This application claims the priority benefit of Taiwan application serial no. 101138716, filed on Oct. 19, 2012. The entirety of the above-mentioned patent application is hereby incorporated by reference herein and made a part of this specification.
The disclosure relates to a bicycle and an operation method of the bicycle.
An indoor exercise bike (i.e., a stationary bike) allows a user to get exercise within limited space as if the user rides on an exercise bike on the road and performs pedaling activities. The conventional stationary bike enables the user to manually adjust or set up the resistance level (intensity) of the pedaling activity. However, a normal user or an inexperienced user is often unable to determine the proper resistance level. Once the user gets the exercise when the improper or excessively large resistance level is given, the user may not achieve the desired effects. What is more, the user may suffer from injuries resulting from the exercise. From another perspective, the conventional exercise bike may not be able to instantly and spontaneously adjust the resistance level of the pedaling activity according to the user's physiological changes and the rate of perceived exertion regarding the user's physical activity.
The disclosure is directed to an exercise bike and an operation method thereof, so as to determine a recommended pedaling resistance according to user's physiological characteristics and/or a rate of perceived exertion regarding the user's physical activity.
In an exemplary embodiment of the disclosure, an exercise bike that includes a pedaling mechanism, a resistance unit, a physiological measurement unit, and a processing unit is provided. A user performs a pedaling activity through the pedaling mechanism. The resistance unit is connected to the pedaling mechanism, and the resistance unit provides and determines a resistance of the pedaling activity The processing unit is coupled to the resistance unit and the physiological measurement unit. When the exercise bike is in a test mode, the processing unit controls the resistance unit to adjust the resistance of the pedaling activity to be a plurality of pedaling resistances and measures user's physiological characteristics through the physiological measurement unit to obtain a plurality of physiological values respectively corresponding to the pedaling resistances. The processing unit respectively calculates the physiological values to obtain a plurality of exercise intensities respectively corresponding to the pedaling resistances and further obtain a first correspondence relationship between the exercise intensities and the pedaling resistances. After the test mode ends, the processing unit determines a recommended pedaling resistance according to the first correspondence relationship, so as to provide a recommended pedaling resistance to the user for performing the pedaling activity when the exercise bike is in a sport mode.
In an exemplary embodiment of the disclosure, an operation method of an exercise bike is provided. The operation method includes: providing a pedaling mechanism to a user for performing a pedaling activity; adjusting a resistance of the pedaling activity to be a plurality of pedaling resistances by a processing unit when the exercise bike is in a test mode; measuring user's physiological characteristics when the exercise bike is in the test mode, so as to obtain a plurality of physiological values respectively corresponding to the pedaling resistances; respectively calculating the physiological values by the processing unit to obtain a plurality of exercise intensities respectively corresponding to the pedaling resistances and further obtain a first correspondence relationship between the exercise intensities and the pedaling resistances; after the test mode ends, determining a recommended pedaling resistance according to the first correspondence relationship by the processing unit; providing the recommended pedaling resistance to the user for performing the pedaling activity when the exercise bike is in a sport mode.
In an exemplary embodiment of the disclosure, an exercise bike that includes a pedaling mechanism, a resistance unit, a guidance unit, and a processing unit is provided. A user performs a pedaling activity through the pedaling mechanism. The resistance unit is connected to the pedaling mechanism, and the resistance unit provides and determines a resistance of the pedaling activity. The processing unit is coupled to the resistance unit and the guidance unit. When the exercise bike is in a test mode, the processing unit controls the resistance unit to adjust the resistance of the pedaling activity to be a plurality of pedaling resistances and inquires a user about a rate of perceived exertion through the guidance unit to obtain a plurality of psychological values respectively corresponding to the pedaling resistances. The processing unit respectively calculates the psychological values to obtain a plurality of exercise intensities respectively corresponding to the pedaling resistances and further obtain a first correspondence relationship between the exercise intensities and the pedaling resistances. After the test mode ends, the processing unit determines a recommended pedaling resistance according to the first correspondence relationship, so as to provide a recommended pedaling resistance to the user for performing the pedaling activity when the exercise bike is in a sport mode.
