliary functions may include encapsulation, logging, tracing, debugging, scanning, profiling, validating input, validating output, or other functions that relate to task code execution. It will be understood by one skilled in the art, however, that these examples are not limiting and that sidecars performing other functions are within the scope of the present disclosure. In some embodiments, auxiliary functions may include control plane functions that execute with administrator-level privileges. Sidecars may be instantiated to perform these functions on a per-user, per-task, or per-call basis, and may thus provide individual users with access to individualized control planes for their virtual machine instances. For example, a sidecar that encapsulates network traffic may be made available to individual users, and may translate packets that are transported on a physical substrate network to a virtual network that the user can access from the user's virtual machine instance. The on-demand code execution system can thus provide network encapsulation via a sidecar, and can do so without allowing a virtual machine instance that runs user code to access the substrate network and potentially de-encapsulate the traffic of other users.


As will be appreciated by one of skill in the art in light of the present disclosure, the embodiments disclosed herein improves the ability of computing systems, such as on-demand code execution systems, to execute code in an efficient manner. Moreover, the presently disclosed embodiments address technical problems inherent within computing systems; specifically, the limited nature of computing resources with which to execute code, the resource overhead associated with providing “always-on” auxiliary functionality, the inefficiencies caused by provisioning functionality that is not utilized, and the security issues caused by providing a common control plane to multiple users. These technical problems are addressed by the various technical solutions described herein, including the provisioning of an execution environment with sidecar virtual machine instances that provide user-specific or task-specific functionality. Thus, the present disclosure represents an improvement on existing data processing systems and computing systems in general.


The on-demand code execution system may include a virtual machine instance manager configured to receive user code (threads, programs, etc., composed in any of a variety of programming languages) and execute the code in a highly scalable, low latency manner, without requiring user configuration of a virtual machine instance. Specifically, the virtual machine instance manager can, prior to receiving the user code and prior to receiving any information from a user regarding any particular virtual machine instance configuration, create and configure virtual machine instances according to a predetermined set of configurations, each corresponding to any one or more of a variety of run-time environments. Thereafter, the virtual machine instance manager receives user-initiated requests to execute code, and identifies a pre-configured virtual machine instance to execute the code based on configuration information associated with the request. The virtual machine instance manager can further allocate the identified virtual machine instance to execute the user's code at least partly by creating and configuring containers inside the allocated virtual machine instance, and provisioning the containers with code of the task as well as an dependency code objects. Various embodiments for implementing a virtual machine instance manager and executing user code on virtual machine instances is described in more detail in U.S. Pat. No. 9,323,556, entitled “PROGRAMMATIC EVENT DETECTION AND MESSAGE GENERATION FOR REQUESTS TO EXECUTE PROGRAM CODE,” and filed Sep. 30, 2014 (the “'556 Patent”), the entirety of which is hereby incorporated by reference.


As used herein, the term “virtual machine instance” is intended to refer to an execution of software or other executable code that emulates hardware to provide an environment or platform on which software may execute (an “execution environment”). Virtual machine instances are generally executed by hardware devices, which may differ from the physical hardware emulated by the virtual machine instance. For example, a virtual machine may emulate a first type of processor and memory while being executed on a second type of processor and memory. Thus, virtual machines can be utilized to execute software intended for a first execution environment (e.g., a first operating system) on a physical device that is executing a second execution environment (e.g., a second operating system). In some instances, hardware emulated by a virtual machine instance may be the same or similar to hardware of an underlying device. For example, a device with a first type of processor may implement a plurality of virtual machine instances, each emulating an instance of that first type of processor. Thus, virtual machine instances can be used to divide a device into a number of logical sub-devices (each referred to as a “virtual machine instance”). While virtual machine instances can generally provide a level of abstraction away from the hardware of an underlying physical device, this abstraction is not required. For example, assume a device implements a plurality of virtual machine instances, each of which emulate hardware identical to that provided by the device. Under such a scenario, each virtual machine instance may allow a software application to execute code on the underlying hardware without translation, while maintaining a logical separation between software applications running on other virtual machine instances. This process, which is generally referred to as “native execution,” may be utilized to increase the speed or performance of virtual machine instances. Other techniques that allow direct utilization of underlying hardware, such as hardware pass-through techniques, may be used, as well.


While a virtual machine executing an operating system is described herein as one example of an execution environment, other execution environments are also possible. For example, tasks or other processes may be executed within a software “container,” which provides a runtime environment without itself providing virtualization of hardware. Containers may be implemented within virtual machines to provide additional security, or may be run outside of a virtual machine instance.


The foregoing aspects and many of the attendant advantages of this disclosure will become more readily appreciated as the same become better understood by reference to the following description, when taken in conjunction with the accompanying drawings.



FIG. 1 is a block diagram of an illustrative operating environment 100 in which an on-demand code execution system 110 may operate based on communication with user computing devices 102, auxiliary services 106, and network-based data storage services 108. By way of illustration, various example user computing devices 102 are shown in communication with the on-demand code execution system 110, including a desktop computer, laptop, and a mobile phone. In general, the user computing devices 102 can be any computing device such as a desktop, laptop or tablet computer, personal computer, wearable computer, server, personal digital assistant (PDA), hybrid PDA/mobile phone, mobile phone, electronic book reader, set-top box, voice command device, camera, digital media player, and the like. The on-demand code execution system 110 may provide the user computing devices 102 with one or more user interfaces, command-line interfaces (CLIs), application programing interfaces (APIs), and/or other programmatic interfaces for generating and uploading user-executable code (e.g., including metadata identifying dependency code objects for the uploaded code), invoking the user-provided code (e.g., submitting a request to execute the user codes on the on-demand code execution system 110), scheduling event-based jobs or timed jobs, tracking the user-provided code, and/or viewing other logging or monitoring information related to their requests and/or user codes. Although one or more embodiments may be described herein as using a user interface, it should be appreciated that such embodiments may, additionally or alternatively, use any CLIs, APIs, or other programmatic interfaces.


The illustrative environment 100 further includes one or more auxiliary services 106, which can interact with the one-demand code execution environment 110 to implement desired functionality on behalf of a user. Auxiliary services 106 can correspond to network-connected computing devices, such as servers, which generate data accessible to the one-demand code execution environment 110 or otherwise communicate to the one-demand code execution environment 110. For example, the auxiliary services 106 can include web services (e.g., associated with the user computing devices 102, with the on-demand code execution system 110, or with third parties), databases, really simple syndication (“RSS”) readers, social networking sites, or any other source of network-accessible service or data source. In some instances, auxiliary services 106 may be associated with the on-demand code execution system 110, e.g., to provide billing or logging services to the on-demand code execution system 110. In some instances, auxiliary services 106 actively transmit information, such as API calls or other task-triggering information, to the on-demand code execution system 110. In other instances, auxiliary services 106 may be passive, such that data is made available for access by the on-demand code execution system 110. For example, components of the on-demand code execution system 110 may periodically poll such passive data sources, and trigger execution of tasks within the on-demand code execution system 110 based on the data provided. While depicted in FIG. 1 as distinct from the user computing devices 102 and the on-demand code execution system 110, in some embodiments, various auxiliary services 106 may be implemented by either the user computing devices 102 or the on-demand code execution system 110.


The illustrative environment 100 further includes one or more network-based data storage services 108, configured to enable the on-demand code execution system 110 to store and retrieve data from one or more persistent or substantially persistent data sources. Illustratively, the network-based data storage services 108 may enable the on-demand code execution system 110 to store information corresponding to a task, such as code or metadata, to store additional code objects representing dependencies of tasks, to retrieve data to be processed during execution of a task, and to store information (e.g., results) regarding that execution. The network-based data storage services 108 may represent, for example, a relational or non-relational database. In another example, the network-based data storage services 108 may represent a network-attached storage (NAS), configured to provide access to data arranged as a file system. The network-based data storage services 108 may further enable the on-demand code execution system 110 to query for and retrieve information regarding data stored within the on-demand code execution system 110, such as by querying for a number of relevant files or records, sizes of those files or records, file or record names, file or record creation times, etc. In some instances, the network-based data storage services 108 may provide additional functionality, such as the ability to separate data into logical groups (e.g., groups associated with individual accounts, etc.). While shown as distinct from the auxiliary services 106, the network-based data storage services 108 may in some instances also represent a type of auxiliary service 106.


The user computing devices 102, auxiliary services 106, and network-based data storage services 108 may communicate with the on-demand code execution system 110 via a network 104, which may include any wired network, wireless network, or combination thereof. For example, the network 104 may be a personal area network, local area network, wide area network, over-the-air broadcast network (e.g., for radio or television), cable network, satellite network, cellular telephone network, or combination thereof. As a further example, the network 104 may be a publicly accessible network of linked networks, possibly operated by various distinct parties, such as the Internet. In some embodiments, the network 104 may be a private or semi-private network, such as a corporate or university intranet. The network 104 may include one or more wireless networks, such as a Global System for Mobile Communications (GSM) network, a Code Division Multiple Access (CDMA) network, a Long Term Evolution (LTE) network, or any other type of wireless network. The network 104 can use protocols and components for communicating via the Internet or any of the other aforementioned types of networks. For example, the protocols used by the network 104 may include Hypertext Transfer Protocol (HTTP), HTTP Secure (HTTPS), Message Queue Telemetry Transport (MQTT), Constrained Application Protocol (CoAP), and the like. Protocols and components for communicating via the Internet or any of the other aforementioned types of communication networks are well known to those skilled in the art and, thus, are not described in more detail herein.


The on-demand code execution system 110 is depicted in FIG. 1 as operating in a distributed computing environment including several computer systems that are interconnected using one or more computer networks (not shown in FIG. 1). The on-demand code execution system 110 could also operate within a computing environment having a fewer or greater number of devices than are illustrated in FIG. 1. Thus, the depiction of the on-demand code execution system 110 in FIG. 1 should be taken as illustrative and not limiting to the present disclosure. For example, the on-demand code execution system 110 or various constituents thereof could implement various Web services components, hosted or “cloud” computing environments, and/or peer to peer network configurations to implement at least a portion of the processes described herein.


Further, the on-demand code execution system 110 may be implemented directly in hardware or software executed by hardware devices and may, for instance, include one or more physical or virtual servers implemented on physical computer hardware configured to execute computer executable instructions for performing various features that will be described herein. The one or more servers may be geographically dispersed or geographically co-located, for instance, in one or more data centers. In some instances, the one or more servers may operate as part of a system of rapidly provisioned and released computing resources, often referred to as a “cloud computing environment.”


In the example of FIG. 1, the on-demand code execution system 110 is illustrated as connected to the network 104. In some embodiments, any of the components within the on-demand code execution system 110 can communicate with other components of the on-demand code execution system 110 via the network 104. In other embodiments, not all components of the on-demand code execution system 110 are capable of communicating with other components of the virtual environment 100. In one example, only the frontend 120 (which may in some instances represent multiple frontends 120) may be connected to the network 104, and other components of the on-demand code execution system 110 may communicate with other components of the environment 100 via the frontends 120.


In FIG. 1, users, by way of user computing devices 102, may interact with the on-demand code execution system 110 to provide executable code, and establish rules or logic defining when and how such code should be executed on the on-demand code execution system 110, thus establishing a “task.” For example, a user may wish to run a piece of code in connection with a web or mobile application that the user has developed. One way of running the code would be to acquire virtual machine instances from service providers who provide infrastructure as a service, configure the virtual machine instances to suit the user's needs, and use the configured virtual machine instances to run the code. In order to avoid the complexity of this process, the user may alternatively provide the code to the on-demand code execution system 110, and request that the on-demand code execution system 110 execute the code. The on-demand code execution system 110 can handle the acquisition and configuration of compute capacity (e.g., containers, instances, etc., which are described in greater detail below) based on the code execution request, and execute the code using the compute capacity. The on-demand code execution system 110 may automatically scale up and down based on the volume, thereby relieving the user from the burden of having to worry about over-utilization (e.g., acquiring too little computing resources and suffering performance issues) or under-utilization (e.g., acquiring more computing resources than necessary to run the codes, and thus overpaying). In accordance with embodiments of the present disclosure, and as described in more detail below, the on-demand code execution system 110 may configure the virtual machine instances with customized operating systems to execute the user's code more efficiency and reduce utilization of computing resources.


To enable interaction with the on-demand code execution system 110, the system 110 includes one or more frontends 120, which enable interaction with the on-demand code execution system 110. In an illustrative embodiment, the frontends 120 serve as a “front door” to the other services provided by the on-demand code execution system 110, enabling users (via user computing devices 102) to provide, request execution of, and view results of computer executable code. The frontends 120 include a variety of components to enable interaction between the on-demand code execution system 110 and other computing devices. For example, each frontend 120 may include a request interface providing user computing devices 102 with the ability to upload or otherwise communication user-specified code to the on-demand code execution system 110 and to thereafter request execution of that code. In one embodiment, the request interface communicates with external computing devices (e.g., user computing devices 102, auxiliary services 106, etc.) via a graphical user interface (GUI), CLI, or API. The frontends 120 process the requests and makes sure that the requests are properly authorized. For example, the frontends 120 may determine whether the user associated with the request is authorized to access the user code specified in the request.


References to user code as used herein may refer to any program code (e.g., a program, routine, subroutine, thread, etc.) written in a specific program language. In the present disclosure, the terms “code,” “user code,” and “program code,” may be used interchangeably. Such user code may be executed to achieve a specific function, for example, in connection with a particular web application or mobile application developed by the user. As noted above, individual collections of user code (e.g., to achieve a specific function) are referred to herein as “tasks,” while specific executions of that code (including, e.g., compiling code, interpreting code, or otherwise making the code executable) are referred to as “task executions” or simply “executions.” Tasks may be written, by way of non-limiting example, in JavaScript (e.g., node.js), Java, Python, and/or Ruby (and/or another programming language). Tasks may be “triggered” for execution on the on-demand code execution system 110 in a variety of manners. In one embodiment, a user or other computing device may transmit a request to execute a task may, which can generally be referred to as “call” to execute of the task. Such calls may include the user code (or the location thereof) to be executed and one or more arguments to be used for executing the user code. For example, a call may provide the user code of a task along with the request to execute the task. In another example, a call may identify a previously uploaded task by its name or an identifier. In yet another example, code corresponding to a task may be included in a call for the task, as well as being uploaded in a separate location (e.g., storage of an auxiliary service 106 or a storage system internal to the on-demand code execution system 110) prior to the request being received by the on-demand code execution system 110. As noted above, the code for a task may reference additional code objects maintained at the on-demand code execution system 110 by use of identifiers of those code objects, such that the code objects are combined with the code of a task in an execution environment prior to execution of the task. The on-demand code execution system 110 may vary its execution strategy for a task based on where the code of the task is available at the time a call for the task is processed. A request interface of the frontend 120 may receive calls to execute tasks as Hypertext Transfer Protocol Secure (HTTPS) requests from a user. Also, any information (e.g., headers and parameters) included in the HTTPS request may also be processed and utilized when executing a task. As discussed above, any other protocols, including, for example, HTTP, MQTT, and CoAP, may be used to transfer the message containing a task call to the request interface 122.


A call to execute a task may specify one or more third-party libraries (including native libraries) to be used along with the user code corresponding to the task. In one embodiment, the call may provide to the on-demand code execution system 110 a file containing the user code and any libraries (and/or identifications of storage locations thereof) corresponding to the task requested for execution. In some embodiments, the call includes metadata that indicates the program code of the task to be executed, the language in which the program code is written, the user associated with the call, and/or the computing resources (e.g., memory, etc.) to be reserved for executing the program code. For example, the program code of a task may be provided with the call, previously uploaded by the user, provided by the on-demand code execution system 110 (e.g., standard routines), and/or provided by third parties. Illustratively, code not included within a call or previously uploaded by the user may be referenced within metadata of the task by use of a URI associated with the code. In some embodiments, such resource-level constraints (e.g., how much memory is to be allocated for executing a particular user code) are specified for the particular task, and may not vary over each execution of the task. In such cases, the on-demand code execution system 110 may have access to such resource-level constraints before each individual call is received, and the individual call may not specify such resource-level constraints. In some embodiments, the call may specify other constraints such as permission data that indicates what kind of permissions or authorities that the call invokes to execute the task. Such permission data may be used by the on-demand code execution system 110 to access private resources (e.g., on a private network). In some embodiments, individual code objects may also be associated with permissions or authorizations. For example, a third party may submit a code object and designate the object as readable by only a subset of users. The on-demand code execution system 110 may include functionality to enforce these permissions or authorizations with respect to code objects.


