In order to perform some exercises, such as stretches, for example, an exercise bar may be used. The exercise bar may allow a user to use their reach to stretch one or more muscle groups.
While end cap 102 and grip 104 are configured to provide different functions at the end of an exercise bar, there are several issues with this configuration. For example, grip 104 may be susceptible to deformation, sliding, or other movement which could damage exercise bar 100 and cause an injury to the user. Further, grip 104 may be unable to transmit signification forces (e.g. all or some of user's body weight) without shifting. In addition, end cap 102 does not extend along exercise bar 100 and may be limited in the amount of lateral force (e.g., against the ground) that can applied without slipping or causing material damage, both of which could lead to injury. Further, grip 104 and end cap 102 are separate parts, and accordingly are applied separately. Grip 104 and end cap 102 are not configured to transmit force directly between each other, nor provide any stiffness together as a unit.
It would be advantageous for an exercise bar to be able to withstand significant axial loads and lateral loads. It would also be advantageous for an exercise bar to have one-piece handle grips through which a user may transmit significant force. It would also be advantageous for an exercise bar to have one-piece handle grips that perform multiple functions. It would also be advantageous for an exercise bar to be modular, and be capable of being packed for travel or storage.
In some embodiments, the present disclosure is directed to a tubular handle grip configured to interface to an end of a cylindrical bar. In some embodiments, the handle grip includes a grip section at least 8 inches in axial length and having a wall thickness, an open end arranged at one end of the grip section and configured to fit over the end of the cylindrical bar, and a closed end coupled to the grip section and arranged axially opposite to the open end. The closed end is configured to react axial and lateral loads from a user.
In some embodiments, the closed end includes a thickness greater than the wall thickness.
In some embodiments, the closed end is coupled to the grip section by a transition section having a varying wall thickness.
In some embodiments, the tubular hand grip is substantially axisymmetric about a center axis.
In some embodiments, the open end is open to a cylindrical recess extending axially inside of the grip section. Further, the cylindrical recess is configured to engage with the end of the cylindrical bar.
In some embodiments, the cylindrical recess is at least 12 inches long.
In some embodiments, the cylindrical recess is configured to engage with the end of the cylindrical bar by a friction force.
In some embodiments, the grip section is in tension azimuthally, and the tension causes the friction force.
In some embodiments, the grip section includes an outer surface. The outer surface includes a plurality of raised features configured to increase the effective friction between the outer surface and the user.
In some embodiments, the grip section comprises an outer diameter of at least 1.5 inches.
In some embodiments, the tubular handle grip is at least 12 inches long.
In some embodiments, the closed end has a maximum diameter of at least 2 inches.
In some embodiments, the present disclosure is directed to a fitness system. The fitness system includes a bar having two ends, and a pair of handle grips, each arranged at a respective end of the bar. Each handle grip includes a grip section, an open end, and a closed end. The grip section is at least 8 inches in axial length and has a wall thickness. The open end is arranged at one end of the grip section and is configured to slide over a respective end of the bar. The closed end is coupled to the grip section and arranged axially opposite to the open end. Further, the closed end is configured to react axial and lateral loads from a user.
In some embodiments, the bar includes at least two segments configured to engage axially to form the bar comprising the two ends. In some embodiments, each segment engages with another segment at a respective interface. In some embodiments, the fitness system further includes a respective coupler that is arranged at each respective interface and that is configured to aid in engaging the corresponding segments.
In some embodiments, the fitness system includes a respective locking mechanism corresponding to each respective interface. The locking mechanism is configured to constrain a relative motion of the corresponding segments.
In some embodiments, the present disclosure is directed to a fitness system having a segmented bar. The fitness system includes a bar and a pair of handle grips. The bar includes at least two segments configured to engage axially to form the bar, and the bar has two ends. The pair of handle grips are arranged at each end of the bar and are configured to react axial and lateral loads from a user.
In some embodiments, each segment engages with another segment at a respective interface. In some embodiments, the fitness system includes a respective coupler that is arranged at each respective interface and that is configured to aid in engaging the corresponding segments.
In some embodiments, the fitness system includes a respective locking mechanism corresponding to each respective interface. The locking mechanism is configured to constrain a relative motion of the corresponding segments.
In some embodiments, each segment has a length of two feet or less.
The present disclosure, in accordance with one or more various embodiments, is described in detail with reference to the following figures. The drawings are provided for purposes of illustration only and merely depict typical or example embodiments. These drawings are provided to facilitate an understanding of the concepts disclosed herein and shall not be considered limiting of the breadth, scope, or applicability of these concepts. It should be noted that for clarity and ease of illustration these drawings are not necessarily made to scale.