In an exemplary embodiment of the disclosure, an operation method of a exercise bike is provided. The operation method includes: providing a pedaling mechanism to a user for performing a pedaling activity; adjusting a resistance of the pedaling activity to be a plurality of pedaling resistances by a processing unit when the exercise bike is in a test mode; inquiring the user's about a rate of perceived exertion when the exercise bike is in the test mode, so as to obtain a plurality of psychological values respectively corresponding to the pedaling resistances; respectively calculating the psychological values by the processing unit to obtain a plurality of exercise intensities respectively corresponding to the pedaling resistances and further obtain a first correspondence relationship between the exercise intensities and the pedaling resistances; after the test mode ends, determining a recommended pedaling resistance according to the first correspondence relationship by the processing unit; providing the recommended pedaling resistance to the user for performing the pedaling activity when the exercise bike is in a sport mode.
In view of the above, an exemplary embodiment of the disclosure provides the exercise bike and the operation method of the exercise bike. According to the user's physiological characteristics and/or the rate of perceived exertion regarding the user's physical activity, the exercise bike is able to obtain the correspondence relationship between the exercise intensities of the user and the pedaling resistances when the exercise bike is in the test mode. The exercise bike may then determine the personalized recommended pedaling resistance according to the correspondence relationship, so as to provide the user with the recommended pedaling resistance for performing the pedaling activity. Hence, the exercise bike is able to automatically find the optimal resistance level (intensity), so as to prevent sports injuries caused by determination of improper resistance level. In another exemplary embodiment of the disclosure, the exercise bike may instantly and spontaneously adjust the resistance level of the pedaling activity according to the user's physiological changes and/or the rate of perceived exertion regarding the user's physical activity.
Several exemplary embodiments accompanied with figures are described in detail below to further describe the disclosure in details.
The accompanying drawings are included to provide further understanding, and are incorporated in and constitute a part of this specification. The drawings illustrate exemplary embodiments and, together with the description, serve to explain the principles of the disclosure.
The word “couple” in the description and claims may refer to any direct or indirect connection. For instance, in the description and claims, if a first device is coupled to a second device, it means that the first device may be directly connected to the second device or may indirectly connected to the second device through another device or by another connection means.
In the following detailed description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the disclosed embodiments. It will be apparent, however, that one or more embodiments may be practiced without these specific details. In other instances, well-known structures and devices are schematically shown in order to simplify the drawing.
In the exercise bike and the operation method thereof described in the exemplary embodiments of the disclosure, the mechanical structure of the exercise bike, the physiological measurement equipment, and the display equipment may all be implemented through conducting existing technologies and thus will not be further explained herein. In addition, the drawings are not at actual size and merely serve to schematically demonstrate the features described in the exemplary embodiments of the disclosure.
According to the design requirements of the actual products, the resistance unit 130 may be implemented in various different ways, so as to provide the resistance of the pedaling activity. For instance, the resistance unit 130 may generate the resistance of the pedaling activity in a mechanical manner (e.g., through friction, fluid resistance, or damping) or in an electromagnetic manner. The processing unit 150 reads and calculates user's information (i.e., a physiological signal and/or a psychological signal) and transmits a resistance adjustment command (i.e., a control command) to the resistance unit 130 according to the calculation result, such that the resistance of the pedaling activity of the pedaling mechanism 120 may be further modified to the pedaling resistance suitable for the user.
The motor resistance position unit 134 is coupled between the magnetic resistance device 133 and the control unit 131. After driven and rotated by the magnetic resistance device 133, the motor resistance position unit 134 generates a resistance position where the magnetic resistance device is currently located and feeds back the resistance position to the control unit 131. Therefore, the control unit 131 is able to inform the processing unit 150 of the current resistance of the pedaling activity. The control unit 131 determines/compares whether the current resistance position (level) is the resistance position (level) designated by the processing unit 150 and makes correction in real time according to the determination/comparison result. Since the damping variation resulting from the long-time use of the magnetic resistance device 133 may cause the difference between the final resistance position and the default resistance location, the control unit 131 needs to make correction if it is necessary. For instance, if the motor resistance position unit 134 reports that the current resistance position (level) is 9, the control unit 131 automatically issues the command of “forward rotation”. After the current resistance position (level) reaches 10, the control unit 131 then issues the command to “stop”.