In some embodiments, a call may specify the behavior that should be adopted for handling the call. In such embodiments, the call may include an indicator for enabling one or more execution modes in which to execute the task referenced in the call. For example, the call may include a flag or a header for indicating whether the task should be executed in a debug mode in which the debugging and/or logging output that may be generated in connection with the execution of the task is provided back to the user (e.g., via a console user interface). In such an example, the on-demand code execution system 110 may inspect the call and look for the flag or the header, and if it is present, the on-demand code execution system 110 may modify the behavior (e.g., logging facilities) of the container in which the task is executed, and cause the output data to be provided back to the user. In some embodiments, the behavior/mode indicators are added to the call by the user interface provided to the user by the on-demand code execution system 110. Other features such as source code profiling, remote debugging, etc. may also be enabled or disabled based on the indication provided in a call.


To manage requests for code execution, the frontend 120 can include an execution queue (not shown in FIG. 1), which can maintain a record of requested task executions. Illustratively, the number of simultaneous task executions by the on-demand code execution system 110 is limited, and as such, new task executions initiated at the on-demand code execution system 110 (e.g., via an API call, via a call from an executed or executing task, etc.) may be placed on the execution queue 124 and processed, e.g., in a first-in-first-out order. In some embodiments, the on-demand code execution system 110 may include multiple execution queues, such as individual execution queues for each user account. For example, users of the on-demand code execution system 110 may desire to limit the rate of task executions on the on-demand code execution system 110 (e.g., for cost reasons). Thus, the on-demand code execution system 110 may utilize an account-specific execution queue to throttle the rate of simultaneous task executions by a specific user account. In some instances, the on-demand code execution system 110 may prioritize task executions, such that task executions of specific accounts or of specified priorities bypass or are prioritized within the execution queue. In other instances, the on-demand code execution system 110 may execute tasks immediately or substantially immediately after receiving a call for that task, and thus, the execution queue may be omitted.


As noted above, tasks may be triggered for execution at the on-demand code execution system 110 based on explicit calls from user computing devices 102 (e.g., as received at the request interface). Alternatively or additionally, tasks may be triggered for execution at the on-demand code execution system 110 based on data retrieved from one or more auxiliary services 106 or network-based data storage services 108. To facilitate interaction with auxiliary services 106, the frontend 120 can include a polling interface (not shown in FIG. 1), which operates to poll auxiliary services 106 or data storage services 108 for data. Illustratively, the polling interface may periodically transmit a request to one or more user-specified auxiliary services 106 or data storage services 108 to retrieve any newly available data (e.g., social network “posts,” news articles, files, records, etc.), and to determine whether that data corresponds to a user-established criteria triggering execution a task on the on-demand code execution system 110. Illustratively, criteria for execution of a task may include, but is not limited to, whether new data is available at the auxiliary services 106 or data storage services 108, the type or content of the data, or timing information corresponding to the data. In some instances, the auxiliary services 106 or data storage services 108 may function to notify the frontend 120 of the availability of new data, and thus the polling service may be unnecessary with respect to such services.


In addition to tasks executed based on explicit user calls and data from auxiliary services 106, the on-demand code execution system 110 may in some instances operate to trigger execution of tasks independently. For example, the on-demand code execution system 110 may operate (based on instructions from a user) to trigger execution of a task at each of a number of specified time intervals (e.g., every 10 minutes).


The frontend 120 can further include an output interface (not shown in FIG. 1) configured to output information regarding the execution of tasks on the on-demand code execution system 110. Illustratively, the output interface may transmit data regarding task executions (e.g., results of a task, errors related to the task execution, or details of the task execution, such as total time required to complete the execution, total data processed via the execution, etc.) to the user computing devices 102 or to auxiliary services 106, which may include, for example, billing or logging services. The output interface may further enable transmission of data, such as service calls, to auxiliary services 106. For example, the output interface may be utilized during execution of a task to transmit an API request to an external service 106 (e.g., to store data generated during execution of the task).


In some embodiments, the on-demand code execution system 110 may include multiple frontends 120. In such embodiments, a load balancer (not shown in FIG. 1) may be provided to distribute the incoming calls to the multiple frontends 120, for example, in a round-robin fashion. In some embodiments, the manner in which the load balancer distributes incoming calls to the multiple frontends 120 may be based on the location or state of other components of the on-demand code execution system 110. For example, a load balancer may distribute calls to a geographically nearby frontend 120, or to a frontend with capacity to service the call. In instances where each frontend 120 corresponds to an individual instance of another component of the on-demand code execution system, such as the active pool 140A described below, the load balancer may distribute calls according to the capacities or loads on those other components. As will be described in more detail below, calls may in some instances be distributed between frontends 120 deterministically, such that a given call to execute a task will always (or almost always) be routed to the same frontend 120. This may, for example, assist in maintaining an accurate execution record for a task, to ensure that the task executes only a desired number of times. While distribution of calls via a load balancer is illustratively described, other distribution techniques, such as anycast routing, will be apparent to those of skill in the art.


To facilitate execution of tasks, the on-demand code execution system 110 includes one or more sidecar libraries 130, which in turn include one or more sidecar images. In the example illustrated in FIG. 1, the sidecar library 130 includes a sidecar image 132, which comprises an operating system 132A and an agent 132B, and a sidecar image 134, which comprises an operating system 134A and an agent 134B. In some embodiments, the operating system 132A and the operating system 134A may be the same operating system. As described in more detail below, the agents 132B and 134B may perform one or more auxiliary functions when configured to communicate with a virtual machine instance or instances. In some embodiments, the sidecar library 130 contains only agents that perform auxiliary functions (e.g., agents 132B and 134B), and a sidecar is created by provisioning a virtual machine instance with one or more of the agents from the sidecar library 130.


The on-demand code execution system 110 further includes a sidecar configuration system 160, which implements aspects of the present disclosure including, for example, the determination and configuration of virtual machine instances and sidecar instances for a particular task. In some embodiments, the sidecar configuration system 160 includes a virtual machine configuration unit 162, which may be invoked when the user submits code via the frontend 120 to determine a virtual machine configuration to use with the submitted code. As described in more detail below, the virtual machine configuration unit 162 may analyze the user's code and identify, for example, operating system “hooks,” input and/or output redirections, or other modifications to facilitate interactions between a virtual machine instance and various sidecars before, during, and/or after execution of the user-submitted code. In various embodiments, the virtual machine configuration unit 162 may analyze the user's code or process user requests to determine a virtual machine configuration. In further embodiments, the on-demand code execution system 110 includes a sidecar configuration unit 164, which may identify the sidecars to be provisioned along with any configuration of the sidecars to facilitate interaction with the virtual machine instance(s). The sidecar configuration unit 164 may identify, for example, input validations that a sidecar should perform, and may configure a sidecar to perform them. For example, the user-submitted code may process input data in a particular format, and a thus a sidecar configuration may be determined to validate that the input data is in the format.


The on-demand code execution system further includes one or more worker managers 140 that manage the instances used for servicing incoming calls to execute tasks, and that manage the sidecars used to provide auxiliary functions for these instances. In the example illustrated in FIG. 1, each worker manager 140 manages an active pool 140A, which is a group (sometimes referred to as a pool) of virtual machine instances, implemented by one or more physical host computing devices, that are currently assigned to one or more users. Although the virtual machine instances are described here as being assigned to a particular user, in some embodiments, the instances may be assigned to a group of users, such that the instance is tied to the group of users and any member of the group can utilize resources on the instance. For example, the users in the same group may belong to the same security group (e.g., based on their security credentials) such that executing one member's task in a container on a particular instance after another member's task has been executed in another container on the same instance does not pose security risks. Similarly, the worker managers 140 may assign the instances and the containers according to one or more policies that dictate which requests can be executed in which containers and which instances can be assigned to which users. An example policy may specify that instances are assigned to collections of users who share the same account (e.g., account for accessing the services provided by the on-demand code execution system 110). In some embodiments, the requests associated with the same user group may share the same containers (e.g., if the user codes associated therewith are identical). In some embodiments, a task does not differentiate between the different users of the group and simply indicates the group to which the users associated with the task belong.


Once a triggering event to execute a task has been successfully processed by a frontend 120, the frontend 120 passes a request to a worker manager 140 to execute the task. In one embodiment, each frontend 120 may be associated with a corresponding worker manager 140 (e.g., a worker manager 140 co-located or geographically nearby to the frontend 120) and thus, the frontend 120 may pass most or all requests to that worker manager 140. In another embodiment, a frontend 120 may include a location selector configured to determine a worker manager 140 to which to pass the execution request. In one embodiment, the location selector may determine the worker manager 140 to receive a call based on hashing the call, and distributing the call to a worker manager 140 selected based on the hashed value (e.g., via a hash ring). Various other mechanisms for distributing calls between worker managers 140 will be apparent to one of skill in the art. In accordance with embodiments of the present disclosure, the worker manager 140 can obtain a virtual machine configuration and/or sidecar configurations when provisioning a virtual machine instance.


As shown in FIG. 1, instances may have operating systems (OS), language runtimes, and containers. The containers may have individual copies of the OS, the runtimes, and user codes corresponding to various tasks loaded thereon. In the example of FIG. 1, the active pools 140A managed by a worker manager 140 includes the virtual machine instance 150. The instance 150 includes an operating system 150A and user code 150B. In some embodiments, the worker managers 140 may maintain a list of instances in an active pool 140A. The list of instances may further specify the configuration (e.g., OS, runtime, container, etc.) of the instances. In some embodiments, the worker managers 140 may have access to a list of instances in a warming pool (e.g., including the number and type of instances). In other embodiments, the worker managers 140 requests compute capacity from a warming pool manager without having knowledge of the virtual machine instances in a warming pool.


The active pool 140A may further include one or more sidecar virtual machine instances, such as sidecar 152 and sidecar 154. As depicted in FIG. 1, the sidecar 152 includes an OS 152A and an agent 152B, and the sidecar 154 includes an OS 154A and an agent 154B. In some embodiments, one or both of the sidecars 152 and 154 may correspond to a provisioned instance of a sidecar image 132 or 134 from the sidecar library 130. The sidecars 152 and 154 may, as described in more detail below, provide one or more auxiliary functions in conjunction with the virtual machine instance 150 that executes user code 150B.


The worker manager 140 may further include a sidecar lifecycle management unit 142. As described in more detail below, the sidecar lifecycle management unit 142 may monitor the lifecycles of virtual machine instances, such as virtual machine instance 150, and may ensure that the lifecycles of corresponding sidecar instances (e.g., sidecars 152 and 154) are synchronized with the virtual machine instance(s) to which they are attached. As described below, the sidecar lifecycle management unit 142 may determine whether a particular sidecar should precede, follow, or change its execution state in parallel when a virtual machine instance undergoes a change in execution state, and may cause sidecars to implement changes in execution state accordingly. In some embodiments, the sidecar lifecycle management unit 142 may be a component of the active pool 140A. In other embodiments, the sidecar lifecycle management unit 142 may sit outside the active pool 140A and facilitate the addition, removal, and/or the timing of the addition or removal of sidecars from the active pool 140A.


While some functionalities are generally described herein with reference to an individual component of the on-demand code execution system 110, other components or a combination of components may additionally or alternatively implement such functionalities. For example, a worker manager 140 may operate to configure virtual machine instances in a manner similar or identical to as described herein with reference to an OS configuration system 160. One skilled in the art will also understand that the present disclosure is not limited to the embodiment depicted in FIG. 1, in which one virtual machine instance 150 is in communication with two sidecars 152 and 154. In various embodiments, any number of sidecars may be in communication with any number of virtual machine instances, including one-to-many and many-to-many relationships between virtual machine instances and sidecars.



FIG. 2 depicts a general architecture of a computing system (referenced as sidecar configuration system 160) that operates to determine sidecar configurations within the on-demand code execution system 110. The general architecture of the sidecar configuration system 160 depicted in FIG. 2 includes an arrangement of computer hardware and software modules that may be used to implement aspects of the present disclosure. The hardware modules may be implemented with physical electronic devices, as discussed in greater detail below. The sidecar configuration system 160 may include many more (or fewer) elements than those shown in FIG. 2. It is not necessary, however, that all of these generally conventional elements be shown in order to provide an enabling disclosure. Additionally, the general architecture illustrated in FIG. 2 may be used to implement one or more of the other components illustrated in FIG. 1. As illustrated, the sidecar configuration system 160 includes a processing unit 290, a network interface 292, a computer readable medium drive 294, and an input/output device interface 296, all of which may communicate with one another by way of a communication bus. The network interface 292 may provide connectivity to one or more networks or computing systems. The processing unit 290 may thus receive information and instructions from other computing systems or services via the network 104. The processing unit 290 may also communicate to and from memory 280 and further provide output information for an optional display (not shown) via the input/output device interface 296. The input/output device interface 296 may also accept input from an optional input device (not shown).


The memory 280 may contain computer program instructions (grouped as modules in some embodiments) that the processing unit 290 executes in order to implement one or more aspects of the present disclosure. The memory 280 generally includes random access memory (RAM), read only memory (ROM) and/or other persistent, auxiliary or non-transitory computer readable media. The memory 280 may store an operating system 284 that provides computer program instructions for use by the processing unit 290 in the general administration and operation of the sidecar configuration system 160. The memory 280 may further include computer program instructions and other information for implementing aspects of the present disclosure. For example, in one embodiment, the memory 280 includes a user interface unit 282 that generates user interfaces (and/or instructions therefor) for display upon a computing device, e.g., via a navigation and/or browsing interface such as a browser or application installed on the computing device. In addition, the memory 280 may include and/or communicate with one or more data repositories (not shown), for example, to access user program codes and/or libraries.


In addition to and/or in combination with the user interface unit 282, the memory 280 may include a virtual machine configuration unit 162 and a sidecar configuration unit 164 that may be executed by the processing unit 290. In one embodiment, the virtual machine configuration unit 162 and the sidecar configuration unit 164 individually or collectively implement various aspects of the present disclosure, e.g., generating or selecting sidecar configurations within the on-demand code execution system 110, determining virtual machine configurations, etc., as described further below.


While the virtual machine configuration unit 162 and the sidecar configuration unit 164 are shown in FIG. 2 as part of the sidecar configuration system 160, in other embodiments, all or a portion of the virtual machine configuration unit 162 and the sidecar configuration unit 164 may be implemented by other components of the on-demand code execution system 110 and/or another computing device. For example, in certain embodiments of the present disclosure, another computing device in communication with the on-demand code execution system 110 may include several modules or components that operate similarly to the modules and components illustrated as part of the sidecar configuration system 160.


In some embodiments, the sidecar configuration system 160 may further include components other than those illustrated in FIG. 2. For example, the memory 280 may further include an instance allocation unit for allocating execution environments to tasks, user code execution unit to facilitate execution of tasks within the execution environments, or a container manager for managing creation, preparation, and configuration of containers within virtual machine instances.


With reference to FIG. 3, illustrative interactions are depicted for determining and configuring the sidecars for an execution of user-submitted code. The interactions of FIG. 3 begin at (1), where a user device 102 may generate a request to execute task code on an on-demand code execution system 110. Illustratively, the user may generate code whose execution requires various auxiliary functions, and thus requires a sidecar or sidecars that provide these functions. In some embodiments, the user may generate or identify a list of auxiliary functions that the user expects to require during execution of the task code. At (2), the user device 102 submits the request to the frontend 120, such as by using a API or other interface of the frontend 120. The request may include, for example, the task code and a list of sidecars or auxiliary functions. At (3), the frontend 120 validates the submitted task code. Validation can include, for example, verifying that the task code can be executed by the on-demand code execution system 110.


At (4), the frontend 120 transmits a request to the sidecar configuration system 160 to determine a set of sidecars for the task. Thereafter, at (5), the sidecar configuration system 160 determines a suitable set of sidecars. Illustratively, the virtual machine configuration unit 162 of the sidecar configuration system 160 may analyze the request to identify a set of sidecar virtual machine instances that will facilitate executing the task code. The sidecar configuration unit 164 may then configure the virtual machine instance and the sidecars that will be needed during task code execution. For example, the sidecar configuration system 160 may determine that the task code will require input validation during execution. The virtual machine configuration unit 162 may thus configure a virtual machine instance to receive processed input from a sidecar, and the sidecar configuration unit 164 may identify and configure a sidecar to perform the necessary input validation. As a further example, the sidecar configuration system 160 may determine that the user wishes to profile execution of the task code to determine whether and how the code can be optimized. The virtual machine configuration unit 162 may thus configure a virtual machine instance to output profiling data during task execution, and the sidecar configuration unit 164 may configure a sidecar that aggregates and reports the profiling data.


