This is a utility application based upon U.S. patent application 63/177,054 filed on Apr. 20, 2021. This related application is incorporated herein by reference and made a part of this application. If any conflict arises between the disclosure of the invention in this utility application and that in the related provisional application, the disclosure in this utility application shall govern. Moreover, the inventor(s) incorporate herein by reference any and all patents, patent applications, and other documents hard copy or electronic, cited or referred to in this application.
This application includes material which is subject or may be subject to copyright and/or trademark protection. The copyright and trademark owner(s) has no objection to the facsimile reproduction by any of the patent disclosure, as it appears in the Patent and Trademark Office files or records, but otherwise reserves all copyright and trademark rights whatsoever.
The invention generally relates to exercise devices. More particularly, the invention relates to means and methods of creating a rigid, linear, self-contained, therapeutic exercise device where the user pulls handles outwardly to gently activate and strengthen their back and other muscles, thereby helping to promote improved posture, flexibility, circulation and counteract daily work/life contributors to anatomical and physiological atrophy and stress.
The known related art fails to anticipate or disclose the principles of the present invention.
In the related art, general stick type exercise devices are known, but fail to provide the benefits or design advantages of the disclosed embodiments.
For example, U.S. Published Patent Application 2004/0259698 published on Dec. 23, 2004 does provide telescopic movement along a linear longitudinal path, but fails to provide damping as found in the disclosed embodiments.
U.S. Pat. No. 4,440,391 issued to Saenz, Jr. et al on Apr. 3, 1984 discloses an exercise device designed to flex during use. The disclosed embodiments eschew longitudinal flex and provide reliable means of extension and contraction with no or minimal flex. Thus, there is a need in the art for the presently disclosed embodiments.
U.S. Pat. Nos. 818,242, 3,761,083, and 4,775,149 are in the general field of the disclosed embodiments. The three patents: disclose springs external to the central tube, whereas the present embodiments have internal resilient members; disclose handles in discreet positions, whereas the present embodiments allow for gripping anywhere upon the external tubes, are of fixed length with handles moving along the fixed length, whereas the present embodiments, have a dynamic length and may be stored in a compact state.
U.S. Pat. No. 3,343,837 issued to Grzybowski on Sep. 16, 1967 discloses two tubes in telescopic arrangement with springs inside the tubes, with the springs fastened to the distal ends of the tubes to keep the device contracted. Grzybowski discloses an inner and outer tube with a spring between the tube ends. The presently disclosed embodiments use three tubes and a center stopper.
The present invention overcomes shortfalls in the related art by presenting an unobvious and unique combination and configuration of methods and components to construct a self-contained device that may comprise a lightweight, but rigid center tube with two similar surrounding, slightly larger-in-diameter shorter tubes forming handles on both ends. The handles travel along the center tube in opposite directions as the user pulls the handles outwardly with resistance supplied by an elastic member housed within the center tube, and additionally by metering of air within the device, causing the engagement of the user's back and other muscles.
These and other objects and advantages will be made apparent when considering the following detailed specification when taken in conjunction with the drawings.
The following detailed description is directed to certain specific embodiments of the invention. However, the invention can be embodied in a multitude of different ways as defined and covered by the claims and their equivalents. In this description, reference is made to the drawings wherein like parts are designated with like numerals throughout.
Unless otherwise noted in this specification or in the claims, all of the terms used in the specification and the claims will have the meanings normally ascribed to these terms by workers in the art.
Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising” and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in a sense of “including, but not limited to.” Words using the singular or plural number also include the plural or singular number, respectively. Additionally, the words “herein,” “above,” “below,” and words of similar import, when used in this application, shall refer to this application as a whole and not to any particular portions of this application.
The above detailed description of embodiments of the invention is not intended to be exhaustive or to limit the invention to the precise form disclosed above. While specific embodiments of, and examples for, the invention are described above for illustrative purposes, various equivalent modifications are possible within the scope of the invention, as those skilled in the relevant art will recognize. For example, while steps are presented in a given order, alternative embodiments may perform routines having steps in a different order. The teachings of the invention provided herein can be applied to other systems, not only the systems described herein. The various embodiments described herein can be combined to provide further embodiments. These and other changes can be made to the invention in light of the detailed description.
Any and all the above references and U.S. patents and applications are incorporated herein by reference. Aspects of the invention can be modified, if necessary, to employ the systems, functions and concepts of the various patents and applications described above to provide yet further embodiments of the invention.
In general, a linear bushing 106 may be retained within an inner cap void 117. A resistance member plug 101 may be retained by a resistance member plug retainer 102 such that the resistance member plug retainer 102 is in frictional attachment to an outer cap 103.