In another example, it is assumed that the resistance adjustment command issued by the processing unit 150 represents that the resistance level is 10. The control unit 131 determines whether the current resistance position (level) reported by the motor resistance position unit 134 is 10. If the current resistance position (level) is 15, the control unit 131 automatically issues the command of “reverse rotation”. After the current resistance position (level) reported by the motor resistance position unit 134 is 10, the control unit 131 then issues the command to “stop”. If the resistance adjustment command issued by the processing unit 150 represents that the resistance level is 20, and the control unit 131 determines that the current resistance position (level) reported by the motor resistance position unit 134 is 10, the control unit 131 automatically issues the command of “forward rotation”. After the current resistance position (level) reported by the motor resistance position unit 134 is 20, the control unit 131 then issues the command to “stop”.
With reference to
The PMU 140 may send the measurement result back to the processing unit 150 through cable transmission or wireless connection. For instance, the PMU 140 may obtain the heart rate of the user by interpreting an electrical activity of the user's heart through electrocardiography, measuring heart beats and pulses of the user, detecting blood flow of the user, applying an infrared ray (IR) sensor, employing an ultra wide band (UWB) sensor, and so forth, and the result is transmitted to the processing unit 150 through wireless connection, e.g., by Bluetooth, wireless network, and so on. However, the disclosure is not limited thereto. In another exemplary embodiment of the disclosure, the PMU 140 may also apply a cable (e.g., a twisted pair cable, a coaxial cable, or optic fiber) to transmit the result to the processing unit 150.
The database 160 is coupled to the processing unit 150. Here, the database 160 stores basic information and historical information of the user. The information stored in the database 160 may include gender, age, hobbies, facial features, previous use record, and/or other information of the user. Through storage of information, the database 160 may allow the user to set up the exercise data more rapidly when the user again uses the exercise bike.
The processing unit 150 includes a data retrieval and control module 151 and an interactive feedback module 152. The data retrieval and control module 151 receives and converts the streaming signal of the resistance unit 130 and the physiological signal of the PMU 140. The interactive feedback module 152 receives the streaming signal and the physiological signal from the data retrieval and control module 151 and generates a control command signal. Here, the interactive feedback module 152 includes a logic calculation and analysis unit 153, a feedback control unit 154, an interface output unit 155, and a data retrieval unit 156. The logic calculation and analysis unit 153 calculates the streaming signal and the physiological signal. The feedback control unit 154 converts the calculated streaming signal and the calculated physiological signal into a feedback control command. The interface output unit 155 outputs information of personalized interactive results. The data retrieval unit 156 retrieves the information from the database 160 and transmits the information to the logic calculation and analysis unit 153. The data retrieval unit 156 also stores information to the database 160. The feedback control command converted and generated by the interactive feedback module 152 is converted into a resistance control command by the data retrieval and control module 151 and transmitted to the resistance unit 130.
In the test mode, when the user feels that he or she may not be able to complete the exercise test, the user may inform the processing unit 150 of ending the test mode through a predetermined mechanism (e.g., a button, voice, hand gestures, or the like). Besides, in the test mode, the processing unit 150 may through the guidance unit 110 inform the user of maintaining the rotational speed to be around a predetermined rotational speed (e.g., 50 RPM). When the rotational speed of the pedaling activity is faster than the predetermined rotational speed, the processing unit 150 may warn the user through the guidance unit 110. When the rotational speed of the pedaling activity is slower than the predetermined rotational speed for a period of time (e.g., half a minute), it indicates that the user is physically exhausted, and therefore the processing unit 150 directly ends the test mode. If the user's heart rate fluctuates too much, the processing unit 150 also displays a warning message through the guidance unit 110. In consideration of the user's safety, in the test mode, if the user's heart rate exceeds a safety value, the processing unit 150 may immediately send a warning message through the guidance unit 110 and ask the user to ride the exercise bike slowly for a period of time (e.g., 1 minute). During this time period, the pedaling resistance level is automatically reduced to 5%, for instance, and the user is then asked to leave the exercise bike and take a rest. The safety value may be determined according to a medical estimation. For instance, the safety value may be set as 85% of the maximum heart rate (i.e., 220—age).