At (6), the sidecar configuration system may store the determined sidecar configuration, and the validated task code, in a storage device such as the data storage device 108. The on-demand code execution system 110 may thus reduce the time spent analyzing code and determining sidecar configurations when receiving further requests to execute the task code, as discussed in more detail below. In some embodiments, the on-demand code execution system 110 may determine sidecars on a per-request basis. For example, the request may contain a debugging flag or other information that indicates whether to include a particular sidecar when executing the task code.


In some embodiments, the ordering and implementation of operations described above may be modified, or these interactions may be carried out by additional or alternative elements of the on-demand code execution system 110. For example, in one embodiment, the virtual machine configuration unit 162 and the sidecar configuration unit 164 may be combined, and the determinations made by these units may be collectively considered a “sidecar configuration” that includes configuration of the virtual machine that executes the task code. As a further example, in another embodiment, the user device 102 may request a particular sidecar configuration for the submitted task code, and the sidecar configuration system 160 may validate, process, and/or implement this request.


Illustrative interactions for utilizing a predetermined sidecar configuration in conjunction with executing tasks on the on-demand code execution system 110 will be described with reference to FIG. 4. At (1), the user device 102 may request task execution. In some embodiments, as described above, the frontend 120 may initiate task execution without receiving a request, in which case the interaction at (1) may be omitted.


At (2), the frontend 120 distributes the task for execution to the worker manager 140. Prior to distributing the task execution, the frontend 120 may undertake any of a number of additional interactions, such as queuing the request, validating the request, etc., as described in more detail within the '556 Patent, incorporated by reference above.


At (3), the worker manager 140 requests a sidecar configuration for the task. In some embodiments, as described above, a sidecar configuration may be determined when the code of the task is submitted for validation (e.g., by carrying out the interactions illustrated in FIG. 3). In other embodiments, a sidecar configuration may be provided by the user when the code of the task is submitted for validation. In further embodiments, a sidecar configuration may be determined on a per-request basis. At (4), the worker manager 140 receives the previously determined (or previously specified) sidecar configuration from the data storage device 108.


Thereafter, at (5), the worker manager 140 configures and executes a virtual machine instance and sidecars in accordance with the received sidecar configuration. In some embodiments, as described above, the worker manager 140 may obtain sidecar images from a library, such as the sidecar library 130 of FIG. 1, and configure these images in accordance with the configuration. In other embodiments, the worker manager 140 may obtain fully or partially preconfigured sidecars from a warming pool, and may perform additional configurations as needed (e.g., to cause the sidecar to communicate with a particular virtual machine instance). In still further embodiments, the worker manager 140 may obtain multiple virtual machine instances from a warming pool, and may configure some of the instances to execute task code and configure other instances to be sidecars (e.g., by provisioning the sidecar instances with agents that perform auxiliary functions).


Illustrative interactions for managing the lifecycles of sidecars in conjunction with the lifecycle of a “main” virtual machine instance (e.g., one that executes task code) will be described with reference to FIG. 5. At (1), the sidecar lifecycle management unit 142 monitors the execution of the virtual machine instance 150. Illustratively, the sidecar lifecycle management unit 142 may monitor inputs, outputs, resource utilization, metrics generated by the virtual machine instance 150, metrics generated by the worker manager 140, or other information relating to the status of the virtual machine instance 150.


At (2), the sidecar lifecycle management unit 142 detects that the virtual machine instance 150 is about to undergo a change in execution state. Changes in execution state may include, for example, provisioning the virtual machine instance 150, starting execution of the task code, suspending execution of the task code, resuming execution of the task code, terminating execution of the task code, suspending the virtual machine instance 150, resuming the virtual machine instance 150, deprovisioning the virtual machine instance 150, and the like. Terminating execution of the task code may include both normal termination (e.g., the task code executing to completion) and abnormal termination (e.g., the task code halting execution due to an error, because the user requested termination, because a signal was received from the operating system, etc.). In some embodiments, the sidecar lifecycle management unit 142 detects a pending change in execution state prior to its occurrence. For example, the sidecar lifecycle management unit 142 may receive a notification that the worker manager 140 is provisioning, or is about to provision, the virtual machine instance 150. In other embodiments, the sidecar lifecycle management unit 142 may detect the change while or after it occurs. For example, the sidecar lifecycle management unit 142 may detect that the virtual machine instance has suspended or terminated execution of the task code because the task code has processed all of the available input data, because a threshold amount of computing resources has been consumed, or because the task code has exited with an error message.


Thereafter, at (3), the sidecar lifecycle management unit 142 determines what changes should occur to the execution states of sidecars associated with the virtual machine instance 150, such as sidecars 152 and 154. The changes in execution states for the sidecars may be determined based on multiple factors, such as the number of virtual machine instances associated with the sidecar, the auxiliary function(s) performed by the sidecar, and so forth. For example, the sidecar 152 may provide output validation for the virtual machine instance 150. The sidecar lifecycle management unit 142 may therefore determine that the sidecar 152 can enter an inactive state when the virtual machine instance 150 enters an inactive state, since the output validation function will not be required. As another example, the sidecar 154 may provide control plane functions to both the virtual machine instance 150 and another virtual machine instance, which may execute the same task code or different task code on behalf of the same user. The sidecar lifecycle management unit 142 may thus determine that the sidecar 154 should only be deprovisioned if both of the virtual machine instances it supports have entered a deprovisioned state.


In some embodiments, the sidecar lifecycle management unit 142 may determine an order in which sidecar(s) and the virtual machine instance 150 should change their execution states, and may cause the execution states to change in the determined order. For example, the sidecar 154 may provide logging or debugging functions for the virtual machine instance 150. The sidecar lifecycle management unit 142 may thus determine that the sidecar 154 should enter a suspended execution state only after the virtual machine instance 150 does so, and should resume execution before the virtual machine instance 150 does so, in order to permit the sidecar 154 to maintain a complete record of logging or debugging information. As another example, the sidecar 152 may process and validate input data before sending it to the virtual machine instance 150, and thus the virtual machine instance 150 must be active before the sidecar 152 begins sending data to it. In some embodiments, the sidecar lifecycle management unit 142 may not have control over the timing of changes in the execution state of the virtual machine instance 150, and may thus schedule and prioritize changes to sidecar execution states based on the timing of changes in the execution state of the virtual machine instance 150.


In the example illustrated in FIG. 5, the sidecar lifecycle management unit 142 determines that a change in the execution state of the sidecar 152 should precede the change in the execution state of the virtual machine instance 150, and that a change in the execution state of the sidecar 154 should follow the change to the virtual machine instance 150. The sidecar lifecycle management unit 142 therefore, at (4), causes the sidecar 152 to change its execution state. In various embodiments, the sidecar lifecycle management unit 142 may cause the change in execution state by sending instructions to the sidecar 152, the worker manager 140, or another component of the on-demand code execution system 110. At (5), the sidecar 152 (or another component) implements the change in execution state.


Thereafter, at (6), the virtual machine instance 150 implements its change in execution state. In some embodiments, the worker manager 140 implements the change in the virtual machine instance 150 execution state, for example by provisioning or deprovisioning the virtual machine instance 150. In other embodiments, the virtual machine instance 150 may implement the change. For example, the virtual machine instance 150 may begin, end, suspend, or resume execution of the task code.


At (7), the sidecar lifecycle management unit 142 causes a change in the execution state of the sidecar 154, in similar fashion to the interaction at (4). Thereafter, at (8), the sidecar 154 (or another component of the on-demand code execution system 110) implements the change in execution state for the sidecar 154.


In some embodiments, one or more of the interactions at (4), (6), and (7) may be consolidated into a single interaction. For example, the sidecar lifecycle management unit 142 may provide the worker manager 140 with a schedule or an ordered list for changing the execution states of the sidecar 152, virtual machine instance 150, and sidecar 154, and the worker manager 140 may implement the execution state changes in the indicated order. As another example, the sidecar lifecycle management unit 142 may indicate to the worker manager 140 that the sidecar 152 should resume execution prior to the virtual machine instance 150, and the sidecar 154 should resume after the virtual machine instance 150 resumes execution. Additionally, as discussed above, in some embodiments the interaction at (2) may detect a change that is occurring or has already occurred, rather than detecting a change that is about to occur.



FIG. 6 depicts an illustrative example of interactions between a virtual machine instance 604 and sidecars 606, 608, and 610. In the illustrated example, at (1), external input is provided to an input validation sidecar 606. The external input may be received from the frontend 120, or in some embodiments from another input source. At (2), the input validation sidecar 606 may validate the external input. For example, the input validation sidecar 606 may sanitize the external input (e.g., by inserting escape characters or removing special characters) or verify that the external input is in a format expected by the task code.


Thereafter, at (3), the input validation sidecar 606 may provide validated input to the virtual machine instance 604. In some embodiments, the virtual machine instance 604 may be configured to receive input from the input validation sidecar 606. In other embodiments, the sidecar 606 may be configured to transmit processed input to the virtual machine instance 604, and no special configuration is performed on the virtual machine instance 604: Instead, the task code executing on the virtual machine instance 604 simply processes any input it receives, and the configuration of only receiving input from sidecar 606 is transparent to the virtual machine instance 604. In further embodiments, neither the input validation sidecar 606 nor the virtual machine instance 604 may be configured to be aware of the other, and the communication of validated data from the sidecar 606 to the virtual machine instance 604 may be handled by the worker manager 140.


At (4), the virtual machine instance 604 may process the validated input. Illustratively, the virtual machine instance 604 may process the validated input by executing the task code with the validated input, and may generate corresponding output. The virtual machine instance 604 may also, at (5), provide access to information that allows a profiling sidecar 608 to profile the task code. For example, the virtual machine instance 604 may generate log files, metrics, stack traces, memory dumps, or other data relating to the execution of the task code. The virtual machine instance 604 may then transmit the data, provide APIs for accessing the data, allow the profiling sidecar 608 to read filesystems or memory locations, or otherwise grant access to the profiling information. At (6), the profiling sidecar may obtain and/or receive the profiling information and process it to profile the virtual machine instance 604 and/or the task code executing on the virtual machine instance 604.


At (7), the virtual machine instance 604 may provide the output generated at (4) to an output validation sidecar 610, which at (8) may validate the output. For example, the output validation sidecar 610 may post-process the output, convert it to a particular format, verify that it falls within a specified range, or perform other validations.


At (9), in some embodiments, the output validation sidecar 610 may provide validated output to the frontend 120 or another component. In some embodiments, the interactions at (1)-(9) may be repeated until no further input is available or the user issues a request to stop executing the task code. Additionally, the example interactions depicted in FIG. 6 may be carried out in different orders, or more or fewer interactions may be carried out. For example, the interactions at (5) and (6) may be omitted, or may be carried out prior to (or concurrently with) the interaction at (4). As a further example, in some embodiments, the validated input produced by the input validation sidecar 606 may be provided as input to another input validation sidecar, which may perform further validations before sending the resulting data to the virtual machine instance 604. It will thus be understood by one skilled in the art that many other combinations and arrangements of sidecars are within the scope of the present disclosure.


With reference to FIG. 7, one illustrative routine 700 for determining a sidecar configuration for executing a task on the on-demand code execution system 110 will be described. The routine 700 may be carried out, for example, by the sidecar configuration system 160 of FIG. 1. In one embodiment, the routine 700 (e.g., blocks 702-706) is carried out in conjunction with the creation of a task on the on-demand code execution system 110. In another embodiment, all or part of the routine 700 (e.g., blocks 708-716) may be carried out in conjunction with executing the task on the on-demand code execution system 110. All or part of the routine 700 may additionally or alternatively be carried out at other times, such as periodically (e.g., once per day, week, month, etc.) or based on detection that execution metrics or resource utilization metrics fall outside a threshold.


The routine 700 begins at block 702, where the sidecar configuration system 160 obtains code for a task (e.g., as submitted by a user). In one embodiment, the code for the task is represented as a code object, such as a compressed file including source code for the task. The routine 700 then continues to block 704, where the sidecar configuration system 160 determines an sidecar configuration for the task. As described above, the sidecar configuration system 160 may, in some embodiments, determine a sidecar configuration based on the submitted task code. In other embodiments, the sidecar configuration system 160 may determine a sidecar configuration based on user input, such as a request to profile execution of the task code or validate input provided to the task code. In some embodiments, the frontend 120 or another component of the on-demand code execution system 110 may present user interfaces that enable a user to select desired sidecars.


At block 706, the sidecar configuration system 160 may store the task code and the sidecar configuration in a data store, such as the data store service 108. In some embodiments, as described above, the sidecar configuration may include a configuration of the virtual machine instance that executes the task code. In other embodiments, the sidecar configuration may include instructions utilized by the worker manager 140.


Thereafter, at block 708, a request to execute the task code may be received. The request may be received by, for example, the frontend 120, the worker manager 140, or another component of the on-demand code execution system 110. In some embodiments, as described above, the task code may be executed without receiving a request, in which case block 708 may be omitted.


At block 710, the worker manager 140 provisions a virtual machine instance to execute the task code. In some embodiments, the worker manager 140 configures the virtual machine instance in accordance with the sidecar configuration. For example, the worker manager 140 may configure the virtual machine instance to accept input from a sidecar, provide output to a sidecar, provide access to internals of the virtual machine (e.g., stack or memory contents), or otherwise configure the virtual machine instance to work with sidecars. In other embodiments, the virtual machine instance may not be configured and the interactions with sidecars may be transparent to the virtual machine instance.


At block 712, the worker manager 140 provisions one or more sidecars in accordance with the sidecar configuration. In some embodiments, as described above, the worker manager 140 obtains sidecar images or agents from a library, such as the sidecar library 130, and uses these images or agents to provision and configure the sidecars. In other embodiments, the sidecar configuration may include instructions for provisioning a sidecar to user specifications, and the worker manager 140 may carry out these instructions to provision the sidecar accordingly.


At block 714, the worker manager 140 executes the virtual machine instance and the sidecar instance(s). In some embodiments, the worker manager 140 proceeds to manage the lifecycles of the virtual machine instance and the sidecar instance(s) by carrying out a routine such as the routine 800 described below with reference to FIG. 8. In other embodiments, the routine 700 ends with the execution of the provisioned virtual machine instances and sidecar(s).


With reference to FIG. 8, an illustrative routine 800 for managing sidecar lifecycles will be described. The routine 800 may be carried out, for example, by the sidecar lifecycle management unit 142 of FIG. 1. The routine 800 begins at block 802, where the sidecar lifecycle management unit 142 (or, in some embodiments, the worker manager 140 or another component of the on-demand code execution system 110) monitors execution of a virtual machine instance. At decision block 804, a determination is made as to whether there is a pending change in the virtual machine instance's execution state. In some embodiments, as discussed above, the determination at decision block 804 may also include whether a change to the virtual machine instance's execution state has already occurred or is in progress. If no change in the virtual machine instance's execution state is detected, then the routine 800 branches to block 802 and continues monitoring.


If the determination at decision block 804 is that the virtual machine instance will change its execution state, then the routine 800 branches to block 806, where an unprocessed sidecar may be selected. At block 808, the sidecar lifecycle management unit 142 may determine whether the selected sidecar should change its execution state, and if so when it should change its execution state relative to the virtual machine instance. For example, the sidecar lifecycle management unit 142 may determine that the sidecar should change its execution state before, with, or after the virtual machine instance. In some embodiments, the sidecar lifecycle management unit 142 may determine a timing for the change to the selected sidecar's execution state relative to other sidecars. For example, the sidecar lifecycle management unit 142 may generate an ordered list of sidecar and virtual machine instance state changes, and may place the selected sidecar on the ordered list. In other embodiments, the sidecar lifecycle management unit 142 may determine that the selected sidecar does not require a change to its execution state, or that the selected sidecar will change to a different execution state than the virtual machine instance. For example, the sidecar lifecycle management unit 142 may determine that a sidecar should be deprovisioned after the virtual machine instance suspends execution of the task code, or that a new sidecar should be provisioned before the virtual machine instance resumes execution of the task code. In one embodiment, the sidecar lifecycle management unit 142 may ensure that a new sidecar virtual machine be created for each execution of task code within the virtual machine instance. Illustratively, where a sidecar virtual machine provides a security function, regeneration of a new sidecar for each execution of code may ensure that the function of the sidecar is not compromised, for example, by malicious data being passed to the sidecar virtual machine during a past code execution.