An elastic resistance member 301 may accept or be fastened or retained by a barbed protrusion 115 the barbed protrusion disposed upon a resistance member plug 101. The barbed protrusion 115 may be inserted into an outer or distal end of an elastic resistance member 301 or other means of resistance with the distal end of the elastic resistance member defined by or cut upon an “as installed” mark 331 disposed upon the elastic resistance member.
A resistance member plug retainer 102 may be inserted into a resistance member plug 101. The resistance member plug retainer may comprise a connecting edge 118. A resistance member plug seal o-ring 107 is shown between resistance member plug 101 and outer cap 103.
Means and/or Possible Sequences of Assembly
Completed Device Assembly
A disclosed assembled device 90 is intended to be inseparable to the end user. As most of the attachments, including the frictional fit attachment, or fasteners described below are intended to be permanent interference (press) fits the order of operations for the assembly are important. This narrative description shows the proposed order and method of the assembly.
300—Elastic Resistance Assembly
Item 301 is a cut length of latex or other elastic type resistance tubing. Item 302 is a plastic center stopper that holds item 301 in the center of item 200. Item 301 is cut to a length that is a few inches longer than item 204, and its center 330 is marked. Two additional marks 331 are made at equal distances from the center mark. These marks 331 note the “as-installed” lengths the tube 301 will be cut to later in the assembly process. The “as-installed” length will be shorter than center rigid tube 204 by a predetermined amount, so that a net force will remain to keep the device in a retracted position when at rest. Elastic resistance member 301 is then stretched 332 near the center mark 330, and is inserted in the slot feature 333 of item 302, with the center mark 330 visible through the void 334. When released, Item 301 will retract to fill the slot 333 in item 302 and be engaged with the tooth-like protrusions 335 inside the slot 333. In this manner the elastic resistance member 301 is effectively captured or retained in its center for the life of the device.
The completed elastic resistance assembly 300 is then assembled into a center tube 204. One end of item 301 is fed into item 204 until item 302 prevents it from moving any further. Item 302 will then be pressed into item 204 a prescribed length until it is centered. The diameter of item 302 is a close fit into the center of item 204. The center stopper 302 will spring open slightly along the connecting edge 336 of its two semi-cylindrical halves due to the added force from the elasticity of item 301. This force will act to hold the entirety of assembly 300 in the center of assembly 200 for the life of the device. The extra few inches of item 301 length should be visible sticking out each end of item 204, and facilitates assembly.
Item 100—Handle Tube Assembly—Part 1
Assembly 100 is used twice within the completed device. The left and right sides are assembled with the same parts but are placed in a mirrored configuration within the device. Items 104 may be comprised of thin-walled lightweight carbon fiber tubes. Items 105 may be machined aluminum caps that are assembled onto each end of item 204 by means of a permanent interference (press) fit. On the completed device, both items 105 face each other at the center of the device. Items 106 may be split low-friction linear bushings. The split 116 allows their diameter to be reduced slightly to fit inside of items inner cap 105, and then snap into the machined groove 117 which holds them in place. The inner diameter is sized to be a sliding fit on the outside of assembly 200 (item 204). Once assembled to this point, the two partial assemblies 100 must be slid onto item 204, with the items 105 touching at the center.
Item 200—Center Tube Assembly
Now assembly 200 can be completed. Item 204 may be a thin-wall lightweight carbon fiber tube. Items 203 may be machined aluminum caps that are assembled onto each end of item 204 by means of a permanent interference (press) fit. Items 202 may be split low-friction linear bushings. The split 220 allows their diameter to be expanded slightly to fit over the end of items 203, and then snap into the machined groove 221 which holds them in place. The outer diameter is sized to be a sliding fit inside assembly 100 (item 104). Item 201 may be a soft rubber o-ring—that acts as a bumper, preventing contact between items 203 and items 103 (assembly 100) when the device is in the fully retracted position. Item 205 may be a soft rubber o-ring that acts as a bumper, preventing contact between items 203 and items 105 (assembly 100) when the device is in the fully extended position.