The processing unit 150 then selects one of the pedaling resistances to perform a phase-one pedaling test (in step S422). For instance, the processing unit 150 selects the smallest pedaling resistance (5%) from the resistances at different resistance levels of 5%, 15%, 25%, . . . , and 95% and thereby sets the pedaling resistance of the resistance unit 130. After the processing unit 150 determines the pedaling resistance of the resistance unit 130 to be at the resistance level of 5%, the processing unit 150 performs the step S423, so as to allow the user to perform the pedaling activity in one sub-test time interval (e.g., 1 minute). Through the PMU 140, the processing unit 150 is able to detect the average heart rate AHR of the user during this sub-test time interval. So far, the user completes the phase-one pedaling test.
After the step S423 is completed, the processing unit 150 performs step S424 to obtain the exercise intensity by calculating the average heart rate AHR. For instance, in the present exemplary embodiment, the processing unit 150 calculates an estimated maximum heart rate MHR of the user and the user's exercise intensity ES by applying the equations (1) and (2):
MHR=220−Age Equation (1)
ES=(AHR−RHR)/(MHR−RHR) Equation (2)
The processing unit 150 obtains the user's age Age from the database 160 and thereby calculates the estimated maximum heart rate MHR by applying the equation (1). After obtaining the maximum heart rate MHR, the processing unit 150 calculates the user's exercise intensity ES by applying the equation (2). The processing unit 150 may then store the correspondence relationship between the pedaling resistance level (e.g., 5%) and the exercise intensity ES into the database 160.
In step S424, the processing unit 150 may also inquire the user about a rate of perceived exertion (RPE), so as to obtain a plurality of psychological values RPE respectively corresponding to the pedaling resistances.
After the step S424 is completed, the processing unit 150 performs step S425 to determine whether there is any non-selected pedaling resistance. For instance, the resistance with the resistance level 5% is used by the processing unit 150 in the phase-one pedaling test described above, while the resistances with the resistance levels 15%, 25%, . . . , and 95% are yet selected and used. Hence, the processing unit 150 in step S426 selects the next pedaling resistance. For instance, the processing unit 150 selects the lowest pedaling resistance level (15%) from the resistance levels of 15%, 25%, . . . , and 95% and thereby sets the pedaling resistance of the resistance unit 130.
After the processing unit 150 determines the pedaling resistance of the resistance unit 130 to be at the resistance level 15%, the processing unit 150 performs the steps S423, S424, and S425 in a second sub-test time interval. So far, the user completes the phase-two pedaling test, and the rest may be deduced from the above.
As long as the processing unit 150 determines that there is no non-selected pedaling resistance, the heart rate of the user exceeds the safety value, or the exercise intensity ES of the user exceeds the safety value (e.g. 95%), the processing unit 150 performs step S427 to determine a recommended pedaling resistance.
The processing unit 150 may display the test result in the test mode through the guidance unit 110.
In the present exemplary embodiment, the exercise intensity ES within the resistance range from 25% to 50% is defined as the beginner's level, the exercise intensity ES within the resistance range from 50% to 75% is defined as the intermediate level, and the exercise intensity ES within the resistance range from 75% to 100% is defined as the advanced level. According to the test result shown in
With reference to
In step S430, the exercise bike may further enter a sport mode. According to the test result obtained in step S420 and the goal of exercise set by the user, a completely customized menu may be provided in step S420 when the exercise bike is in the sport mode. The menu provides plural sport modes (with different resistances or within different exercise periods), e.g., a beginner's level, an intermediate level, and an advanced level. The function of setting the goal of exercise may allow the user to determine personal goals, e.g., lose certain weight within a certain period of time.
In step S430, the user may further be provided with sport-related advice. According to the sport mode determined by the user, the processing unit 150 spontaneously provide appropriate sport-related advices according to the test result obtained in step S420, e.g., by presetting a 5-minute warm-up exercise and a 5-minute cool-down exercise, setting the exercise intensity ES of the main exercise to be at the resistance level of 50%, and so forth. The main exercise lasts for a certain period of time, i.e., the beginner's level is 20 minutes, the intermediate level is 30 minutes, and the advanced level is 40 minutes. The user is able to adjust the time spent on each session, i.e., the warm-up session, the main exercise session, and the cool-down session. If the user does not have any corresponding test result recorded in the database 160, the processing unit 150 provides a personalized sport-related advice according to the basic information of the user or provides a normal sport-related advice.