At decision block 810, the sidecar lifecycle management unit 142 may determine whether all of the sidecars have been processed by the routine 800. If not, the routine 800 branches to block 806, where one of the remaining unprocessed sidecars may be selected, and the routine 800 then iterates through blocks 806-810 until all sidecars have been processed. The routine 800 then branches to block 812, where the sidecar lifecycle management unit 142 causes the virtual machine instance and the sidecars to change execution states in the determined order. In some embodiments, the determined order may be relative to the virtual machine instance's change, and may not specify a particular order among the sidecars. For example, the sidecar lifecycle management unit 142 may determine that sidecars A and B should both change their execution states before the virtual machine instance does, but that it does not matter sidecar A's execution state change comes before or after sidecar B's. In other embodiments, the sidecar lifecycle management unit 142 may determine that one sidecar should change its execution state before another sidecar does so, and change the execution states accordingly.


The blocks of the routines described above may vary in embodiments of the present disclosure. For example, in some implementations of either routine, the sidecar configuration system 160 may be configured to implement additional functionality, such as generating and storing additional sidecars. Thus, the routines may include additional blocks, or the blocks of the routines may be rearranged, according to various embodiments.


All of the methods and processes described above may be embodied in, and fully automated via, software code modules executed by one or more computers or processors. The code modules may be stored in any type of non-transitory computer-readable medium or other computer storage device. Some or all of the methods may alternatively be embodied in specialized computer hardware.


Conditional language such as, among others, “can,” “could,” “might” or “may,” unless specifically stated otherwise, are otherwise understood within the context as used in general to present that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment.


Disjunctive language such as the phrase “at least one of X, Y or Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to present that an item, term, etc., may be either X, Y or Z, or any combination thereof (e.g., X, Y and/or Z). Thus, such disjunctive language is not generally intended to, and should not, imply that certain embodiments require at least one of X, at least one of Y or at least one of Z to each be present.


Unless otherwise explicitly stated, articles such as ‘a’ or ‘an’ should generally be interpreted to include one or more described items. Accordingly, phrases such as “a device configured to” are intended to include one or more recited devices. Such one or more recited devices can also be collectively configured to carry out the stated recitations. For example, “a processor configured to carry out recitations A, B and C” can include a first processor configured to carry out recitation A working in conjunction with a second processor configured to carry out recitations B and C.


Any routine descriptions, elements or blocks in the flow diagrams described herein and/or depicted in the attached figures should be understood as potentially representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or elements in the routine. Alternate implementations are included within the scope of the embodiments described herein in which elements or functions may be deleted, or executed out of order from that shown or discussed, including substantially synchronously or in reverse order, depending on the functionality involved as would be understood by those skilled in the art.


It should be emphasized that many variations and modifications may be made to the above-described embodiments, the elements of which are to be understood as being among other acceptable examples. All such modifications and variations are intended to be included herein within the scope of this disclosure and protected by the following claims.

Claims
  • 1. A computer-implemented method comprising: receiving a request to execute user-submitted code on an on-demand code execution system;obtaining configuration information associated with the user-submitted code, the configuration information specifying at least a main virtualized execution environment configured to execute the user-submitted code and an auxiliary function from a library of auxiliary functions provided by the on-demand code execution system, wherein the auxiliary function is expected to be required during execution of the user-submitted code, and wherein the auxiliary function does not comprise user-submitted code;identifying, based at least in part on the auxiliary function expected to be required during execution of the user-submitted code, a sidecar virtualized execution environment from a library of sidecar virtualized execution environments;configuring the sidecar virtualized execution environment to perform the auxiliary function for the main virtualized execution environment;causing the main virtualized execution environment to execute the user-submitted code in accordance with the configuration information;causing the sidecar virtualized execution environment to perform the auxiliary function in accordance with the configuration information;determining that the main virtualized execution environment has completed execution of the user-submitted code; andresponsive to determining that the main virtualized execution environment has completed execution of the user-submitted code, deprovisioning the main virtualized execution environment and the sidecar virtualized execution environment.
  • 2. The computer-implemented method of claim 1, wherein the library of sidecar virtualized execution environments comprises a library of agents that perform the auxiliary functions.
  • 3. The computer-implemented method of claim 1, wherein the sidecar virtualized execution environment comprises an agent that performs the auxiliary function expected to be required during execution of the user-submitted code.
  • 4. The computer-implemented method of claim 3, wherein the sidecar virtualized execution environment further comprises an operating system.
  • 5. The computer-implemented method of claim 1, wherein configuring the sidecar virtualized execution environment to perform the auxiliary function for the main virtualized execution environment comprises configuring the sidecar virtualized execution environment to communicate with the main virtualized execution environment.
  • 6. The computer-implemented method of claim 1 further comprising provisioning the sidecar virtualized execution environment with an agent that performs the auxiliary function.
  • 7. A system comprising: a physical data store storing configuration information; anda computing device configured with executable instructions to perform operations including: receiving a request to execute user-submitted code on an on-demand code execution system;obtaining, from the physical data store, configuration information associated with the user-submitted code, the configuration information specifying an auxiliary function from a library of auxiliary functions provided by the on-demand code execution system, wherein the auxiliary function is expected to be required during execution of the user-submitted code, and wherein the auxiliary function does not comprise the user-submitted code;identifying, based at least in part on the auxiliary function expected to be required during execution of the user-submitted code, a sidecar configuration from a library of sidecar configurations;configuring a sidecar virtualized execution environment in accordance with the sidecar configuration to perform the auxiliary function for a main virtualized execution environment configured to execute the user-submitted code;causing the main virtualized execution environment to execute the user-submitted code in accordance with the configuration information;causing the sidecar virtualized execution environment to perform the auxiliary function;determining that the main virtualized execution environment has completed execution of the user-submitted code; andresponsive to determining that the main virtualized execution environment has completed execution of the user-submitted code, deprovisioning the main virtualized execution environment and the sidecar virtualized execution environment.
  • 8. The system of claim 7, wherein the configuration information is determined based at least in part on a prior execution of the user-submitted code on the on-demand code execution system.
  • 9. The system of claim 7, wherein the request includes a debugging flag, header information, execution mode, application programming interface (“API”) call, or other indicator associated with the auxiliary function.
  • 10. The system of claim 7, wherein the sidecar virtualized execution environment performs the auxiliary function for a plurality of main virtualized execution environments.
  • 11. The system of claim 10, wherein the computing device is configured with further executable instructions to perform further operations including determining that each of the plurality of main virtualized execution environments has been deprovisioned.
  • 12. The system of claim 7, wherein configuring the sidecar virtualized execution environment in accordance with the sidecar configuration to perform the auxiliary function for the main virtualized execution environment comprises one or more of redirecting input, redirecting output, monitoring execution, monitoring resource utilization, or collecting metrics.
  • 13. The system of claim 7, wherein the sidecar configuration specifies the sidecar virtualized execution environment.
  • 14. The system of claim 7, wherein the sidecar configuration is identified based at least in part on a user selection from the library of sidecar configurations.
  • 15. The system of claim 7, wherein the main virtualized execution environment provides an application programming interface (“API”) that enables access to profiling information.
  • 16. One or more non-transitory computer-readable media including computer-executable instructions that, when executed on an on-demand code execution system, cause the on-demand code execution system to: obtain configuration information associated with user-submitted code, the configuration information specifying an auxiliary function from a library of auxiliary functions provided by the on-demand code execution system, wherein the auxiliary function is expected to be required during execution of the user-submitted code, and wherein the auxiliary function does not comprise the user-submitted code;identify, from a library of sidecar configurations, a sidecar configuration associated with performing the auxiliary function;configure a sidecar virtualized execution environment in accordance with the sidecar configuration to perform the auxiliary function for a main virtualized execution environment that executes the user-submitted code in accordance with the configuration information;cause the sidecar virtualized execution environment to perform the auxiliary function during execution of the user-submitted code, andresponsive to a determination that the main virtualized execution environment has completed execution of the user-submitted code, configure the sidecar virtualized execution environment to cease performing the auxiliary function for the main virtualized execution environment.
  • 17. The one or more non-transitory computer-readable media of claim 16 including further computer-executable instructions that, when executed by the on-demand code execution system, configure the on-demand code execution system to provision the sidecar virtualized execution environment.
  • 18. The one or more non-transitory computer-readable media of claim 16 including further computer-executable instructions that, when executed by the on-demand code execution system, configure the on-demand code execution system to: determine that the main virtualized execution environment has completed execution of the user-submitted code.
  • 19. The one or more non-transitory computer-readable media of claim 16, wherein the sidecar virtualized execution environment is configured to read one or more of a filesystem or a memory location of the main virtualized execution environment.
  • 20. The one or more non-transitory computer-readable media of claim 16, wherein the execution of the user-submitted code is triggered by a triggering event.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/017,954, now U.S. Pat. No. 10,853,115, entitled “EXECUTION OF AUXILIARY FUNCTIONS IN AN ON-DEMAND NETWORK CODE EXECUTION SYSTEM” and filed on Jun. 25, 2018, which is hereby incorporated by reference herein in its entirety.

