Exercise machines attempt to replicate work required by various muscles of the body to develop better physical fitness of those muscles and of the body in general. Since the early days of crude weight benches and simple stationary bicycles, exercise machines have been developed to be better for specific movements, more adaptable to a wider array of exercises, or more polished and advanced for easier production, marketing and distribution.
Some exercise machines have been developed to attempt to replicate a specific type of sport activity, such as biking, running, stair climbing, rowing and weight lifting. These machines offer variable resistance levels, computer program monitoring of vital statistics, and user-friendly control systems, all within a confined exercise space. However, typical sports activity-replicating machines such as stationary bikes, treadmills, stair-climbers, rowers, etc., can be only configured for one type of activity at a time.
Swimming, despite being one of the best forms of exercise, is one sport activity that is difficult to replicate on land due to the medium in which the original activity takes place. In water, a person is subjected to less gravitational force and substantially increased resistance in every direction under the surface of the water. Because of this medium, swimmers are known as having desirable physical attributes of more toned and balanced muscle mass, greater strength, and higher endurance than persons subjected to other forms of exercise or activity.
Disclosed herein are apparatuses and systems for land-based replication swimming exercise. Further disclosed herein are apparatuses and systems for interchangeable exercise modalities that include replicated swimming exercises, biking, rowing, strength training, and other modalities.
In one embodiment, an exercise apparatus includes a base, a frame extending up from the base, and a support member coupled to a top portion of the frame, extending forward from the frame. The apparatus further includes a forward-ascending bench. The bench includes a torso support section to support a user's torso, pivotally coupled to the support member, and configured for limited angular rotation about an axis parallel to at least a portion of the support member. The bench further includes left and right leg support sections, pivotally coupled to the torso support section, to support at least the user's thighs. In an exemplary embodiment, the bench further includes adjustable left and right wing sections extending from opposite sides of the torso support section. The apparatus also includes a coupling member extending forward from the base, and adapted to interchangeably couple with an exercise module.
In another embodiment, an exercise apparatus includes a frame extending up from a base, and a coupling member. The coupling member extends forward and rearward from the base, and has forward and rearward coupling interfaces. Each coupling interface is adapted to releasably couple with an interchangeable exercise module. The apparatus further include a support member coupled to and extending forward from a top portion of the frame, and an articulated bench, adapted for being coupled to the support member or the exercise module. The bench includes an upper support section, and left and right lower support sections pivotally coupled with the upper support section.
In yet another embodiment, an exercise system includes a frame module and one or more interchangeable exercise modules. The frame module includes a base, a frame extending up from the base, a resistance mechanism mounted to the frame, a coupling member extending forward and rearward from the base and having forward and rearward coupling interfaces, and a support member coupled to and extending forward from a top portion of the frame. Each exercise module includes an attachment member adapted to releasably connect with the coupling member and to cooperate with the resistance mechanism to provide an exercise modality. The system further includes an articulated bench, adapted for being coupled to the support member or the attachment member based on the exercise modality then being used.
The details of one or more embodiments are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.
These and other aspects will now be described in detail with reference to the following drawings.
Like reference symbols in the various drawings indicate like elements.
This document describes an exercise apparatus and system for replicating swimming exercises and other exercise modalities. In accordance with various embodiments, the exercise apparatus provides for a swimming exercise mode, in which the resistance paths as well as resistance amount of arm and leg movements in swimming motions are accurately reproduced. For example, the exercise apparatus is adapted to provide nearly obstruction-free movement of a user's arms and hands when the user is laying on a bench in a substantially horizontal position, and to simultaneously provide free movement, of at least a user's lower legs, particularly in vertical up-and-down movement. Accordingly, the configuration of the apparatuses and systems described herein uniquely provide for a swimming type workout, among other exercise modalities, without a user having to get into the water.
The apparatus 100 further includes a bench 108 that ascends in a forward direction aligned with at least a portion of the support member 106. The bench 108 can be formed of a bendable but rigid lower layer 109 and a cushioning material applied to the lower layer 109. The cushioning material can be foam, thermoformed honeycomb, or any other cushioning material. The bench 108 is configured to provide multiple, independent axes of rotation for a user laying upon it, yet facilitates an ease of a user to get on or off the bench 108. The rotation can be configured to be variable, and adjusted according to two or more rotational range settings. In an embodiment, the bench 108 is adjustable in all coordinate axes for adjustability and comfort for a wide range of user's body types and weights. For instance, the bench 108 may include an indented area having an adjustable indentation for accommodating the bust area of women users. In another example, the bench is operable for being electro-mechanically raised or lowered.
The bench 108 includes a torso support section 111 that is pivotally coupled to the support member 106 to support a user's torso, and left and right leg support sections 113 and 115 that are pivotally coupled to the torso support section 111 to support at least the user's thighs. The torso support section 111 is preferably attached by pivoting members 118 that allow for limited angular rotation of the torso support section 111 about an axis 130 that is parallel to at least a portion of the support member 106. The bench 108 can also include left and right wing sections 117 extending from opposite sides of the torso support section 111 to cradle a user in operation. Wings can extend laterally or retract, fold up or down for cradling.
The apparatus 100 includes a coupling member 110 that extends forward and/or rearward from the base 102. The coupling member 110 has at least one coupling interface 112 adapted to interchangeably couple with an exercise module 140. In an embodiment, the coupling member 110 has front and rear coupling interfaces 112. The coupling interface 112 can include a hollowed interior portion of a tubular member, but can be configured as any type or arrangement suitable for releasably coupling the exercise module 140 to the rest of the apparatus 100, so that various exercise modules can be interchanged to accommodate multiple exercise modalities.
