1. Field of the Invention
The present invention relates to methods of exercising and to exercise apparatuses with resilient foot supports for carrying out those methods.
2. Description of Related Art
One of the consistent challenges in the fitness industry is devising exercise methods and apparatuses that allow the user to achieve maximum, diverse fitness effects by performing exercises in comfortable positions. For example, a type or set of exercises may be particularly attractive and beneficial to the user if it provides strengthening, toning and cardiovascular benefits. Exercise equipment used to perform fitness exercises should ideally be relatively simple in construction, flexible in the types of exercises allowed, and adaptable to a wide range of resistances and levels of exertion.
A popular type of exercise equipment provides a pair of generally parallel tracks, on which a carriage is mounted for sliding or rolling movement along the tracks. Depending on the particular variation, the carriage may be connected to a resistance system including one or more resilient members, such as springs or bungee cords, which bias the carriage towards a particular position. The carriage may also be connected to pull lines that are trained over a pulley system, allowing the user to move the carriage by pulling the pull lines. The user exercises with such an apparatus by using the arms or legs to move the carriage along the tracks.
Sliding-carriage multi-function exercise equipment of this type also typically includes a foot rest or foot bar which extends in a direction generally perpendicular to the rails. The foot rest or foot bar is operationally fixed in position, and allows a user to control the movement of the carriage by exerting his or her leg muscles against it. A foot rest typically includes a set of frame members or frame portions that are adapted to connect at a first end to either the rails of the apparatus or other appropriate structures provided for that purpose. At their respective second ends, the frame members are attached to a rigid member, such as a board. The board is typically covered with a layer of foam or other cushioning material, which may be enclosed in a layer of outer material, such as vinyl. The foam and outer material cushion the user's feet to some degree and provide traction.
A foot bar is a generally U-shaped and typically hollow bar that is adapted to be connected to the exercise apparatus at its ends. The top portion of the foot bar is covered with a traction/cushioning material. The user typically places his or her hands or feet on the cushioned portion of the foot bar to control the movement of the carriage.
One variation of the above-described type of exercise apparatus is disclosed in U.S. Pat. No. 5,967,955, which is incorporated herein by reference in its entirety. The disclosed apparatus includes a movable carriage mounted on generally parallel tracks and a foot rest of the type described above. The apparatus does not use resilient members to provide resistance; instead, resistive bias is provided by inclining the tracks at one of a number of angular orientations, thereby allowing the user to move the carriage by working against a corresponding fraction of his or her own weight bias under the influence of gravity using a pulley system that is coupled to the carriage. As the angular orientation of the carriage changes, the fraction of the user's weight bias changes correspondingly, such that at greater inclinations, the weight bias that the user works against is greater.
Another variation of the above-described type of exercise apparatus is that sold under the general name Pilates Performer™ (Stamina Products, Inc., Springfield, Mo., United States) for use with the Pilates exercise system. An apparatus of this type is shown in U.S. Pat. No. Des. 382,319 to Gerschefske et al., the contents of which are incorporated by reference in their entirety. The apparatus includes a frame having a pair of generally parallel tracks that support a movable carriage which is mounted on the tracks with rollers for rolling horizontal movement along the tracks. A set of tensile resilient resistance elements is connected to the frame at one end and to the carriage at the other, thereby biasing the carriage towards a particular position. A pulley system and associated pull lines are coupled to the carriage, such that the carriage may be moved by application of force to the pull lines. A foot bar is provided at one end of the frame, and shoulder blocks are provided at one end of the carriage, allowing the user to position him or herself in a supine position to move the carriage against the resilient bias provided by the tensile resilient resistance elements using the muscles of either the legs or the arms.
One aspect of the invention relates to a method of enabling a person to exercise. The method comprises providing a movable body support for the exercising person which supports the exercising person in a position which allows the body of the exercising person to move with the movable body support while the feet of the exercising person are free to be moved with respect to the movable body support and providing a movable foot support separate from the body support in a position to be engaged by the feet of the exercising person supported on the movable body support. The method also comprises providing for the absorption of the energy of the movement of the movable body support in a first direction away from the movable foot support by the exercising person supported thereon and the conversion of the absorbed energy to a movement of the movable body support with the exercising person supported thereon in a second direction toward the movable foot support. Additionally, the method comprises providing for the controlled yielding of the movable foot support caused by the engagement thereof by the feet of the exercising person moving with the movable body support in the second direction and establishing as a result of the controlled yielding a bouncing movement by the movable foot support in the first direction, which the exercising person can translate into a movement of the movable body support in the first direction. The arrangement is such that the exercising person can control the repetition and magnitude of the movements of the movable body support by flexure of the legs at the knees.