The present disclosure is directed to exercise bars and components thereof. In some embodiments, the present disclosure is directed to handle grips which can be installed at each end of an exercise bar. In some embodiments, the present disclosure is directed to an exercise bar having handle grips. In some embodiments, the present disclosure is directed to a segmented exercise bar, which may be equipped with handle grips.
A long, suitably pliant bar may be used to aid in physical activity. For example, a user may use such a bar to improve leverage, stability, muscle irradiation, isometric stimulation, kinetic feedback, coordination, flexibility, or a combination thereof. By applying a force on a grip on the bar, and experiencing resistance from the reactive force of the bar, the user's muscles are engaged. For example, the force may be applied axially (e.g., putting the bar in compression) to stretch a muscle group. In a further example, the force may be applied off axis (e.g., applying a bending moment and shear force to the bar) to stretch a muscle group. In some embodiments, the axial ends of the bar, which are equipped with handle grips, are configured to accommodate such force loads, while providing sufficient friction with a surface to prevent slippage.
In some embodiments, a handle grip may be configured to be applied to a bar to form an exercise bar.
In some embodiments, open end 318 opens to a cylindrical recess extending along axis 350 inside of grip section 316. Open end 318 is configured to, for example, accommodate insertion of bar 302. End 303 of bar 302, for example extends through open end 318 and into the cylindrical recess. In some embodiments, the cylindrical recess is configured to engage with the end portion of the cylindrical bar (e.g., along the inside of grip section 316). End 303 includes the end face of bar 302 as well as the axial length of bar 302 within (e.g., engaged with) grip section 316.
In some embodiments, closed end 312 is arranged at the axial end of bar 302. Closed end 312 is configured to react axial and lateral loads (e.g., forces) against a reference surface such as a floor, for example. In some embodiments, closed end 312 may include one or more radii of curvature, one or more curved sections, or both. In some embodiments, the maximum outer diameter of closed end 312, or a portion thereof, is larger than the outer dimeter of grip section 316 and at least a portion of transition section 314. In some embodiments, closed end 312 has a material thickness greater than the wall thickness of grip section 316.
In some embodiments, transition section 314 may be optionally included as a geometric transition between grip section 316 and closed end 312. For example, grip section 316 may have a first outer diameter and closed end 312 may include a second outer diameter, and transition section 314 may couple the first and second outer diameters smoothly. In some embodiments, transition section 314 need not be included, and grip section 316 directly abuts closed end 312. In some embodiments, transition section 314 may provide a smoother radial profile of handle grip 310, may improve feel by a user, may aid in transmitting force, or a combination thereof. In some embodiments, transition section 314 includes a varying wall thickness, outer diameter, inner diameter, or a combination thereof.
In some embodiments, grip section 316 is configured to cover a section of bar 302, allowing a user to grip exercise bar 300. For example, a user may grip onto grip section 316 using hands, the inside of an elbow joint, the back of a knee, an underarm, the sole of a foot, or any other suitable portion of the user's body. The user's grip may include any suitable azimuthal engagement including a full grip (e.g., fingers wrapped completely around grip section 316), point contact (e.g., push on side of grip 316), a partial grip (e.g., grasping exercise bar 300 using a bicep and corresponding forearm in the inside of an elbow joint), or any suitable combination thereof. In some embodiments, inside grip section 316, the cylindrical recess is configured to engage with the end of the cylindrical bar by a friction force. In some such embodiments, grip section 316 is in tension azimuthally (e.g., around axis 350), and the tension causes the friction force. In some embodiments, grip section 316 includes an outer surface (e.g., the surface where a user applies their grip). The outer surface may include, for example, a plurality of raised features configured to increase the effective friction between the outer surface and the user (e.g., to improve the user's grip and hand feel).
Handle grip 500, as illustratively shown in
Grip section 516, as illustrated, includes thirteen grip rings arranged axially (e.g., one is shown by dimension 574), and twelve annular recesses (e.g., one is shown by dimension 573) arranged axially in between the grip rings. The annular recesses may aid in increasing friction between grip section 516 and a user (e.g., similar to features 517).
In some embodiments, handle grip 500 includes port 699, which may include a hole. In some embodiments, port 699 is used to aid in fitting handle grip 500 over the end of a bar. For example, by applying pressurized gas to port 699 to pressurize recess 519, grip section 516 may be made to stretch in the radial direction allowing installation.
Illustrative handle grip 500 may include any suitable spatial dimensions. Table 1 includes illustrative ranges and examples of some spatial dimensions (in inches, unless otherwise indicated) included in
Handle grip 700, as illustratively shown in
Grip section 716, as illustrated, includes thirteen grip rings arranged axially (e.g., one is shown by dimension 774), and twelve annular recesses (e.g., one is shown by dimension 773) arranged axially in between the grip rings. The annular recesses may aid in increasing friction between grip section 716 and a user (e.g., similar to features 717).