US Referenced Citations (960)
Number Name Date Kind
4949254 Shorter Aug 1990 A
5283888 Dao et al. Feb 1994 A
5835764 Platt et al. Nov 1998 A
5970488 Crowe et al. Oct 1999 A
5983197 Enta Nov 1999 A
6237005 Griffin May 2001 B1
6260058 Hoenninger et al. Jul 2001 B1
6385636 Suzuki May 2002 B1
6463509 Teoman et al. Oct 2002 B1
6501736 Smolik et al. Dec 2002 B1
6523035 Fleming et al. Feb 2003 B1
6549936 Hirabayashi Apr 2003 B1
6708276 Yarsa et al. Mar 2004 B1
7036121 Casabona et al. Apr 2006 B1
7308463 Taulbee et al. Dec 2007 B2
7340522 Basu et al. Mar 2008 B1
7360215 Kraiss et al. Apr 2008 B2
7558719 Donlin Jul 2009 B1
7577722 Khandekar et al. Aug 2009 B1
7590806 Harris et al. Sep 2009 B2
7640574 Kim et al. Dec 2009 B1
7665090 Tormasov et al. Feb 2010 B1
7707579 Rodriguez Apr 2010 B2
7730464 Trowbridge Jun 2010 B2
7774191 Berkowitz et al. Aug 2010 B2
7823186 Pouliot Oct 2010 B2
7831464 Nichols et al. Nov 2010 B1
7870153 Croft et al. Jan 2011 B2
7886021 Scheifler et al. Feb 2011 B2
7949677 Croft et al. May 2011 B2
7954150 Croft et al. May 2011 B2
8010679 Low et al. Aug 2011 B2
8010990 Ferguson et al. Aug 2011 B2
8024564 Bassani et al. Sep 2011 B2
8046765 Cherkasova et al. Oct 2011 B2
8051180 Mazzaferri et al. Nov 2011 B2
8051266 DeVal et al. Nov 2011 B2
8065676 Sahai et al. Nov 2011 B1
8065682 Baryshnikov et al. Nov 2011 B2
8095931 Chen et al. Jan 2012 B1
8127284 Meijer et al. Feb 2012 B2
8146073 Sinha Mar 2012 B2
8166304 Murase et al. Apr 2012 B2
8171473 Lavin May 2012 B2
8201026 Bornstein et al. Jun 2012 B1
8209695 Pruyne et al. Jun 2012 B1
8219987 Vlaovic et al. Jul 2012 B1
8296267 Cahill et al. Oct 2012 B2
8321554 Dickinson Nov 2012 B2
8321558 Sirota et al. Nov 2012 B1
8336079 Budko et al. Dec 2012 B2
8352608 Keagy et al. Jan 2013 B1
8387075 McCann et al. Feb 2013 B1
8392558 Ahuja et al. Mar 2013 B1
8402514 Thompson et al. Mar 2013 B1
8417723 Lissack et al. Apr 2013 B1
8429282 Ahuja Apr 2013 B1
8448165 Conover May 2013 B1
8479195 Adams et al. Jul 2013 B2
8490088 Tang Jul 2013 B2
8555281 Van Dijk et al. Oct 2013 B1
8560699 Theimer et al. Oct 2013 B1
8566835 Wang et al. Oct 2013 B2
8601323 Tsantilis Dec 2013 B2
8613070 Borzycki et al. Dec 2013 B1
8615589 Adogla et al. Dec 2013 B1
8631130 Jackson Jan 2014 B2
8667471 Wintergerst et al. Mar 2014 B2
8677359 Cavage et al. Mar 2014 B1
8694996 Cawlfield et al. Apr 2014 B2
8700768 Benari Apr 2014 B2
8713093 Upadhyay et al. Apr 2014 B1
8719415 Sirota et al. May 2014 B1
8725702 Raman et al. May 2014 B1
8756322 Lynch Jun 2014 B1
8756696 Miller Jun 2014 B1
8763091 Singh et al. Jun 2014 B1
8769519 Leitman et al. Jul 2014 B2
8793676 Quinn et al. Jul 2014 B2
8799236 Azari et al. Aug 2014 B1
8799879 Wright et al. Aug 2014 B2
8806266 Qu et al. Aug 2014 B1
8806468 Meijer et al. Aug 2014 B2
8806644 McCorkendale et al. Aug 2014 B1
8819679 Agarwal et al. Aug 2014 B2
8825863 Hansson et al. Sep 2014 B2
8825964 Sopka et al. Sep 2014 B1
8839035 Dimitrovich et al. Sep 2014 B1
8850432 Mcgrath et al. Sep 2014 B2
8869300 Singh et al. Oct 2014 B2
8874952 Tameshige et al. Oct 2014 B2
8904008 Calder et al. Dec 2014 B2
8949457 Theroux et al. Feb 2015 B1
8966495 Kulkarni Feb 2015 B2
8972980 Banga et al. Mar 2015 B2
8990807 Wu et al. Mar 2015 B2
8997093 Dimitrov Mar 2015 B2
9002871 Bulkowski et al. Apr 2015 B2
9021501 Li et al. Apr 2015 B2
9026658 Xu et al. May 2015 B2
9027087 Ishaya et al. May 2015 B2
9038068 Engle et al. May 2015 B2
9052935 Rajaa Jun 2015 B1
9086897 Oh et al. Jul 2015 B2
9086924 Barsness et al. Jul 2015 B2
9092837 Bala et al. Jul 2015 B2
9098528 Wang Aug 2015 B2
9104477 Kodialam et al. Aug 2015 B2
9110732 Forschmiedt et al. Aug 2015 B1
9110770 Raju et al. Aug 2015 B1
9111037 Nalis et al. Aug 2015 B1
9112813 Jackson Aug 2015 B2
9116733 Banga et al. Aug 2015 B2
9130900 Tran Sep 2015 B2
9141410 Leafe et al. Sep 2015 B2
9146764 Wagner Sep 2015 B1
9152406 De et al. Oct 2015 B2
9154955 Bertz et al. Oct 2015 B1
9164754 Pohlack Oct 2015 B1
9176871 Serlet Nov 2015 B1
9183019 Kruglick Nov 2015 B2
9189778 Sh. Al-Rashidi Nov 2015 B1
9195520 Turk Nov 2015 B2
9208007 Harper et al. Dec 2015 B2
9218190 Anand et al. Dec 2015 B2
9223561 Orveillon et al. Dec 2015 B2
9223966 Satish et al. Dec 2015 B1
9250893 Blahaerath et al. Feb 2016 B2
9268586 Voccio et al. Feb 2016 B2
9298633 Zhao et al. Mar 2016 B1
9317689 Aissi Apr 2016 B2
9323556 Wagner Apr 2016 B2
9361145 Wilson et al. Jun 2016 B1
9405582 Fuller et al. Aug 2016 B2
9411645 Duan et al. Aug 2016 B1
9413626 Reque et al. Aug 2016 B2
9417918 Chin et al. Aug 2016 B2
9430290 Gupta et al. Aug 2016 B1
9436555 Dornemann et al. Sep 2016 B2
9461996 Hayton et al. Oct 2016 B2
9471775 Wagner et al. Oct 2016 B1
9471776 Gu et al. Oct 2016 B2
9483335 Wagner et al. Nov 2016 B1
9489227 Oh et al. Nov 2016 B2
9497136 Ramarao et al. Nov 2016 B1
9501345 Lietz et al. Nov 2016 B1
9514037 Dow et al. Dec 2016 B1
9537788 Reque et al. Jan 2017 B2
9563613 Dinkel et al. Feb 2017 B1
9575798 Terayama et al. Feb 2017 B2
9588790 Wagner et al. Mar 2017 B1
9594590 Hsu Mar 2017 B2
9596350 Dymshyts et al. Mar 2017 B1
9600312 Wagner et al. Mar 2017 B2
9613127 Rus et al. Apr 2017 B1
9626204 Banga et al. Apr 2017 B1
9628332 Bruno, Jr. et al. Apr 2017 B2
9635132 Lin et al. Apr 2017 B1
9652306 Wagner et al. May 2017 B1
9652617 Evans et al. May 2017 B1
9654508 Barton et al. May 2017 B2
9661011 Van Horenbeeck et al. May 2017 B1
9678773 Wagner et al. Jun 2017 B1
9678778 Youseff Jun 2017 B1
9703681 Taylor et al. Jul 2017 B2
9715402 Wagner et al. Jul 2017 B2
9720661 Gschwind et al. Aug 2017 B2
9720662 Gschwind et al. Aug 2017 B2
9727725 Wagner et al. Aug 2017 B2
9733967 Wagner et al. Aug 2017 B2
9760387 Wagner et al. Sep 2017 B2
9760443 Tarasuk-Levin et al. Sep 2017 B2
9767271 Ghose Sep 2017 B2
9785476 Wagner et al. Oct 2017 B2
9787779 Frank et al. Oct 2017 B2
9798831 Chattopadhyay et al. Oct 2017 B2
9799017 Vermeulen et al. Oct 2017 B1
9811363 Wagner Nov 2017 B1
9811434 Wagner Nov 2017 B1
9817695 Clark Nov 2017 B2
9830175 Wagner Nov 2017 B1
9830193 Wagner et al. Nov 2017 B1
9830449 Wagner Nov 2017 B1
9864636 Patel et al. Jan 2018 B1
9898393 Moorthi et al. Feb 2018 B2
9910713 Wisniewski et al. Mar 2018 B2
9921864 Singaravelu et al. Mar 2018 B2
9928108 Wagner et al. Mar 2018 B1
9929916 Subramanian et al. Mar 2018 B1
9930103 Thompson Mar 2018 B2
9930133 Susarla et al. Mar 2018 B2
9952896 Wagner et al. Apr 2018 B2
9977691 Marriner et al. May 2018 B2
9979817 Huang et al. May 2018 B2
9983982 Kumar et al. May 2018 B1
10002026 Wagner Jun 2018 B1
10002036 Fuchs et al. Jun 2018 B2
10013267 Wagner et al. Jul 2018 B1
10042660 Wagner et al. Aug 2018 B2
10048974 Wagner et al. Aug 2018 B1
10061613 Brooker et al. Aug 2018 B1
10067801 Wagner Sep 2018 B1
10102040 Marriner et al. Oct 2018 B2
10108443 Wagner et al. Oct 2018 B2
10139876 Lu et al. Nov 2018 B2
10140137 Wagner Nov 2018 B2
10146635 Chai et al. Dec 2018 B1
10162655 Tuch et al. Dec 2018 B2
10162672 Wagner et al. Dec 2018 B2
10162688 Wagner Dec 2018 B2
10191861 Steinberg Jan 2019 B1
10193839 Tandon et al. Jan 2019 B2
10198298 Bishop et al. Feb 2019 B2
10203990 Wagner et al. Feb 2019 B2
10248467 Wisniewski et al. Apr 2019 B2
10255090 Tuch et al. Apr 2019 B2
10277708 Wagner et al. Apr 2019 B2
10282229 Wagner et al. May 2019 B2
10303492 Wagner et al. May 2019 B1
10331462 Varda et al. Jun 2019 B1
10346625 Anderson et al. Jul 2019 B2
10353678 Wagner Jul 2019 B1
10353746 Reque et al. Jul 2019 B2
10360025 Foskett et al. Jul 2019 B2
10360067 Wagner Jul 2019 B1
10365985 Wagner Jul 2019 B2
10387177 Wagner et al. Aug 2019 B2
10402231 Marriner et al. Sep 2019 B2
10423158 Hadlich Sep 2019 B1
10437629 Wagner et al. Oct 2019 B2
10445140 Sagar et al. Oct 2019 B1
10459822 Gondi Oct 2019 B1
10496547 Naenko et al. Dec 2019 B1
10503626 Idicula et al. Dec 2019 B2
10528390 Brooker et al. Jan 2020 B2
10531226 Wang et al. Jan 2020 B1
10552193 Wagner et al. Feb 2020 B2
10552442 Lusk et al. Feb 2020 B1
10564946 Wagner et al. Feb 2020 B1
10572375 Wagner Feb 2020 B1
10592269 Wagner et al. Mar 2020 B2
10608973 Kuo et al. Mar 2020 B2
10615984 Wang Apr 2020 B1
10623476 Thompson Apr 2020 B2
10637817 Kuo et al. Apr 2020 B2
10649749 Brooker et al. May 2020 B1
10649792 Kulchytskyy et al. May 2020 B1
10650156 Anderson et al. May 2020 B2
10652350 Wozniak May 2020 B2
10686605 Chhabra et al. Jun 2020 B2
10691498 Wagner Jun 2020 B2
10713080 Brooker et al. Jul 2020 B1
10719367 Kim et al. Jul 2020 B1
10725752 Wagner et al. Jul 2020 B1
10725826 Sagar et al. Jul 2020 B1
10732951 Jayanthi et al. Aug 2020 B2
10733085 Wagner Aug 2020 B1
10754701 Wagner Aug 2020 B1
10776091 Wagner et al. Sep 2020 B1
10776171 Wagner et al. Sep 2020 B2
10817331 Mullen et al. Oct 2020 B2
10824484 Wagner et al. Nov 2020 B2
10831898 Wagner Nov 2020 B1
10846117 Steinberg Nov 2020 B1
10853112 Wagner et al. Dec 2020 B2
10853115 Mullen et al. Dec 2020 B2
10884722 Brooker et al. Jan 2021 B2
10884787 Wagner et al. Jan 2021 B1
10884802 Wagner et al. Jan 2021 B2
10884812 Brooker et al. Jan 2021 B2
10891145 Wagner et al. Jan 2021 B2
10915371 Wagner et al. Feb 2021 B2
10942795 Yanacek et al. Mar 2021 B1
10949237 Piwonka et al. Mar 2021 B2
10956185 Wagner Mar 2021 B2
10956244 Cho Mar 2021 B1
11010188 Brooker et al. May 2021 B1
11016815 Wisniewski et al. May 2021 B2
11099870 Brooker et al. Aug 2021 B1
11099917 Hussels et al. Aug 2021 B2
11115404 Siefker et al. Sep 2021 B2
11119809 Brooker et al. Sep 2021 B1
11119813 Kasaragod Sep 2021 B1
11119826 Yanacek et al. Sep 2021 B2
11126469 Reque et al. Sep 2021 B2
11132213 Wagner et al. Sep 2021 B1
11146569 Brooker et al. Oct 2021 B1
11159528 Siefker et al. Oct 2021 B2
11188391 Sule Nov 2021 B1
11190609 Siefker et al. Nov 2021 B2
11231955 Shahane et al. Jan 2022 B1
11243819 Wagner Feb 2022 B1
11243953 Wagner et al. Feb 2022 B2
11263034 Wagner et al. Mar 2022 B2
11327992 Batsakis et al. May 2022 B1
11354169 Marriner et al. Jun 2022 B2
11360793 Wagner et al. Jun 2022 B2
11392497 Brooker et al. Jul 2022 B1
11461124 Wagner et al. Oct 2022 B2
11467890 Wagner Oct 2022 B2
11550713 Piwonka et al. Jan 2023 B1
11561811 Wagner Jan 2023 B2
11593270 Brooker et al. Feb 2023 B1
11714675 Brooker et al. Aug 2023 B2
20010044817 Asano et al. Nov 2001 A1
20020083012 Bush et al. Jun 2002 A1
20020120685 Srivastava et al. Aug 2002 A1
20020172273 Baker et al. Nov 2002 A1
20030071842 King et al. Apr 2003 A1
20030084434 Ren May 2003 A1
20030149801 Kushnirskiy Aug 2003 A1
20030177186 Goodman et al. Sep 2003 A1
20030191795 Bernardin et al. Oct 2003 A1
20030208569 O'Brien et al. Nov 2003 A1
20030229794 James, II et al. Dec 2003 A1
20040003087 Chambliss et al. Jan 2004 A1
20040019886 Berent et al. Jan 2004 A1
20040044721 Song et al. Mar 2004 A1
20040049768 Matsuyama et al. Mar 2004 A1
20040098154 McCarthy May 2004 A1
20040158551 Santosuosso Aug 2004 A1
20040205493 Simpson et al. Oct 2004 A1
20040249947 Novaes et al. Dec 2004 A1
20040268358 Darling et al. Dec 2004 A1
20050027611 Wharton Feb 2005 A1
20050044301 Vasilevsky et al. Feb 2005 A1
20050120160 Plouffe et al. Jun 2005 A1
20050132167 Longobardi Jun 2005 A1
20050132368 Sexton et al. Jun 2005 A1
20050149535 Frey et al. Jul 2005 A1
20050193113 Kokusho et al. Sep 2005 A1
20050193283 Reinhardt et al. Sep 2005 A1
20050237948 Wan et al. Oct 2005 A1
20050257051 Richard Nov 2005 A1
20050262183 Colrain et al. Nov 2005 A1
20050262512 Schmidt et al. Nov 2005 A1
20060010440 Anderson et al. Jan 2006 A1
20060015740 Kramer Jan 2006 A1
20060031448 Chu et al. Feb 2006 A1
20060036941 Neil Feb 2006 A1
20060080678 Bailey et al. Apr 2006 A1
20060123066 Jacobs et al. Jun 2006 A1
20060129684 Datta Jun 2006 A1
20060155800 Matsumoto Jul 2006 A1
20060168174 Gebhart et al. Jul 2006 A1
20060184669 Vaidyanathan et al. Aug 2006 A1
20060200668 Hybre et al. Sep 2006 A1
20060212332 Jackson Sep 2006 A1
20060218601 Michel Sep 2006 A1
20060242647 Kimbrel et al. Oct 2006 A1
20060242709 Seinfeld et al. Oct 2006 A1
20060248195 Toumura et al. Nov 2006 A1
20060259763 Cooperstein et al. Nov 2006 A1
20060282330 Frank et al. Dec 2006 A1
20060288120 Hoshino et al. Dec 2006 A1
20070033085 Johnson Feb 2007 A1
20070050779 Hayashi Mar 2007 A1
20070067321 Bissett et al. Mar 2007 A1
20070076244 Suzuki et al. Apr 2007 A1
20070094396 Takano et al. Apr 2007 A1
20070101325 Bystricky et al. May 2007 A1
20070112864 Ben-Natan May 2007 A1
20070130341 Ma Jun 2007 A1
20070174419 O'Connell et al. Jul 2007 A1
20070180449 Croft et al. Aug 2007 A1
20070180450 Croft et al. Aug 2007 A1
20070180493 Croft et al. Aug 2007 A1
20070186212 Mazzaferri et al. Aug 2007 A1
20070192082 Gaos et al. Aug 2007 A1
20070192329 Croft et al. Aug 2007 A1
20070198656 Mazzaferri et al. Aug 2007 A1
20070199000 Shekhel et al. Aug 2007 A1
20070220009 Morris et al. Sep 2007 A1
20070226700 Gal et al. Sep 2007 A1
20070240160 Paterson-Jones Oct 2007 A1
20070255604 Seelig Nov 2007 A1
20070300297 Dawson et al. Dec 2007 A1
20080028409 Cherkasova et al. Jan 2008 A1
20080052401 Bugenhagen et al. Feb 2008 A1
20080052725 Stoodley et al. Feb 2008 A1
20080082977 Araujo et al. Apr 2008 A1
20080104247 Venkatakrishnan et al. May 2008 A1
20080104608 Hyser et al. May 2008 A1
20080115143 Shimizu et al. May 2008 A1
20080126110 Haeberle et al. May 2008 A1
20080126486 Heist May 2008 A1
20080127125 Anckaert et al. May 2008 A1
20080147893 Marripudi et al. Jun 2008 A1
20080178278 Grinstein et al. Jul 2008 A1
20080184340 Nakamura et al. Jul 2008 A1
20080189468 Schmidt et al. Aug 2008 A1
20080195369 Duyanovich et al. Aug 2008 A1
20080201568 Quinn et al. Aug 2008 A1
20080201711 Amir Husain Aug 2008 A1
20080209423 Hirai Aug 2008 A1
20080244547 Wintergerst et al. Oct 2008 A1
20080288940 Adams et al. Nov 2008 A1
20080307098 Kelly Dec 2008 A1
20090006897 Sarsfield Jan 2009 A1
20090013153 Hilton Jan 2009 A1
20090018892 Grey et al. Jan 2009 A1
20090025009 Brunswig et al. Jan 2009 A1