Another aspect of the invention relates to an exerciser. The exerciser comprises a frame assembly, a movable body support disposed on the frame assembly and constructed and arranged to support the body of an exercising person in a position which allows the body of the exercising person to move with the movable body support while enabling the feet of the exercising person to be free to be moved with respect to the movable body support, and a movable foot support disposed on the frame assembly and constructed and arranged to be engaged by the feet of the exercising person supported on the movable body support. The movable body support is mounted on said frame assembly for movement in a first direction away from the resiliently movable foot support and a second direction toward the movable foot support, and is constructed and arranged to absorb the energy of a movement thereof in the first direction by a user supported thereon and to convert the absorbed energy into a movement thereof with the exercising person supported thereon in the second direction. The resiliently movable foot support is constructed and arranged to yield resiliently in response to the engagement of the feet of the user moving with the movable body support in the second direction and to establish, as a result of the resilient yielding, a bouncing movement by the resiliently movable foot support in the first direction, which can be translated by the user into a movement of the movable body support in said first direction.
A further aspect of the invention relates to an attachment for an exerciser of the type including a movable body support disposed on a frame assembly in a position to support the body of an exercising person in a position which allows the body of the exercising person to move with the movable body support while enabling the feet of the user to be free from the movable body support, a foot assembly adapted to be mounted on the frame assembly in a position to be engaged by the feet of the exercising person supported on said movable body support, and mounting structure disposed on the frame assembly, the mounting structure being constructed and arranged to detachably mount the foot assembly to the frame structure. The attachment comprises a movable foot support constructed and arranged to cooperate with the mounting structure to be mounted on the frame assembly in lieu of the foot assembly in a position to be engaged by the feet of a user supported on the movable body support. The movable foot support is constructed and arranged to yield resiliently in response to the engagement of the feet of the user supported on the movable body support therewith in a second direction toward the movable foot support and to establish, as a result of the resilient yielding, a bouncing movement by the movable foot support in a first direction which can be translated by the user into a movement in said first direction of said movable body support.
Other aspects of the invention will become apparent from the following description.
The invention will be described with reference to the following drawings, in which like numerals represent like features throughout the figures, and in which:
The frame assembly 12 includes a frame 18, which is adapted to support the movable body support 14, the foot support 16, and the user, as well as a stand 20, which is adapted to connect to the frame 18 to hold the frame 18 in a generally horizontal plane above floor level. As is shown in
Depending on the embodiment, the frame 18 and stand 20 may be separable, so that the exerciser 10 can be stored easily. Additionally, the stand 20 may be omitted or sold separately, particularly if the height provided by the stand 20 is not required for the exercises that are to be performed. Moreover, it may be desirable to construct the stand 20 such that one end is wider than the other. A stand 20 with one wider end and one narrower end may be desirable if one end of the exerciser 10 requires a broader base of support to prevent lateral tipping, or if the exerciser 10 is constructed such that the stand 20 will only mate with the frame 18 if the frame 18 is in a particular orientation.
The frame 18 is comprised of two generally parallel support tracks 30, connected and braced by a number of cross members. Each of the support tracks 30 has a generally C-shaped cross-section, such that each support track 30 defines an interior track 32, in the shape of a channel, which is adapted to receive engaging portions of the movable body support 14. The engaging portions of the movable body support 14 in this embodiment are rollers 33 (shown in phantom in
Although rollers 33 are used in the illustrated embodiment, a number of bearings and other movement support structures are known in the art, and any one of these known types of bearings may be used in place of the rollers. For example, instead of rollers, blocks of low-friction material may be used, and the inside tracks 32 in the support tracks 30 may be lubricated in order to facilitate sliding movement with reduced friction.
The support tracks 30 may be continuous bars that run the length of the exerciser, or they may be comprised of sets of shorter bars which are secured together by welds or fasteners. As shown in
In alternative embodiments of the invention, the support tracks may have a substantially rectangular cross section, and a movable body support with rollers or other movement support structures may be configured so as to rest on top of the support tracks, rather than engaging inside tracks defined within them. The precise manner of engagement of the movable body support and the support tracks is not critical.