The apparatus 100 further includes a resistance mechanism 120 mounted to the frame 104 or base 102. The resistance mechanism 120 is adapted to cooperate with the exercise module 140 to provide the desired exercise modality. In one embodiment, the resistance mechanism 120 includes at least one variable resistance device, including, but not limited to, a flywheel, caliper brakes, alternator/generator, electromagnetic or electromechanical clutch, hydraulic resistance device, or centrifugal clutch. The flywheel may be mechanical, such as a wind-resistance flywheel, electromechanical, or electromagnetic. In an embodiment, the resistance mechanism 120 includes two or more separate resistance devices. For instance, the resistance mechanism 120 can include a flywheel 122 connected for providing a first resistance, such as to a user's arms, and a clutch or crank assembly 124 for providing a second resistance, such as to a user's legs. Those having skill in the art will recognize that any combination and number of resistance mechanisms can be used with any embodiment described herein.
As an example,
The recumbent bicycle module 402 includes a bench 408 having a rigid layer 409 with both back and seat support parts. The bench 408 further includes a torso support section 411, and a seat support section 415, each having a cushioning layer. The bench 408 can further include left and right wing sections 417. In one embodiment, the bench 108 is configured for being interchangeable between the swimming exercise mode and the recumbent bicycle module 402. The bench 108 can be either locked in a folded position for use as a bicycle seat, as shown by bench 408, or locked in a flattened position for use in the swimming exercise mode, as shown by bench 108 of
The bench 408 is connected to the attachment mechanism 446 by a seat stand 410 and seat coupling mechanism 412. The seat coupling mechanism 412 can be adjusted for coupling at various locations along the horizontal length of the coupling mechanism 446. The module 402 may also include hand grips (not shown), coupled to either the bench 408 or the seat stand 410, for a user to grasp when exercising. The module 402 further includes a pedal and crank assembly 420. The pedal and crank assembly 420 includes a crank 424 connected to a device such as a sprocket or other resistance leverage mechanism, and left and right foot pedals 422. The pedal and crank assembly 420 is connected to the resistance mechanism of the exercise apparatus by a chain or other linking mechanism.
With reference to
The rower module 404 shown in
The apparatus 602 includes a resistance mechanism 620 having a forward resistance mechanism 621 for providing resistance to a user's arms, and a rear resistance mechanism 622 for providing resistance to a user's legs. An exercise module 630 is coupled to the frame 604 or base 601, and can be folded or disengaged for storage of the apparatus 602.
The apparatus 800 includes an attachment module 820 having parallel longitudinal members 822 coupled to the top of respective parallel vertical beams of the frame 804. Each longitudinal member 822 includes a forward extending member 824 and a rear extending member 826, each telescoping to a desired length and coupled to a pulley for accommodating a cable connected to a resistance mechanism 818. The apparatus 800 thus provides resistance from above a user.
The apparatus 1000 also includes a bench 1008 that has two or more sections having independent, limited ranges of rotation with respect to a common axis. The bench 1008 can be multi-sectional or of unitary construction. In an embodiment, the bench 1008 includes an upper torso support 1010, a midsection support 1012, and two leg supports 1014, each of which have their own rotation and/or angle of movement. The apparatus 1000 may also include a headrest 1016 extending from the support member 1006 via support connector 1007. The headrest 1016 may also be rotational. Each rotational section can be biased by a spring or gas-loaded shock absorber or other resistive device.
In a preferred embodiment, the apparatus 1000 is constructed of a light-weight metal or plastic, can be disassembled or compressed for portability, and set-up for rigid weight-bearing operation. The bench 1008 may be adjustable for person's of various size or weight, and may include wing sections that extend from opposing sides of the bench 1008.
In operation, the bench 1008 is adjusted to a predetermined height and/or angule. This can be done by adjusting the support member 1006 and/or frame 1004. A person is then placed on the bench 1008 and positioned on the bench 1008 at the appropriate location. Next, the person simulates swimming techniques, including but not limited to arm strokes, leg kicks, breathing, head turns, trunk rotation, and body arching. Other swimming techniques may be simulated. The person may also be provided resistance in order to train specific muscles. The resistance may be applied in a guided path to promote accomplishment of a specific technique for repeated action and muscle memory development. For example, resistance or weight may be provided to one or more of the person's limbs.
Although a few embodiments have been described in detail above, other modifications are possible. Other embodiments may be within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
2013520 | McDermott | Sep 1935 | A |
2019224 | Hess | Oct 1935 | A |
4140312 | Buchmann | Feb 1979 | A |
4674740 | Iams et al. | Jun 1987 | A |
4830363 | Kennedy | May 1989 | A |
4844450 | Rodgers, Jr. | Jul 1989 | A |
5029848 | Sleamaker | Jul 1991 | A |
5158513 | Reeves | Oct 1992 | A |
5282748 | Little | Feb 1994 | A |
5328427 | Sleamaker | Jul 1994 | A |
5354251 | Sleamaker | Oct 1994 | A |
5376060 | Murray | Dec 1994 | A |
5393280 | Haviv | Feb 1995 | A |
5540591 | Doane | Jul 1996 | A |
6352493 | Davis | Mar 2002 | B1 |
6790163 | Van De Laarschot et al. | Sep 2004 | B1 |
20030092533 | Hippensteel | May 2003 | A1 |
20050079964 | Francavilla | Apr 2005 | A1 |
Number | Date | Country |
---|---|---|
961723 | Sep 1982 | SU |
Number | Date | Country | |
---|---|---|---|
20060073944 A1 | Apr 2006 | US |