20090034537 Colrain et al. Feb 2009 A1
20090055810 Kondur Feb 2009 A1
20090055829 Gibson Feb 2009 A1
20090070355 Cadarette et al. Mar 2009 A1
20090077569 Appleton et al. Mar 2009 A1
20090125902 Ghosh et al. May 2009 A1
20090158275 Wang et al. Jun 2009 A1
20090158407 Nicodemus et al. Jun 2009 A1
20090177860 Zhu et al. Jul 2009 A1
20090183162 Kindel et al. Jul 2009 A1
20090193410 Arthursson et al. Jul 2009 A1
20090198769 Keller et al. Aug 2009 A1
20090204960 Ben-yehuda et al. Aug 2009 A1
20090204964 Foley et al. Aug 2009 A1
20090222922 Sidiroglou et al. Sep 2009 A1
20090271472 Scheifler et al. Oct 2009 A1
20090288084 Astete et al. Nov 2009 A1
20090300151 Friedman et al. Dec 2009 A1
20090300599 Piotrowski Dec 2009 A1
20090307430 Bruening et al. Dec 2009 A1
20100023940 Iwamatsu et al. Jan 2010 A1
20100031274 Sim-Tang Feb 2010 A1
20100031325 Maigne et al. Feb 2010 A1
20100036925 Haffner Feb 2010 A1
20100037031 DeSantis et al. Feb 2010 A1
20100058342 Machida Mar 2010 A1
20100058351 Yahagi Mar 2010 A1
20100064299 Kacin et al. Mar 2010 A1
20100070678 Zhang et al. Mar 2010 A1
20100070725 Prahlad et al. Mar 2010 A1
20100083048 Calinoiu et al. Apr 2010 A1
20100083248 Wood et al. Apr 2010 A1
20100094816 Groves, Jr. et al. Apr 2010 A1
20100106926 Kandasamy et al. Apr 2010 A1
20100114825 Siddegowda May 2010 A1
20100115098 De Baer et al. May 2010 A1
20100122343 Ghosh May 2010 A1
20100131936 Cheriton May 2010 A1
20100131959 Spiers et al. May 2010 A1
20100146004 Sim-Tang Jun 2010 A1
20100169477 Stienhans et al. Jul 2010 A1
20100186011 Magenheimer Jul 2010 A1
20100198972 Umbehocker Aug 2010 A1
20100199285 Medovich Aug 2010 A1
20100257116 Mehta et al. Oct 2010 A1
20100257269 Clark Oct 2010 A1
20100269109 Cartales Oct 2010 A1
20100298011 Pelley et al. Nov 2010 A1
20100299541 Ishikawa et al. Nov 2010 A1
20100312871 Desantis et al. Dec 2010 A1
20100325727 Neystadt et al. Dec 2010 A1
20100329149 Singh et al. Dec 2010 A1
20100329643 Kuang Dec 2010 A1
20110004687 Takemura Jan 2011 A1
20110010690 Howard et al. Jan 2011 A1
20110010722 Matsuyama Jan 2011 A1
20110023026 Oza Jan 2011 A1
20110029970 Arasaratnam Feb 2011 A1
20110029984 Norman et al. Feb 2011 A1
20110035785 Mihara Feb 2011 A1
20110040812 Phillips Feb 2011 A1
20110055378 Ferris et al. Mar 2011 A1
20110055396 DeHaan Mar 2011 A1
20110055683 Jiang Mar 2011 A1
20110078679 Bozek et al. Mar 2011 A1
20110099204 Thaler Apr 2011 A1
20110099551 Fahrig et al. Apr 2011 A1
20110131572 Elyashev et al. Jun 2011 A1
20110134761 Smith Jun 2011 A1
20110141124 Halls et al. Jun 2011 A1
20110153541 Koch et al. Jun 2011 A1
20110153727 Li Jun 2011 A1
20110153838 Belkine et al. Jun 2011 A1
20110154353 Theroux et al. Jun 2011 A1
20110173637 Brandwine et al. Jul 2011 A1
20110179162 Mayo et al. Jul 2011 A1
20110184993 Chawla et al. Jul 2011 A1
20110208866 Marmolejo-Meillon et al. Aug 2011 A1
20110225277 Freimuth et al. Sep 2011 A1
20110231680 Padmanabhan et al. Sep 2011 A1
20110247005 Benedetti et al. Oct 2011 A1
20110258603 Wisnovsky et al. Oct 2011 A1
20110265067 Schulte et al. Oct 2011 A1
20110265069 Fee et al. Oct 2011 A1
20110265164 Lucovsky Oct 2011 A1
20110271276 Ashok et al. Nov 2011 A1
20110276945 Chasman et al. Nov 2011 A1
20110276963 Wu et al. Nov 2011 A1
20110296412 Banga et al. Dec 2011 A1
20110314465 Smith et al. Dec 2011 A1
20110321033 Kelkar et al. Dec 2011 A1
20110321051 Rastogi Dec 2011 A1
20120011496 Shimamura Jan 2012 A1
20120011511 Horvitz et al. Jan 2012 A1
20120016721 Weinman Jan 2012 A1
20120041970 Ghosh et al. Feb 2012 A1
20120054744 Singh et al. Mar 2012 A1
20120060207 Mardikar et al. Mar 2012 A1
20120072762 Atchison et al. Mar 2012 A1
20120072914 Ota Mar 2012 A1
20120072920 Kawamura Mar 2012 A1
20120079004 Herman Mar 2012 A1
20120096271 Ramarathinam et al. Apr 2012 A1
20120096468 Chakravorty et al. Apr 2012 A1
20120102307 Wong Apr 2012 A1
20120102333 Wong Apr 2012 A1
20120102481 Mani et al. Apr 2012 A1
20120102493 Allen et al. Apr 2012 A1
20120110155 Adlung et al. May 2012 A1
20120110164 Frey et al. May 2012 A1
20120110570 Jacobson et al. May 2012 A1
20120110588 Bieswanger et al. May 2012 A1
20120110603 Kaneko et al. May 2012 A1
20120124563 Chung et al. May 2012 A1
20120131379 Tameshige et al. May 2012 A1
20120144290 Goldman et al. Jun 2012 A1
20120166624 Suit et al. Jun 2012 A1
20120173709 Li et al. Jul 2012 A1
20120192184 Burckart et al. Jul 2012 A1
20120197795 Campbell et al. Aug 2012 A1
20120197958 Nightingale et al. Aug 2012 A1
20120198442 Kashyap et al. Aug 2012 A1
20120198514 McCune et al. Aug 2012 A1
20120204164 Castanos et al. Aug 2012 A1
20120209947 Glaser et al. Aug 2012 A1
20120222038 Katragadda et al. Aug 2012 A1
20120233464 Miller et al. Sep 2012 A1
20120254193 Chattopadhyay et al. Oct 2012 A1
20120324052 Paleja et al. Dec 2012 A1
20120324236 Srivastava et al. Dec 2012 A1
20120331113 Jain et al. Dec 2012 A1
20130014101 Ballani et al. Jan 2013 A1
20130042234 DeLuca et al. Feb 2013 A1
20130054804 Jana et al. Feb 2013 A1
20130054927 Raj et al. Feb 2013 A1
20130055262 Lubsey et al. Feb 2013 A1
20130061208 Tsao et al. Mar 2013 A1
20130061212 Krause et al. Mar 2013 A1
20130061220 Gnanasambandam et al. Mar 2013 A1
20130067484 Sonoda et al. Mar 2013 A1
20130067494 Srour et al. Mar 2013 A1
20130080641 Lui et al. Mar 2013 A1
20130091387 Bohnet et al. Apr 2013 A1
20130097601 Podvratnik et al. Apr 2013 A1
20130111032 Alapati et al. May 2013 A1
20130111469 B et al. May 2013 A1
20130124807 Nielsen et al. May 2013 A1
20130132283 Hayhow et al. May 2013 A1
20130132942 Wang May 2013 A1
20130132953 Chuang et al. May 2013 A1
20130139152 Chang et al. May 2013 A1
20130139166 Zhang et al. May 2013 A1
20130145354 Bruening et al. Jun 2013 A1
20130151587 Takeshima et al. Jun 2013 A1
20130151648 Luna Jun 2013 A1
20130151684 Forsman et al. Jun 2013 A1
20130152047 Moorthi et al. Jun 2013 A1
20130167147 Corrie et al. Jun 2013 A1
20130179574 Calder et al. Jul 2013 A1
20130179881 Calder et al. Jul 2013 A1
20130179894 Calder et al. Jul 2013 A1
20130179895 Calder et al. Jul 2013 A1
20130181998 Malakapalli Jul 2013 A1
20130185719 Kar et al. Jul 2013 A1
20130185729 Vasic et al. Jul 2013 A1
20130191924 Tedesco Jul 2013 A1
20130198319 Shen et al. Aug 2013 A1
20130198743 Kruglick Aug 2013 A1
20130198748 Sharp et al. Aug 2013 A1
20130198763 Kunze et al. Aug 2013 A1
20130205092 Roy et al. Aug 2013 A1
20130205114 Badam et al. Aug 2013 A1
20130219390 Lee et al. Aug 2013 A1
20130227097 Yasuda et al. Aug 2013 A1
20130227534 Ike et al. Aug 2013 A1
20130227563 McGrath Aug 2013 A1
20130227641 White et al. Aug 2013 A1
20130227710 Barak et al. Aug 2013 A1
20130232190 Miller et al. Sep 2013 A1
20130232480 Winterfeldt et al. Sep 2013 A1
20130239125 Iorio Sep 2013 A1
20130246944 Pandiyan et al. Sep 2013 A1
20130262556 Xu et al. Oct 2013 A1
20130263117 Konik et al. Oct 2013 A1
20130274006 Hudlow et al. Oct 2013 A1
20130275376 Hudlow et al. Oct 2013 A1
20130275958 Ivanov et al. Oct 2013 A1
20130275969 Dimitrov Oct 2013 A1
20130275975 Masuda et al. Oct 2013 A1
20130283141 Stevenson et al. Oct 2013 A1
20130283176 Hoole et al. Oct 2013 A1
20130290538 Gmach et al. Oct 2013 A1
20130291087 Kailash et al. Oct 2013 A1
20130297964 Hegdal et al. Nov 2013 A1
20130298183 McGrath et al. Nov 2013 A1
20130311650 Brandwine et al. Nov 2013 A1
20130326506 McGrath et al. Dec 2013 A1
20130326507 McGrath et al. Dec 2013 A1
20130332660 Talagala et al. Dec 2013 A1
20130339950 Ramarathinam et al. Dec 2013 A1
20130346470 Obstfeld et al. Dec 2013 A1
20130346946 Pinnix Dec 2013 A1
20130346952 Huang et al. Dec 2013 A1
20130346964 Nobuoka et al. Dec 2013 A1
20130346987 Raney et al. Dec 2013 A1
20130346994 Chen et al. Dec 2013 A1
20130347095 Barjatiya et al. Dec 2013 A1
20140007097 Chin et al. Jan 2014 A1
20140019523 Heymann et al. Jan 2014 A1
20140019735 Menon et al. Jan 2014 A1
20140019965 Neuse et al. Jan 2014 A1
20140019966 Neuse et al. Jan 2014 A1
20140040343 Nickolov et al. Feb 2014 A1
20140040857 Trinchini et al. Feb 2014 A1
20140040880 Brownlow et al. Feb 2014 A1
20140047437 Wu et al. Feb 2014 A1
20140058871 Marr et al. Feb 2014 A1
20140059209 Alnoor Feb 2014 A1
20140059226 Messerli et al. Feb 2014 A1
20140059552 Cunningham et al. Feb 2014 A1
20140068568 Wisnovsky Mar 2014 A1
20140068608 Kulkarni Mar 2014 A1
20140068611 McGrath et al. Mar 2014 A1
20140073300 Leeder et al. Mar 2014 A1
20140081984 Sitsky et al. Mar 2014 A1
20140082165 Marr et al. Mar 2014 A1
20140082201 Shankari et al. Mar 2014 A1
20140101649 Kamble et al. Apr 2014 A1
20140108722 Lipchuk et al. Apr 2014 A1
20140109087 Jujare et al. Apr 2014 A1
20140109088 Dournov et al. Apr 2014 A1
20140129667 Ozawa May 2014 A1
20140130040 Lemanski May 2014 A1
20140137110 Engle et al. May 2014 A1
20140164551 Resch et al. Jun 2014 A1
20140173614 Konik et al. Jun 2014 A1
20140173616 Bird et al. Jun 2014 A1
20140180862 Certain et al. Jun 2014 A1
20140189677 Curzi et al. Jul 2014 A1
20140189704 Narvaez et al. Jul 2014 A1
20140201735 Kannan et al. Jul 2014 A1
20140207912 Thibeault Jul 2014 A1
20140214752 Rash et al. Jul 2014 A1
20140215073 Dow et al. Jul 2014 A1
20140229221 Shih et al. Aug 2014 A1
20140229942 Wiseman et al. Aug 2014 A1
20140245297 Hackett Aug 2014 A1
20140258777 Cheriton Sep 2014 A1
20140279581 Devereaux Sep 2014 A1
20140280325 Krishnamurthy et al. Sep 2014 A1
20140282418 Wood et al. Sep 2014 A1
20140282559 Verduzco et al. Sep 2014 A1
20140282615 Cavage et al. Sep 2014 A1
20140282629 Gupta et al. Sep 2014 A1
20140283045 Brandwine et al. Sep 2014 A1
20140289286 Gusak Sep 2014 A1
20140298295 Overbeck Oct 2014 A1
20140304246 Helmich et al. Oct 2014 A1
20140304698 Chigurapati et al. Oct 2014 A1
20140304815 Maeda Oct 2014 A1
20140317617 O'Donnell Oct 2014 A1
20140330936 Factor et al. Nov 2014 A1
20140331222 Zheng Nov 2014 A1
20140337953 Banatwala et al. Nov 2014 A1
20140344457 Bruno, Jr. et al. Nov 2014 A1
20140344736 Ryman et al. Nov 2014 A1
20140351674 Grube et al. Nov 2014 A1
20140359093 Raju et al. Dec 2014 A1
20140359608 Tsirkin et al. Dec 2014 A1
20140365781 Dmitrienko et al. Dec 2014 A1
20140372489 Jaiswal et al. Dec 2014 A1
20140372533 Fu et al. Dec 2014 A1
20140380085 Rash et al. Dec 2014 A1
20150006487 Yang et al. Jan 2015 A1
20150025989 Dunstan Jan 2015 A1
20150033241 Jackson et al. Jan 2015 A1
20150039891 Ignatchenko et al. Feb 2015 A1
20150040229 Chan et al. Feb 2015 A1
20150046926 Kenchammana-Hosekote et al. Feb 2015 A1
20150046971 Huh et al. Feb 2015 A1
20150052258 Johnson et al. Feb 2015 A1
20150058914 Yadav Feb 2015 A1
20150067019 Balko Mar 2015 A1
20150067830 Johansson et al. Mar 2015 A1
20150074659 Madsen et al. Mar 2015 A1
20150074661 Kothari et al. Mar 2015 A1
20150074662 Saladi et al. Mar 2015 A1
20150074675 Qi et al. Mar 2015 A1
20150081885 Thomas et al. Mar 2015 A1
20150095822 Feis et al. Apr 2015 A1
20150106805 Melander et al. Apr 2015 A1
20150120928 Gummaraju et al. Apr 2015 A1
20150121391 Wang Apr 2015 A1
20150134626 Theimer et al. May 2015 A1
20150135287 Medeiros et al. May 2015 A1
20150142747 Zou May 2015 A1
20150142952 Bragstad et al. May 2015 A1
20150143374 Banga et al. May 2015 A1
20150143381 Chin et al. May 2015 A1
20150146716 Olivier et al. May 2015 A1
20150154046 Farkas et al. Jun 2015 A1
20150161384 Gu et al. Jun 2015 A1
20150163231 Sobko et al. Jun 2015 A1
20150178019 Hegdal et al. Jun 2015 A1
20150178110 Li et al. Jun 2015 A1
20150186129 Apte et al. Jul 2015 A1
20150188775 Van Der Walt et al. Jul 2015 A1
20150199218 Wilson et al. Jul 2015 A1
20150205596 Hiltegen et al. Jul 2015 A1
20150206139 Lea Jul 2015 A1
20150212818 Gschwind et al. Jul 2015 A1
20150227598 Hahn et al. Aug 2015 A1
20150229645 Keith et al. Aug 2015 A1
20150235144 Gusev et al. Aug 2015 A1
20150242225 Muller et al. Aug 2015 A1
20150254248 Burns et al. Sep 2015 A1
20150256514 Laivand et al. Sep 2015 A1
20150256621 Noda et al. Sep 2015 A1
20150261578 Greden et al. Sep 2015 A1
20150264014 Budhani et al. Sep 2015 A1
20150269494 Kardes et al. Sep 2015 A1
20150271073 Saladi et al. Sep 2015 A1
20150271280 Zhang et al. Sep 2015 A1
20150289220 Kim et al. Oct 2015 A1
20150309923 Iwata et al. Oct 2015 A1
20150319160 Ferguson et al. Nov 2015 A1
20150319174 Hayton et al. Nov 2015 A1
20150324174 Bromley et al. Nov 2015 A1
20150324182 Barros et al. Nov 2015 A1
20150324210 Carlson Nov 2015 A1
20150324229 Valine Nov 2015 A1
20150332048 Mooring et al. Nov 2015 A1
20150332195 Jue Nov 2015 A1
20150334173 Coulmeau et al. Nov 2015 A1
20150350701 Lemus et al. Dec 2015 A1
20150356294 Tan et al. Dec 2015 A1
20150363181 Alberti et al. Dec 2015 A1
20150363304 Nagamalla et al. Dec 2015 A1
20150370560 Tan et al. Dec 2015 A1
20150370591 Tuch et al. Dec 2015 A1
20150370592 Tuch et al. Dec 2015 A1
20150371244 Neuse et al. Dec 2015 A1
20150378762 Saladi et al. Dec 2015 A1
20150378764 Sivasubramanian et al. Dec 2015 A1
20150378765 Singh et al. Dec 2015 A1
20150379167 Griffith et al. Dec 2015 A1
20160011901 Hurwitz et al. Jan 2016 A1
20160012099 Tuatini et al. Jan 2016 A1
20160019081 Chandrasekaran et al. Jan 2016 A1
20160019082 Chandrasekaran et al. Jan 2016 A1
20160019536 Ortiz et al. Jan 2016 A1
20160021112 Katieb Jan 2016 A1
20160026486 Abdallah Jan 2016 A1
20160048606 Rubinstein et al. Feb 2016 A1
20160070714 D'Sa et al. Mar 2016 A1
20160072727 Leafe et al. Mar 2016 A1
20160072781 Zhang et al. Mar 2016 A1
20160077901 Roth et al. Mar 2016 A1
20160092320 Baca Mar 2016 A1
20160092493 Ko et al. Mar 2016 A1
20160098285 Davis et al. Apr 2016 A1
20160100036 Lo et al. Apr 2016 A1
20160103739 Huang et al. Apr 2016 A1
20160110188 Verde et al. Apr 2016 A1
20160117163 Fukui et al. Apr 2016 A1
20160117254 Susarla et al. Apr 2016 A1
20160119289 Jain et al. Apr 2016 A1
20160124665 Jain et al. May 2016 A1
20160124978 Nithrakashyap et al. May 2016 A1
20160140180 Park et al. May 2016 A1
20160150053 Janczuk et al. May 2016 A1