Item 100—Handle Tube Assembly—Part 2
Item 103 may comprise machined aluminum caps that are assembled onto each outer end of item 104 by means of a permanent interference (press) fit. Once these are fitted, the handle assemblies 100 may not be removed from the center assembly 200. Now each end of item 301 may be pulled and stretched until the “installed length” mark 331 is visible. Each end is cut on the mark 331 and inserted fully onto the barb feature 115 of item 101. Item 102 is then pushed over items 101 and 301 to lock it in place. Similar to item 302, item 102 is sized to be a close fit inside the inner diameter of item 103 and contains a single connecting edge 118 joining its two semi-cylindrical halves. Item 102 will be forced apart slightly by the elasticity of item 301. When pressed inside of item 103, the resulting force holds everything in place for the life of the device. Additionally, a resistance member plug seal o-ring item 107 is placed into a groove in item 101 to create a seal between item 101 and item 103.
The assembled device 90 is now ready for use. The stretched and captured elastic resistance tube 301 provides a static force keeping the device fully retracted when not in use. In use, the opposing pairs of low friction linear bushings 106 and 202 provide for a smooth stroke while the user pulls against the gently increasing force provided by 301. The bushings 106 and 202 riding on and in the stiff tube members 104 and 204 keep the device aligned and rigid from fully retracted through fully extended positions.
An important feature of a disclosed embodiment is that it remains substantially straight and rigid 540 during use, with a single primary linear degree of freedom 500: it can expand and contract along the length of its main axis only. There is a secondary rotational degree of freedom 550 as each handle tube assembly 100 can rotate with respect to each other and the center tube assembly 200 along the main tube axis. This rotational freedom gives some additional exercise options to the user, and allows for each hand to assume its natural rotational alignment for comfort during exercise. The combination of the two degrees of freedom along with high linear rigidity is accomplished primarily through the use of two pairs of counteracting low friction bushings 106 and 202 and the highly rigid tube pieces 104 and 204. The bushings counteract any bending moment 510 (force trying to bend the tube along its main axis) by providing a reaction force 530 against the same tube surface that it slides against. Even at full extension the disclosed device can resist the typical bending forces 510 that may arise during use. In a preferred embodiment, the handle tubes 104 and center tube 204 are made of carbon fiber composite tubing, chosen for its light weight and high rigidity. The low friction bushings 106 and 202 are made of PTFE, chosen for its combination of low friction coefficient, resistance to wear, and load bearing properties.
A further feature of the assembled device is that it defines an internal volume of air contained within the center and handle tubes. In the retracted position this volume is made up of internal volume of the center tube 204, shown as 400. There are small additional volumes from the gaps between the handle tubes 104 and the center tube 204, shown as 401. The total volume in the retracted position is therefore approximately the sum of the separate volumes 400 and 401. As the device is extended during use, the volume of air within the device increases. This additional volume is primarily the internal volume of the handle tubes 104, shown as 402. The total volume in the extended position is therefore approximately the sum of the separate volumes 400 and 402, which is greater than the total volume of the device when in the retracted position. Due to the resistance member plug seal o-rings 107, the air can only enter and exit the device during use through the very small radial gaps between the outer diameter of the center tube 204 and the inner diameter of the bushings 106, and the gap created by the split in the bushings 116. The width of the split 116 within bushing 106 can be tuned to allow a precise amount of air to flow through the gap. In a preferred embodiment, the width of the split 116 is approximately 1 mm (0.04″). Similarly, the bushings 202 with split voids 220 also act to further meter the air moving within the device, as air passes between volumes 402 and 401. In a preferred embodiment, the width of the split 220 is also approximately 1 mm (0.04″). This metering of the air flow in the four locations (two each side) acts to damp the extend and retract motion of the device. As the handles are pulled apart and the internal volume increases, the air pressure within the device falls, and air is sucked in through the bushing splits 116. As the handles retract and the internal volume decreases, the air pressure within the device rises, and air is pushed out the bushing splits 116. The static force exerted by the device on the user is due to the elastic properties of the resistance tubing 301, and this force changes with the length of the device only. The action of the air traveling within, and in and out of the device during use gives rise to an additional damping force. As damping is defined as being proportional to speed, the magnitude of the additional force generated depends on how fast the user extends and retracts the device. This additional damping force has two benefits: First, it acts to increase the overall resistance force if the user tries to extend or retract the device too quickly, giving additional benefit to the exercise. Second, it retards the return stroke of the device which allows for a more gentle retraction. The damped return stroke prevents the unit from slamming closed if the user were to let go, and results in a safer device.