In some embodiments, handle grip 700 includes port 899, which may include a hole. In some embodiments, port 899 is used to aid in fitting handle grip 700 over the end of a bar. For example, by applying pressurized gas to port 899 to pressurize recess 719, grip section 716 may be made to stretch in the radial direction allowing installation. As shown, an end of port 899 is located in a circular recess corresponding to dimension 802. It will be understood that in some embodiments, the circular recess corresponding to 802 may not be included and port 899 may continue to the left side of dimension 821.
In an illustrative example, either or both of handle grips 500 and 700 may be used in any suitable exercise bar or fitness system. For example, handle grips 500 and 700 may be included as part of exercise bar 200 of
Illustrative handle grip 700 may include any suitable spatial dimensions. Table 2 includes illustrative ranges and examples of some spatial dimensions (in inches, unless otherwise indicated) included in
As illustrated in
Segments 931, 932, 933, and 934 are arranged with interfaces 935, 936, and 937. More particularly, as shown in
As shown in the exploded view of
Coupler 1035 may include any suitable spatial dimensions, material properties, and features, in accordance with the present disclosure. For example, coupler 1035 may be as long as segment 931 axially so that when connected, bar 930 has similar bending resistance along the length. In a further example, coupler 1035 may include a sufficient radial thickness, material strength, or both to add stiffness to bar 930 at interface 935. In a further example, segment 931 may have a relatively small thickness at the ends (e.g., thinner than the middle portion) such that coupler 1035, when inserted, causes the overall bar to have the same inner diameter (e.g., segment 931 may include a recess into which coupler 1035 fits). In some embodiments, each coupler is adhered (e.g., using epoxy) to its respective segment. In some embodiments, an additional element (e.g., an elastomer ring) may be used between the axial ends of each segment to reduce joint stress.
Under normal operation (e.g., when being used for exercise), locking mechanism 1040 remains in holes 1036 and 1037. When segments 931 and 932 are separated, for example, locking mechanism may remain in holes 1036. Locking mechanism 1040 is manually operated to connect and disconnect segments 931 and 932. In some embodiments, locking mechanism 1040 may be integrated into, or otherwise be not removable from, coupler 1035.
In some embodiments, a bar and two handle grips are assembled to form an exercise bar. In some embodiments, the bar may be fabricated and the handle grips may be fabricated separately. For example, the bar may be cut to size, formed from smaller segments, or otherwise fabricated to have a desired length. In a further example, the handle grips may be formed by injection molding a suitable material in a suitable injection molding die.
In some embodiments, the bar is segmented, and accordingly includes more than one segment which may be assembled to form the bar. For example, in some embodiments, the bar includes two, three, four, five or more segments.
Assembly may include, for example, sliding the handle grips over respective ends of the bar. In some embodiments, the inner diameter of the grip portion of the handle grip in the unassembled state may be slightly smaller than the outer diameter of the bar, or the ends of the bar (e.g., an interference fit).
In some embodiments, the handle grips are pushed onto the bar with suitable force to stretch over the bar. Accordingly, when assembled, the handle grips impart a compressive force onto the bar (e.g., applied in the radially inward direction to the outer radial surface of the bar in contact with the handle grip. The interference fit may extend the entire axially length of the grip portion, or a section thereof.
In some embodiments, the handle grips are pushed onto the bar with the aid of gas pressure to stretch over the bar. For example, this technique may be used when the force is relatively large, or if the process is automated. The handle grip may include, for example, a port to which pressurized gas may be applied. Application of the pressurized gas may radially expand the handle grip sufficiently that the inner diameter of the grip section fits over the bar, allowing assembly. When assembled, the gas pressure is removed, and accordingly, the handle grips impart a compressive force onto the bar (e.g., applied in the radially inward direction to the outer radial surface of the bar in contact with the handle grip.
Design Aspects
The following disclosure describes two illustrative designs of a handle grip, in accordance with the present disclosure. In some embodiments,
In some embodiments, the present disclosure is directed to a new, original, and ornamental design for a first HANDLE GRIP, of which the following is a specification, reference being had to the accompanying drawings (i.e.,
In some embodiments, the present disclosure is directed to a new, original, and ornamental design for a second HANDLE GRIP, of which the following is a specification, reference being had to the accompanying drawings (i.e.,
The foregoing is merely illustrative of the principles of this disclosure and various modifications may be made by those skilled in the art without departing from the scope of this disclosure. The above described embodiments are presented for purposes of illustration and not of limitation. The present disclosure also can take many forms other than those explicitly described herein. Accordingly, it is emphasized that this disclosure is not limited to the explicitly disclosed methods, systems, and apparatuses, but is intended to include variations to and modifications thereof, which are within the spirit of the following claims.
Number | Date | Country | |
---|---|---|---|
Parent | 16501112 | Jun 2018 | US |
Child | 17579903 | US |