20160188367 Zeng Jun 2016 A1
20160191420 Nagarajan et al. Jun 2016 A1
20160198235 Liu et al. Jul 2016 A1
20160203219 Hoch et al. Jul 2016 A1
20160212007 Alatorre et al. Jul 2016 A1
20160224785 Wagner Aug 2016 A1
20160226955 Moorthi et al. Aug 2016 A1
20160282930 Ramachandran et al. Sep 2016 A1
20160285906 Fine et al. Sep 2016 A1
20160292016 Bussard et al. Oct 2016 A1
20160294614 Searle et al. Oct 2016 A1
20160306613 Busi et al. Oct 2016 A1
20160315910 Kaufman Oct 2016 A1
20160350099 Suparna et al. Dec 2016 A1
20160350124 Gschwind et al. Dec 2016 A1
20160357536 Firlik et al. Dec 2016 A1
20160364265 Cao et al. Dec 2016 A1
20160364316 Bhat et al. Dec 2016 A1
20160371127 Antony et al. Dec 2016 A1
20160371156 Merriman Dec 2016 A1
20160378449 Khazanchi et al. Dec 2016 A1
20160378525 Bjorkengren Dec 2016 A1
20160378547 Brouwer et al. Dec 2016 A1
20160378554 Gummaraju et al. Dec 2016 A1
20170004169 Merrill et al. Jan 2017 A1
20170032000 Sharma et al. Feb 2017 A1
20170041144 Krapf et al. Feb 2017 A1
20170041309 Ekambaram et al. Feb 2017 A1
20170060615 Thakkar et al. Mar 2017 A1
20170060621 Whipple et al. Mar 2017 A1
20170068574 Cherkasova et al. Mar 2017 A1
20170075749 Ambichl et al. Mar 2017 A1
20170083381 Cong et al. Mar 2017 A1
20170085447 Chen et al. Mar 2017 A1
20170085502 Biruduraju Mar 2017 A1
20170085591 Ganda et al. Mar 2017 A1
20170091235 Yammine et al. Mar 2017 A1
20170091296 Beard et al. Mar 2017 A1
20170093684 Jayaraman et al. Mar 2017 A1
20170093920 Ducatel et al. Mar 2017 A1
20170134519 Chen et al. May 2017 A1
20170142099 Hinohara et al. May 2017 A1
20170147656 Choudhary et al. May 2017 A1
20170149740 Mansour et al. May 2017 A1
20170153965 Nitta et al. Jun 2017 A1
20170161059 Wood et al. Jun 2017 A1
20170177266 Doerner et al. Jun 2017 A1
20170177441 Chow Jun 2017 A1
20170177854 Gligor et al. Jun 2017 A1
20170188213 Nirantar et al. Jun 2017 A1
20170192825 Biberman et al. Jul 2017 A1
20170221000 Anand Aug 2017 A1
20170230262 Sreeramoju et al. Aug 2017 A1
20170230499 Mumick et al. Aug 2017 A1
20170249130 Smiljamic et al. Aug 2017 A1
20170264681 Apte et al. Sep 2017 A1
20170272462 Kraemer et al. Sep 2017 A1
20170286143 Wagner et al. Oct 2017 A1
20170286187 Chen et al. Oct 2017 A1
20170288878 Lee et al. Oct 2017 A1
20170308520 Beahan, Jr. et al. Oct 2017 A1
20170315163 Wang et al. Nov 2017 A1
20170322824 Reuther et al. Nov 2017 A1
20170329578 Iscen Nov 2017 A1
20170346808 Anzai et al. Nov 2017 A1
20170353851 Gonzalez et al. Dec 2017 A1
20170364345 Fontoura et al. Dec 2017 A1
20170371720 Basu et al. Dec 2017 A1
20170371724 Wagner et al. Dec 2017 A1
20170372142 Bilobrov Dec 2017 A1
20180004555 Ramanathan et al. Jan 2018 A1
20180004556 Marriner et al. Jan 2018 A1
20180004575 Marriner et al. Jan 2018 A1
20180032410 Kang et al. Feb 2018 A1
20180046453 Nair et al. Feb 2018 A1
20180046482 Karve et al. Feb 2018 A1
20180060132 Maru et al. Mar 2018 A1
20180060221 Yim et al. Mar 2018 A1
20180060318 Yang et al. Mar 2018 A1
20180067841 Mahimkar Mar 2018 A1
20180067873 Pikhur et al. Mar 2018 A1
20180069702 Ayyadevara et al. Mar 2018 A1
20180081717 Li Mar 2018 A1
20180089232 Spektor et al. Mar 2018 A1
20180095738 Dürkop et al. Apr 2018 A1
20180113770 Hasanov et al. Apr 2018 A1
20180121245 Wagner et al. May 2018 A1
20180121665 Anderson et al. May 2018 A1
20180129684 Wilson et al. May 2018 A1
20180143865 Wagner et al. May 2018 A1
20180144263 Saxena et al. May 2018 A1
20180150339 Pan et al. May 2018 A1
20180152401 Tandon et al. May 2018 A1
20180152405 Kuo et al. May 2018 A1
20180152406 Kuo et al. May 2018 A1
20180192101 Bilobrov Jul 2018 A1
20180225096 Mishra et al. Aug 2018 A1
20180227300 Nakic et al. Aug 2018 A1
20180239636 Arora et al. Aug 2018 A1
20180253333 Gupta Sep 2018 A1
20180268130 Ghosh et al. Sep 2018 A1
20180275987 Vandeputte Sep 2018 A1
20180285101 Yahav et al. Oct 2018 A1
20180300111 Bhat et al. Oct 2018 A1
20180314845 Anderson et al. Nov 2018 A1
20180316552 Subramani Nadar et al. Nov 2018 A1
20180341504 Kissell Nov 2018 A1
20180365422 Callaghan et al. Dec 2018 A1
20180367517 Tus Dec 2018 A1
20180375781 Chen et al. Dec 2018 A1
20190004866 Du et al. Jan 2019 A1
20190018715 Behrendt et al. Jan 2019 A1
20190028552 Johnson, II et al. Jan 2019 A1
20190034095 Singh et al. Jan 2019 A1
20190043231 Uzgin et al. Feb 2019 A1
20190072529 Andrawes et al. Mar 2019 A1
20190073430 Webster Mar 2019 A1
20190079751 Foskett et al. Mar 2019 A1
20190102278 Gahlin et al. Apr 2019 A1
20190108058 Wagner et al. Apr 2019 A1
20190140831 De Lima Junior et al. May 2019 A1
20190141015 Nellen May 2019 A1
20190147085 Pal et al. May 2019 A1
20190147515 Hurley et al. May 2019 A1
20190155629 Wagner et al. May 2019 A1
20190171423 Mishra et al. Jun 2019 A1
20190171470 Wagner Jun 2019 A1
20190179678 Banerjee et al. Jun 2019 A1
20190179725 Mital et al. Jun 2019 A1
20190180036 Shukla Jun 2019 A1
20190188288 Holm et al. Jun 2019 A1
20190196884 Wagner Jun 2019 A1
20190227849 Wisniewski et al. Jul 2019 A1
20190235848 Swiecki et al. Aug 2019 A1
20190238590 Talukdar et al. Aug 2019 A1
20190250937 Thomas et al. Aug 2019 A1
20190268152 Sandoval et al. Aug 2019 A1
20190278938 Greene et al. Sep 2019 A1
20190286475 Mani Sep 2019 A1
20190286492 Gulsvig Wood et al. Sep 2019 A1
20190303117 Kocberber et al. Oct 2019 A1
20190311115 Lavi et al. Oct 2019 A1
20190318312 Foskett et al. Oct 2019 A1
20190320038 Walsh et al. Oct 2019 A1
20190324813 Bogineni et al. Oct 2019 A1
20190339955 Kuo et al. Nov 2019 A1
20190361802 Li et al. Nov 2019 A1
20190363885 Schiavoni et al. Nov 2019 A1
20190370113 Zhang et al. Dec 2019 A1
20190384647 Reque et al. Dec 2019 A1
20190391834 Mullen et al. Dec 2019 A1
20190391841 Mullen et al. Dec 2019 A1
20200007456 Greenstein et al. Jan 2020 A1
20200026527 Xu et al. Jan 2020 A1
20200028936 Gupta et al. Jan 2020 A1
20200034471 Danilov et al. Jan 2020 A1
20200057680 Marriner et al. Feb 2020 A1
20200065079 Kocberber et al. Feb 2020 A1
20200073770 Mortimore, Jr. et al. Mar 2020 A1
20200073987 Perumala et al. Mar 2020 A1
20200081745 Cybulski et al. Mar 2020 A1
20200104198 Hussels et al. Apr 2020 A1
20200104378 Wagner et al. Apr 2020 A1
20200110691 Bryant et al. Apr 2020 A1
20200120120 Cybulski Apr 2020 A1
20200136933 Raskar Apr 2020 A1
20200142724 Wagner et al. May 2020 A1
20200153798 Liebherr May 2020 A1
20200153897 Mestery et al. May 2020 A1
20200167208 Floes et al. May 2020 A1
20200192646 Yerramreddy et al. Jun 2020 A1
20200192707 Brooker et al. Jun 2020 A1
20200213151 Srivatsan et al. Jul 2020 A1
20200327236 Pratt et al. Oct 2020 A1
20200341799 Wagner et al. Oct 2020 A1
20200349067 Syamala et al. Nov 2020 A1
20200366587 White et al. Nov 2020 A1
20200401455 Church et al. Dec 2020 A1
20210019056 Mangione-Tran Jan 2021 A1
20210117534 Maximov et al. Apr 2021 A1
20210232415 Wagner et al. Jul 2021 A1
20210389963 Wagner Dec 2021 A1
20220004423 Brooker et al. Jan 2022 A1
20220012083 Brooker et al. Jan 2022 A1
20220391238 Wagner Dec 2022 A1
20230024699 Bayoumi et al. Jan 2023 A1
20230188516 Danilov Jun 2023 A1
Foreign Referenced Citations (88)
Number Date Country
2962633 Apr 2012 CA
2975522 Aug 2016 CA
1341238 Mar 2002 CN
101002170 Jul 2007 CN
101267334 Sep 2008 CN
101345757 Jan 2009 CN
101496005 Jul 2009 CN
101627388 Jan 2010 CN
101640700 Feb 2010 CN
101764824 Jun 2010 CN
102171712 Aug 2011 CN
102365858 Feb 2012 CN
102420846 Apr 2012 CN
102761549 Oct 2012 CN
103098027 May 2013 CN
103140828 Jun 2013 CN
103384237 Nov 2013 CN
103731427 Apr 2014 CN
104111848 Oct 2014 CN
104243479 Dec 2014 CN
104903854 Sep 2015 CN
105122243 Dec 2015 CN
108885568 Nov 2018 CN
109478134 Mar 2019 CN
109564525 Apr 2019 CN
112513813 Mar 2021 CN
109564525 May 2023 CN
2663052 Nov 2013 EP
3201762 Aug 2017 EP
3254434 Dec 2017 EP
3356938 Aug 2018 EP
3201768 Dec 2019 EP
3811209 Apr 2021 EP
3814895 May 2021 EP
3857375 Aug 2021 EP
4064052 Sep 2022 EP
2002287974 Oct 2002 JP
2006-107599 Apr 2006 JP
2007-080161 Mar 2007 JP
2007-538323 Dec 2007 JP
2010-026562 Feb 2010 JP
2011-065243 Mar 2011 JP
2011-233146 Nov 2011 JP
2011257847 Dec 2011 JP
2012-078893 Apr 2012 JP
2012-104150 May 2012 JP
2013-156996 Aug 2013 JP
2014-525624 Sep 2014 JP
2016-507100 Mar 2016 JP
2017-534107 Nov 2017 JP
2017-534967 Nov 2017 JP
2018-503896 Feb 2018 JP
2018-512087 May 2018 JP
2018-536213 Dec 2018 JP
7197612 Dec 2022 JP
7210713 Jan 2023 JP
7275171 May 2023 JP
10-357850 Oct 2002 KR
10-2021-0019533 Feb 2021 KR
10-2541295 Jun 2023 KR
WO 2008114454 Sep 2008 WO
WO 2009137567 Nov 2009 WO
WO 2012039834 Mar 2012 WO
WO 2012050772 Apr 2012 WO
WO 2013106257 Jul 2013 WO
WO 2015078394 Jun 2015 WO
WO 2015108539 Jul 2015 WO
WO 2015149017 Oct 2015 WO
WO 2016053950 Apr 2016 WO
WO 2016053968 Apr 2016 WO
WO 2016053973 Apr 2016 WO
WO 2016090292 Jun 2016 WO
WO 2016126731 Aug 2016 WO
WO 2016164633 Oct 2016 WO
WO 2016164638 Oct 2016 WO
WO 2017059248 Apr 2017 WO
WO 2017112526 Jun 2017 WO
WO 2017172440 Oct 2017 WO
WO 2018005829 Jan 2018 WO
WO 2018098443 May 2018 WO
WO 2018098445 May 2018 WO
WO 2020005764 Jan 2020 WO
WO 2020006081 Jan 2020 WO
WO 2020069104 Apr 2020 WO
WO 2020123439 Jun 2020 WO
WO 2020264431 Dec 2020 WO
WO 2021108435 Jun 2021 WO
WO 2023107649 Jun 2023 WO
Non-Patent Literature Citations (150)
Entry
Amazon, “AWS Lambda: Developer Guide”, Jun. 26, 2016 Retrieved from the Internet, URL:http://docs.aws.amazon.com/lambda/latest/dg/lambda-dg.pdf, [retrieved on Aug. 30, 2017], 314 pages.
Bebenita et al., “Trace-Based Compilation in Execution Environments without Interpreters,” ACM, Copyright 2010, 10 pages.
Bryan Liston, “Ad Hoc Big Data Processing Made Simple with Serverless Map Reduce”, Nov. 4, 2016, Amazon Web Services <https :/laws. amazon .com/bl ogs/compute/ad-hoc-big-data-processi ng-made-si mple-with-serverless- mapred uce >.
Dean et al, “MapReduce: Simplified Data Processing on Large Clusters”, ACM, 2008, pp. 107-113.
Dornemann et al., “On-Demand Resource Provisioning for BPEL Workflows Using Amazon's Elastic Compute Cloud”, 9th IEEE/ACM International Symposium on Cluster Computing and the Grid, 2009, pp. 140-147.
Ekanayake et al, “Twister: A Runtime for Iterative MapReduce”, ACM, 2010, pp. 810-818.
Fan et al., Online Optimization of VM Deployment in laaS Cloud, Dec. 17, 2012-Dec. 19, 2012, 6 pages.
Ha et al., A Concurrent Trace-based Just-In-Time Compiler for Single-threaded JavaScript, utexas.edu, Jun. 2009.
Hammoud et al, “Locality-Aware Reduce Task Scheduling for MapReduce”, IEEE, 2011, pp. 570-576.
Huang, Zhe, Danny HK Tsang, and James She. “A virtual machine consolidation framework for mapreduce enabled computing clouds.” 2012 24th International Teletraffic Congress (ITC 24). IEEE, Sep. 4, 2012-Sep. 7, 2012.
Kim et al, “MRBench: A Benchmark for Map-Reduce Framework”, IEEE, 2008, pp. 11-18.
Lagar-Cavilla et al., “SnowFlock: Virtual Machine Cloning as a First-Class Cloud Primitive”, ACM Transactions on Computer Systems, vol. 29, No. 1, Article 2, Publication date: Feb. 2011, in 45 pages.
Lin, “MR-Apriori: Association Rules Algorithm Based on MapReduce”, IEEE, 2014, pp. 141-144.
Search Query Report from IP.com, performed Dec. 2, 2020.
Ryden et al., “Nebula: Distributed Edge Cloud for Data-Intensive Computing”, IEEE, 2014, pp. 491-192.
Search Query Report from IP.com, performed May 27, 2021.
Wood, Timothy, et al. “Cloud Net: dynamic pooling of cloud resources by live WAN migration of virtual machines.” ACM Sigplan Notices 46.7 (2011): 121-132. (Year: 2011).
Yang, The Application of MapReduce in the Cloud Computing:, IEEE, 2011, pp. 154-156.
Zhang et al., VMThunder: Fast Provisioning of Large-Scale Virtual Machine Clusters, IEEE Transactions on Parallel and Distributed Systems, vol. 25, No. 12, Dec. 2014, pp. 3328-3338.
Office Action in Chinese Application No. 202110268031.5, dated Sep. 3, 2021.
Office Action in Canadian Application No. 2,962,633 dated May 21, 2020.
Office Action in Canadian Application No. 2,962,633 dated Jun. 18, 2021.
Office Action in European Application No. 19199402.9 dated Mar. 23, 2021.
Office Action in European Application No. 19199402.9 dated Dec. 3, 2021 in 4 pages.
Office Action in Japanese Application No. 2017-516160 dated Jan. 15, 2018.
Notice of Allowance in Japanese Application No. 2017-516160 dated May 8, 2018.
Office Action in Canadian Application No. 2,962,631 dated May 19, 2020.
Office Action in Canadian Application No. 2,962,631 dated May 31, 2021.
Office Action in Indian Application No. 201717013356 dated Jan. 22, 2021.
Office Action in Japanese Application No. 2017-516168 dated Mar. 26, 2018.
Office Action in Indian Application No. 201717019903 dated May 18, 2020.
Office Action in Australian Application No. 2016215438 dated Feb. 26, 2018.
Notice of Allowance in Australian Application No. 2016215438 dated Nov. 19, 2018.
Office Action in Canadian Application No. 2,975,522 dated Jun. 5, 2018.
Notice of Allowance in Canadian Application No. 2,975,522 dated Mar. 13, 2020.
Office Action in Indian Application No. 201717027369 dated May 21, 2020.
Office Action in Chinese Application No. 201680020768.2 dated May 14, 2021 in 23 pages.
Office Action in Chinese Application No. 201680020768.2 dated Sep. 24, 2021 in 20 pages.
First Examination Report for Indian Application No. 201717034806 dated Jun. 25, 2020.
Office Action in Chinese Application No. 2016800562398 dated Jun. 18, 2021.
Office Action in European Application No. 16781265.0 dated Jul. 13, 2020.
Office Action in Indian Application No. 201817013748 dated Nov. 20, 2020.
Office Action in Chinese Application No. 201680072794X dated Jun. 22, 2021.
Office Action in European Application No. 16823419.3 dated Mar. 12, 2021.
Office Action in Chinese Application No. 201780022789.2 dated Apr. 28, 2021.
Office Action in European Application No. 17776325.7 dated Apr. 12, 2021.
Office Action in Chinese Application No. 2017800451968 dated May 26, 2021.