In a preferred embodiment, the elastic resistance tube 301 is a piece of natural latex rubber tubing with an outer diameter of 8 mm ( 5/16″) and an inner diameter of 5 mm ( 3/16″). When cut to the final length at marks 331, the free, unstretched length of the tubing 301 is approximately 600 mm (23.6″). When installed in the completed device, the overall length of the tubing 301 is stretched to approximately 1040 mm (40.9″). However, there are small sections of the tubing 301 that are used to hold the tubing in the center stopper 302 (approximately 10 mm (⅜″) and the barbed protrusions 115 on the resistance member plugs 101 (approximately 15 mm ( 9/16″) on each end). These sections anchor the tubing and do not participate in stretching or providing additional force during use. The net tubing 301 participating in the device force is (600 mm-10 mm-2*15 mm)=560 mm (22.0″), or 280 mm (11.0″) for each half of the device. This unstretched length is then stretched to (1040 mm-10 mm-2*15 mm)=1000 mm (39.4″) (500 mm (19.7″) each half) when installed in the completed device in a retracted position. The initial force of the tubing within the completed device is approximately 18 N (4 lbf). When the device is in the full extended position, the initially stretched 1000 mm (39.4″) becomes 1870 mm (73.6″) (935 mm (36.8″) each half). The final force of the tubing within the completed device is approximately 33 N (7.4 lbf). This gives an effective spring rate (or spring constant), K, of approximately 0.017 N/mm (0.1 lbf/in) (for the completed device between the retracted and extended positions. This low spring rate gives a gentle, slowly increasing pull force during use. An important feature of the completed device is that the force range is the same regardless of where on the handle assemblies the user grips the device. This allows the user a wide range of exercises with narrow, wide, or mixed grip options, or anywhere in between, without changing the force range or potential stroke length. In other embodiments, the initial and final forces, as well as the overall spring rate, can be varied by altering the inner and outer diameters or the tubing, the initial free length, the overall shape and/or cross section of the elastic resistance member, as well as the material properties.
The disclosed embodiments overcome shortfalls in the art by providing:
Dual telescoping handles providing:
A rigid, aligned structure throughout motion
Pairs of counteracting low friction linear bushings for smooth motion
Built-in end stops with bumpers to cushion the extend stroke limit and the retract stroke limit Novel mechanical means to attach resistance tubing in center and on ends:
Balanced force during use
Keeps center section “centered” for maximum rigidity
Completely encapsulated elastic resistance member:
Protects elastic resistance member from wear, damage, debris
Protects user from safety issues possible with damaged elastics
Consistent, symmetrical exercise force regardless of where the handles are gripped
Takes advantage of low spring rate of a long piece of elastic resistance material; long life
Requires no setup or maintenance to give consistent force with every use; self-contained
Damped extension and retraction force provided by the metering of the air flowing within, and into and out of the device through the openings in the split low friction bushings.
Number | Name | Date | Kind |
---|---|---|---|
1023756 | Pons | Apr 1912 | A |
1714391 | McWhirter | Mar 1927 | A |
2714008 | Urban | Jul 1955 | A |
3343837 | Grzybowski | Sep 1967 | A |
3761083 | Buchner | Sep 1973 | A |
4193593 | Wilson | Mar 1980 | A |
4440391 | Saenz, Jr. et al. | Apr 1984 | A |
4775149 | Wilson | Oct 1988 | A |
5029847 | Ross | Jul 1991 | A |
5154685 | Chen | Oct 1992 | A |
D365861 | Moss, Jr. et al. | Jan 1996 | S |
6293573 | Olde-Heuvel | Sep 2001 | B1 |
6976942 | Kennedy | Dec 2005 | B2 |
7557286 | Capostosto | Jul 2009 | B2 |
7652953 | Fluegge | Jan 2010 | B1 |
8182420 | Homan et al. | May 2012 | B2 |
D733226 | Abbate | Jun 2015 | S |
10569131 | Niederman | Feb 2020 | B2 |
10974087 | Moon | Apr 2021 | B1 |
20020103059 | Kushner | Aug 2002 | A1 |
20040152571 | Udwin | Aug 2004 | A1 |
20040235624 | Bruce | Nov 2004 | A1 |
20040259698 | Reilly | Dec 2004 | A1 |
20080081747 | Mok | Apr 2008 | A1 |
20080182734 | Wu | Jul 2008 | A1 |
20150343255 | Miller | Dec 2015 | A1 |
20160177991 | Daniels | Jun 2016 | A1 |
20160250512 | Siemer | Sep 2016 | A1 |
20200391071 | Pettersson | Dec 2020 | A1 |
20230173320 | Yee | Jun 2023 | A1 |
20230191181 | Westfall | Jun 2023 | A1 |
20230191183 | Kofron | Jun 2023 | A1 |
Number | Date | Country | |
---|---|---|---|
20220296952 A1 | Sep 2022 | US |
Number | Date | Country | |
---|---|---|---|
63177054 | Apr 2021 | US |