Several body-engaging components are mounted on the movable body support 14 so as to facilitate the body positioning of the user. Two padded shoulder blocks 44, one on each side of the body support 14, extend vertically, and are positioned so as to engage the upper portion of the user's torso (i.e., at the collarbone or shoulder region) when the user is lying prone or supine on the movable body support 14, so as to prevent the user from sliding relative to the movable body support 14 in a direction away from the foot support 16. The shoulder blocks 44 may be removably attached to the movable body support 14, for example, by a threaded connection.
A padded head rest 46 is also mounted on the movable body support 14. In the position illustrated in
When the user is lying on the movable body support 14 in either prone or supine position with his or her head on the head rest, the user's feet are free to move with respect to the movable body support 14, and extend in a direction toward the resiliently movable foot support 16. As can be seen in
In addition to the arrangement shown in the figures and described above, the foot support 16 may be made in a variety of configurations and of a number of materials. For example, instead of being wrapped around the frame member, elastomeric cords or tension coil springs could be secured at first ends within the interior of a hollow peripheral frame member and could extend from it, being secured to the flexible sheet member at respective second ends. Alternatively, the flexible sheet member itself may be made of a resilient, elastomeric material, such as rubber, and may be secured to the frame member with adhesives or fasteners, without elastomeric cords. Moreover, the foot support could comprise an inflated resilient bladder supported by a peripheral frame or a rigid backing member, or it could comprise a board or other rigid member resiliently mounted on springs. In general, other embodiments of the invention would be designed to simulate the type of motion produced using the foot support 16. Other embodiments of the foot support will be described in more detail below.
The exerciser 10 also carries a resilient resistance system coupled to the movable body support 14. The crossbar 34 proximate to the footrest has several slots 60 formed in it. Each slot 60 in the crossbar is sized and adapted to accept one end of a tensile resilient resistance element 62. A bracket on the underside of the movable body support 14 (not shown in the Figures) includes a corresponding set of slots 60, each slot 60 adapted to accept the other end of a tensile resilient resistance element 62. In this embodiment, the crossbar 34 and bracket of the movable body support 14 each include four slots 60; however, the number of slots 60 may be selected arbitrarily, depending on the total desired resistance, the width of the crossbar 34 and bracket, and the total amount of space required for each resilient resistance element 62. The exerciser 10 may be operated with any number of resilient resistance elements 62 installed in the slots.
The tensile resilient resistance elements 62 illustrated in
The exerciser 10 of
From the pulleys 58, the pull lines 56 extend towards the foot support 16, and are coupled to user grips 70 at their ends. Between the ends of the pull lines 56 and the user grips 70, take-up fittings 72 are provided. Each take-up fitting has a number of holes 74 formed in it, such that if the pull lines are too long, they may be wrapped around and through the take-up fittings 72 to reduce their effective lengths. When the user grips the user grips 70 and causes the pull lines 58 to extend, he or she is working against the force bias provided by the tensile resilient resistance elements 62. The arm exercise system, including the pull lines 56, pulleys 58 and associated structures is an optional feature, and may not be included in some embodiments of the invention.
The foot support 16 is constructed and adapted to yield in a controlled manner in response to the engagement of the user's feet therewith in a direction toward the foot support 16 and to establish, as a result of the controlled yielding, a bouncing movement by the foot support 16 in the opposite direction, which can be translated by the user into a movement of the novable body support 14 in that opposite direction. In this context, the term “bouncing movement” may refer to movements during which the feet of the user lose contact with the foot support 16, as well as resilient movements during which the feet of the user remain in contact with the foot support 16. The term “feet” may refer to both of the user's feet together or to one individual foot; the exercises shown described here may be performed with one foot, each foot alternately, or both feet simultaneously. The terms “controlled yielding” and “resilient yielding” imply that the foot support 16 or individual foot portions thereof yield in such a manner that they are biased to return to their original position. As was noted above, if the foot support 16 does not comprise a flexible sheet member 52, the foot support 16 is preferably designed to simulate the motion of a structure such as the flexible sheet member 52. That motion will be described below in more detail.