Office Action in Chinese Application No. 2017800451968 dated Dec. 3, 2021 in 20 pages.
Office Action in European Application No. 17740533.9 dated May 4, 2021.
Office Action in European Application No. 17743108.7 dated Dec. 22, 2020.
International Search Report and Written Opinion dated Oct. 15, 2019 for International Application No. PCT/US2019/039246 in 16 pages.
International Preliminary Report on Patentability dated Dec. 29, 2020 for International Application No. PCT/US2019/039246 in 8 pages.
Office Action in Japanese Application No. 2020-572441 dated Dec. 22, 2021 in 8 pages.
International Search Report for Application No. PCT/US2019/038520 dated Aug. 14, 2019.
International Preliminary Report on Patentability for Application No. PCT/US2019/038520 dated Dec. 29, 2020.
International Preliminary Report on Patentability and Written Opinion in PCT/US2019/053123 dated Mar. 23, 2021.
International Search Report and Written Opinion in PCT/US2019/053123 dated Jan. 7, 2020.
International Search Report for Application No. PCT/US2019/065365 dated Mar. 19, 2020.
International Preliminary Report on Patentability for Application No. PCT/US2019/065365 dated Jun. 8, 2021.
International Search Report for Application No. PCT/US2020/039996 dated Oct. 8, 2020.
International Preliminary Report on Patentability for Application No. PCT/US2020/039996 dated Jan. 6, 2022.
International Search Report for Application No. PCT/US2020/062060 dated Mar. 5, 2021.
Anonymous: “Docker run reference”, Dec. 7, 2015, XP055350246, Retrieved from the Internet: URL:https://web.archive.org/web/20151207111702/https:/docs.docker.com/engine/reference/run/ [retrieved on Feb. 28, 2017].
Adapter Pattern, Wikipedia, https://en.wikipedia.org/w/index.php?title=Adapter_pattern&oldid=654971255, [retrieved May 26, 2016], 6 pages.
Amazon, “AWS Lambda: Developer Guide”, Retrieved from the Internet, Jun. 26, 2016, URL : http://docs.aws.amazon.com/lambda/ latest/dg/lambda-dg.pdf, 346 pages.
Amazon, “AWS Lambda: Developer Guide”, Retrieved from the Internet, 2019, URL : http://docs.aws.amazon.com/lambda/ latest/dg/lambda-dg.pdf, 521 pages.
Balazinska et al., Moirae: History-Enhanced Monitoring, Published: 2007, 12 pages.
Ben-Yehuda et al., “Deconstructing Amazon EC2 Spot Instance Pricing”, ACM Transactions on Economics and Computation 1.3, 2013, 15 pages.
Bhadani et al., Performance evaluation of web servers using central load balancing policy over virtual machines on cloud, Jan. 2010, 4 pages.
CodeChef ADMIN discussion web page, retrieved from https://discuss.codechef.com/t/what-are-the-memory-limit-and-stack-size-on-codechef/14159, 2019.
CodeChef IDE web page, Code, Compile & Run, retrieved from https://www.codechef.com/ide, 2019.
Czajkowski, G., and L. Daynes, Multitasking Without Compromise: A Virtual Machine Evolution 47(4a):60-73, ACM SIGPLAN Notices—Supplemental Issue, Apr. 2012.
Das et al., Adaptive Stream Processing using Dynamic Batch Sizing, 2014, 13 pages.
Deis, Container, 2014, 1 page.
Dombrowski, M., et al., Dynamic Monitor Allocation in the Java Virtual Machine, JTRES '13, Oct. 9-11, 2013, pp. 30-37.
Dynamic HTML, Wikipedia page from date Mar. 27, 2015, retrieved using the WayBackMachine, from https://web.archive.org/web/20150327215418/https://en.wikipedia.org/wiki/Dynamic_HTML, 2015, 6 pages.
Espadas, J., et al., A Tenant-Based Resource Allocation Model for Scaling Software-as-a-Service Applications Over Cloud Computing Infrastructures, Future Generation Computer Systems, vol. 29, pp. 273-286, 2013.
Han et al., Lightweight Resource Scaling for Cloud Applications, 2012, 8 pages.
Hoffman, Auto scaling your website with Amazon Web Services (AWS)—Part 2, Cardinalpath, Sep. 2015, 15 pages.
http://discuss.codechef.com discussion web page from date Nov. 11, 2012, retrieved using the WayBackMachine, from https://web.archive.org/web/20121111040051/http://discuss.codechef.com/questions/2881 /why-are-simple-java-programs-using-up-so-much-space, 2012.
https://www.codechef.com code error help page from Jan. 2014, retrieved from https://www.codechef.com/JAN14/status/ERROR,va123, 2014.
http://www.codechef.com/ide web page from date Apr. 5, 2015, retrieved using the WayBackMachine, from https://web.archive.org/web/20150405045518/http://www.codechef.com/ide, 2015.
Kamga et al., Extended scheduler for efficient frequency scaling in virtualized systems, Jul. 2012, 8 pages.
Kato, et al. “Web Service Conversion Architecture of the Web Application and Evaluation”; Research Report from Information Processing Society, Apr. 3, 2006 with Machine Translation.
Kazempour et al., AASH: an asymmetry-aware scheduler for hypervisors, Jul. 2010, 12 pages.
Kraft et al., 10 performance prediction in consolidated virtualized environments, Mar. 2011, 12 pages.
Krsul et al., “VMPlants: Providing and Managing Virtual Machine Execution Environments for Grid Computing”, Supercomputing, 2004. Proceedings of the ACM/IEEESC 2004 Conference Pittsburgh, PA, XP010780332, Nov. 6-12, 2004, 12 pages.
Meng et al., Efficient resource provisioning in compute clouds via VM multiplexing, Jun. 2010, 10 pages.
Merkel, “Docker: Lightweight Linux Containers for Consistent Development and Deployment”, Linux Journal, vol. 2014 Issue 239, Mar. 2014, XP055171140, 16 pages.
Monteil, Coupling profile and historical methods to predict execution time of parallel applications. Parallel and Cloud Computing, 2013, <hal-01228236, pp. 81-89.
Nakajima, J., et al., Optimizing Virtual Machines Using Hybrid Virtualization, SAC '11, Mar. 21-25, 2011, TaiChung, Taiwan, pp. 573-578.
Qian, H., and D. Medhi, et al., Estimating Optimal Cost of Allocating Virtualized Resources With Dynamic Demand, ITC 2011, Sep. 2011, pp. 320-321.
Sakamoto, et al. “Platform for Web Services using Proxy Server”; Research Report from Information Processing Society, Mar. 22, 2002, vol. 2002, No. 31.
Shim (computing), Wikipedia, https://en.wikipedia.org/w/index.php?title+Shim_(computing)&oldid +654971528, [retrieved on May 26, 2016], 2 pages.
Stack Overflow, Creating a database connection pool, 2009, 4 pages.
Tan et al., Provisioning for large scale cloud computing services, Jun. 2012, 2 pages.
Tange, “GNU Parallel: The Command-Line Power Tool”, vol. 36, No. 1, Jan. 1, 1942, pp. 42-47.
Vaghani, S.B., Virtual Machine File System, ACM SIGOPS Operating Systems Review 44(4):57-70, Dec. 2010.
Vaquero, L., et al., Dynamically Scaling Applications in the cloud, ACM SIGCOMM Computer Communication Review 41(1):45-52, Jan. 2011.
Wang et al., “Improving utilization through dynamic VM resource allocation in hybrid cloud environment”, Parallel and Distributed V Systems (ICPADS), IEEE, 2014. Retrieved on Feb. 14, 2019, Retrieved from the internet: URL<https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7097814, 8 pages.
Wikipedia “API” pages from date Apr. 7, 2015, retrieved using the WayBackMachine from https://web.archive.org/web/20150407191158/https://en.wikipedia.org/wiki/Application_programming_interface.
Wikipedia List_of_HTTP status_codes web page, retrieved from https://en.wikipedia.org/wiki/List_of_HTTP status_codes, 2019.
Wikipedia Recursion web page from date Mar. 26, 2015, retrieved using the WayBackMachine, from https://web.archive.org/web/20150326230100/https://en.wikipedia.org/wiki/Recursion_(computer_science), 2015.
Wikipedia subroutine web page, retrieved from https://en.wikipedia.org/wiki/Subroutine, 2019.
Wu et al., HC-Midware: A Middleware to Enable High Performance Communication System Simulation in Heterogeneous Cloud, Association for Computing Machinery, Oct. 20-22, 2017, 10 pages.
Yamasaki et al. “Model-based resource selection for efficient virtual cluster deployment”, Virtualization Technology in Distributed Computing, ACM, Nov. 2007, pp. 1-7.
Yue et al., AC 2012-4107: Using Amazon EC2 in Computer and Network Security Lab Exercises: Design, Results, and Analysis, 2012, American Society for Engineering Education 2012.
Zheng, C., and D. Thain, Integrating Containers into Workflows: A Case Study Using Makeflow, Work Queue, and Docker, VTDC '15, Jun. 15, 2015, Portland, Oregon, pp. 31-38.
International Search Report and Written Opinion in PCT/US2015/052810 dated Dec. 17, 2015.
International Preliminary Report on Patentability in PCT/US2015/052810 dated Apr. 4, 2017.
Extended Search Report in European Application No. 15846932.0 dated May 3, 2018.
International Search Report and Written Opinion in PCT/US2015/052838 dated Dec. 18, 2015.
International Preliminary Report on Patentability in PCT/US2015/052838 dated Apr. 4, 2017.
Extended Search Report in European Application No. 15847202.7 dated Sep. 9, 2018.
Extended Search Report in European Application No. 19199402.9 dated Mar. 6, 2020.
International Search Report and Written Opinion in PCT/US2015/052833 dated Jan. 13, 2016.
International Preliminary Report on Patentability in PCT/US2015/052833 dated Apr. 4, 2017.
Extended Search Report in European Application No. 15846542.7 dated Aug. 27, 2018.
International Search Report and Written Opinion in PCT/US2015/064071 dated Mar. 16, 2016.
International Preliminary Report on Patentability in PCT/US2015/064071 dated Jun. 6, 2017.
International Search Report and Written Opinion in PCT/US2016/016211 dated Apr. 13, 2016.
International Preliminary Report on Patentability in PCT/US2016/016211 dated Aug. 17, 2017.
International Search Report and Written Opinion in PCT/US2016/026514 dated Jun. 8, 2016.
International Preliminary Report on Patentability in PCT/US2016/026514 dated Oct. 10, 2017.
International Search Report and Written Opinion in PCT/US2016/026520 dated Jul. 5, 2016.
International Preliminary Report on Patentability in PCT/US2016/026520 dated Oct. 10, 2017.
International Search Report and Written Opinion in PCT/US2016/054774 dated Dec. 16, 2016.
International Preliminary Report on Patentability in PCT/US2016/054774 dated Apr. 3, 2018.
International Search Report and Written Opinion in PCT/US2016/066997 dated Mar. 20, 2017.
International Preliminary Report on Patentability in PCT/US2016/066997 dated Jun. 26, 2018.
International Search Report and Written Opinion in PCT/US/2017/023564 dated Jun. 6, 2017.
International Preliminary Report on Patentability in PCT/US/2017/023564 dated Oct. 2, 2018.
International Search Report and Written Opinion in PCT/US2017/040054 dated Sep. 21, 2017.
International Preliminary Report on Patentability in PCT/US2017/040054 dated Jan. 1, 2019.
International Search Report and Written Opinion in PCT/US2017/039514 dated Oct. 10, 2017.
International Preliminary Report on Patentability in PCT/US2017/039514 dated Jan. 1, 2019.
Extended European Search Report in application No. 17776325.7 dated Oct. 23, 2019.
Office Action in European Application No. 17743108.7 dated Jan. 14, 2020.
Anonymous: “Amazon Elastic Compute Cloud User Guide for Linux Instances—first 400 pages of 795,” Apr. 8, 2016 (Apr. 8, 2016_, XP055946665, Retrieved from the Internet: URL:https://web.archive.org/web/20160408211543if_/http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-ug.pdf (retrieved on Jul. 27, 2022] 795 pages.
Anonymous: “Amazon Simple Workflow Service Developer Guide API Version Jan. 25, 2012,” Jun. 11, 2016 (Jun. 11, 2016), XP055946928, Retrieved from the Internet: URL:https://web.archive.org/web/20160111075522if_/http://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-dg.pdf [retrieved on Jul. 28, 2022] in 197 pages.
Anonymous: “AWS Flow Framework for Java,” Apr. 7, 2016 (Apr. 7, 2016), XP055946535, Retrieved from the Internet: URL:https://web.archive.org/web/20160407214715if_/http://docs.aws.amazon.com/amazonswf/latest/awsflowguide/swf-aflow.pdf, [retrieved Jul. 27, 2022] in 139 pages.
Abebe et al., “EC-Store: Bridging the Gap Between Storage and Latency in Distribute Erasure Coded Systems”, IEEE 38th International Conference on Distributed Computing Systems, 2018, pp. 255-266.
Huang et al., “Erasure Coding in Windows Azure Storege”, USENIX, 2012 in 12 pages.
Rashmi et al., “EC-Cache: Load-Balance, Low-Latency Cluster Caching with Online Erasure Coding”, USENIX, 2016, pp. 401-417.
International Preliminary Report on Patentability for Application No. PCT/US2020/062060 dated Jun. 9, 2022 in 9 pages.
Anonymous: “Amazon Cognito Developer Guide,” Jun. 24, 2001, XP093030075, retrieved from the internet: URL:https://web.archive.org/web/2021062415394lif_/https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-dg.pdf [retrieved on Mar. 9, 2023] the whole document.
Anonymous: “AWS Lambda Developer Guide,” Jul. 1, 2021, XP093024770, retrieved from the internet: URL:https://web.archieve.org/web/20210701100128if_/https://docs.aws.amazon.com/lambda/latest/dg/lambda-dg.pdf [retrieved on Feb. 17, 2023] the whole document.
Anonymous: SaaS Tenant Isolution Strategies Isolating Resources in a Multi-Tenant Environment,: Aug. 1, 2020, XP093030095, retrieved from the internet: URL:https://dl.awsstatic.com/whitepapers/saas-tenant-isolation-strategies.pdf [retrieved on Mar. 9, 2023] the whole document.
Anonymous: “Security Overview of AWS Lambda,” Aug. 11, 2021, XP093030100, retrieved from the internet: URL:https://web.archive.org/web/20210811044132if_/https://docs.aws.amazon.com/whitepapers/latest/security-overview-aws-lambda/security-overview-aws-lambda.pdf [retrieved Mar. 9, 2023] the whole document.
Sharma A. et al., “Building a Multi-Tenant SaaS Solution Using AWS Serverless Services,” Aug. 26, 2021, XP093030094, retrieved from the internet: URL:https://aws.amazon.com/blogs/apn/building-a-multi-tenant-saas-solution-using-aws-serverless-services/[retrieved on Mar. 9, 2023] the whole document.
Related Publications (1)
Number Date Country
20210081233 A1 Mar 2021 US
Continuations (1)
Number Date Country
Parent 16017954 Jun 2018 US
Child 17107663 US