By the operation of the resilient resistance system, the movable body support 14 is constructed and arranged to absorb the energy of movement of the user on the movable body support in a direction away from the foot support 16 and to convert that absorbed energy into a movement toward the foot support 16.
The user may control the degree of resistive bias by changing the number of tensile resistive elements 62 that are connected between the crossbar 34 and the movable body support 14. The pull lines 56 are constructed and arranged such that forces applied in a direction toward the foot support 16 by the user's arms are converted into movements of the movable body support 14 away from the foot support 16. Alternatively, the user may control the position of the movable body support 14 solely by flexure of the legs against the foot support 16.
One exemplary type of exercise that may be performed with the exerciser 10 is shown in
During the movements illustrated in
The exerciser 10 may be used for a number of different types of exercise; the positions shown in
In addition to being installed on and included with an exercise machine like that shown in
An exerciser 200 according to another embodiment of the invention is shown in the perspective view of
In general, the exerciser 200 includes a frame assembly, generally indicated at 202, a movable body support, generally indicated at 204, mounted on the frame assembly 202 for movement between limiting positions on the frame assembly 202, and a resiliently movable foot support, generally indicated at 206. The resiliently movable foot support 206 is essentially identical to the foot supports 16, 100 described above, with the exception that it is particularly adapted to be inserted into an end crossmember 208 provided at the foot end of the frame structure 202. Because the foot support 206 is essentially identical to the foot supports 16, 100 described above, the description above will suffice to describe it.
The exerciser 200 does not include a resilient resistance system; instead, as shown in the side elevational view of
As supported by the stand 212 on the inclined plane, the movable body support 204 absorbs the energy of movement of a user supported thereon moving along the tracks 210 up the inclined plane because the user is working against the influence of gravity, and is thus storing potential energy. The movable body support 204 converts the absorbed energy into a movement along the tracks 210 down the inclined plane because the absorbed/stored potential energy is converted to kinetic energy.
In other words, the user is working against a portion of his or her own body weight, which provides the user with exercising resistance. The amount of exercising resistance may be varied by varying the incline of the tracks 210. As shown, the stand 212 includes a connecting bracket 215 which may be supported at any one of a number of support points 216. In the illustrated embodiment, the support points 216 are holes positioned at regular intervals along the height of the stand 212. Each hole 216 is constructed and arranged to receive a pin inserted through a corresponding hole 217 in the connecting bracket. However, the support points 216 may be outwardly projecting members or any other type of structure capable of supporting the weight of the tracks 210 with the user positioned on them. In
The movable body support 204 is also connected to pull lines 56 which are trained over pulleys 58 carried by the frame assembly 202, such that the pull lines 56 may be pulled forwardly, towards the foot support 206, which movement moves the movable body support 204 in a direction away from the foot support 206. The ends of the pull lines 56 are provided with grips 70. As with the exerciser 10 of the previous embodiment, the user may use any combination of arm, leg, or arm and leg movements to move the movable body support, and the effects of both arm and leg movements are additive.
It will be noted that in both the horizontal exerciser of
In the exercisers described above, the foot support 16 is a unitary structure that provides a single surface for contacting both of the user's feet. However, in other embodiments of the invention, individual foot supports, or individual contact areas, may be provided for each foot.
An additional embodiment of the invention is shown in the side elevational view of
Further embodiments of the invention may combine attributes of the exercisers 10, 200, 400 described above. Moreover, some embodiments may add additional features and levels of user adaptability that are desirable in professional exercise settings, such as gyms and exercise studios.
The exercisers according to the present invention provide several advantages. First, the user can perform exercises in a supine position, which is usually at least perceived by the user to be more comfortable. Second, the type of exercises that can be performed on exercisers according to the invention may have cardiovascular, strength, and flexibility benefits. Third, as was described above, certain known types of exercises, such as Pilates exercises, may be performed on exercisers according to the invention, if desired by the user.
Although the invention has been described with respect to certain embodiments, those of ordinary skill in the art will realize that modifications may be made within the scope of the invention.
This application is a continuation of U.S. application Ser. No. 10/693,443, filed Oct. 27, 2003, and claims priority to U.S. Provisional Application No. 60/440,610, filed Jan. 17, 2003. The contents of each application are incorporated by reference herein in their entirety.
Number | Date | Country | |
---|---|---|---|
60440610 | Jan 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10693443 | Oct 2003 | US |
Child | 11592139 | Nov 2006 | US |