After step S430 is completed, the processing unit 150 provides the recommended pedaling resistance to the user for performing the pedaling activity when the exercise bike is in the sport mode (step S440). In the sport mode, the sport-related physiological measurement and evaluation of sport-related perceived exertion may be conducted instantly according to the user's physical exercise preferences. In step S440, the safety of the user during workout is ensured, and the evaluation result is instantly fed back. Besides, in step S440, the exercise intensity may be dynamically adjusted, the guidance scenario displayed by the guidance unit 110 may be dynamically adjusted, and it is also possible to play the music corresponding to the exercise. In some exemplary embodiments, a “sport training” mode may be chosen in step S440. In some exemplary embodiments, a “three-phase sport” mode may be chosen in step S440. The “three-phase sport” mode includes a resting measurement, a warm-up session, a main exercise session, and a cool-down session, and a recovery measurement. The “sport training” mode includes a warm-up session, a main exercise session, and a cool-down session.
After the step S441 is completed, the processing unit 150 through the guidance unit 110 guides the user to run a warm-up session in step S442. The processing unit 150 monitors the physiological characteristics of the user through the PMU 140 and instantly displays information including the target heart beat, the real-time heart beat, calories, the rotational speed (RPM), the exercise intensity ES, and the rate of perceived exertion RPE through the guidance unit 110.
After the step S442 is completed, the processing unit 150 through the guidance unit 110 guides the user to run a main exercise session in step S443. At this time, the processing unit 150 also monitors the physiological characteristics of the user through the PMU 140 and instantly displays information including the target heart beat, the real-time heart beat, calories, the rotational speed (RPM), the exercise intensity ES, and the rate of perceived exertion RPE through the guidance unit 110. According to the heart rate of the user or the rate of perceived exertion RPE, the processing unit 150 is able to dynamically adjust the resistance level of the pedaling activity. Additionally, the processing unit 150 periodically (e.g., every minute) compares the real-time heart beat of the user with the target heart beat. If the difference between the real-time heart beat of the user and the target heart beat exceeds a preset range (e.g., 5), the processing unit 150 automatically reduces the resistance level of the pedaling activity. On the contrary, if the difference between the real-time heart beat of the user and the target heart beat lags behind the preset range (e.g., 5), the processing unit 150 automatically raise the resistance level of the pedaling activity.
After the step S443 is completed, the processing unit 150 through the guidance unit 110 guides the user to run a cool-down session in step S444. At this time, the processing unit 150 also monitors the physiological characteristics of the user through the PMU 140 and instantly displays information including the target heart beat, the real-time heart beat, calories, the rotational speed (RPM), the exercise intensity ES, and the rate of perceived exertion RPE through the guidance unit 110. In the warm-up session, the main exercise session, and the cool-down session, the processing unit 150 may through the guidance unit 110 displays the scenario corresponding to the exercise intensity and plays the music corresponding to the exercise intensity.
Besides, the processing unit 150 through the guidance unit 110 periodically inquires the user about the rate of perceived exertion RPE, as exemplarily shown in
After the step S444 is completed, the processing unit 150 through the guidance unit 110 guides the user to conduct the recovery measurement in step S445, i.e., to measure a post-exercise physiological value of the user. In step S445, the processing unit 150 through the guidance unit 110 displays an informing message, a timer, and a heart beat curve diagram, so as to guide the user to measure the physiological characteristics of the user (e.g., heart rate) after the exercise. In another exemplary embodiment, the processing unit 150 through the guidance unit 110 inquires the user about the post-exercise psychological value of the user in step S445.
In view of the above, in the sport mode, the processing unit 150 in step S440 measures an exercise physiological or psychological value of the user through the PMU 140 and controls the resistance unit 130 to correspondingly and dynamically adjust the resistance of the pedaling activity according to the exercise physiological or psychological value. That is, when the user gets the exercise on the exercise bike 100, the user's physiological characteristics of the user (e.g., the heart rate) and/or the psychological values (e.g., perceived exertion) are monitored and timely fed back to the resistance unit 130 of the exercise bike 100 in response to the use condition of the user; thereby, injuries resulting from the exercise may be prevented.
In step S1020, the user gets the exercise practice by getting accustomed to the rhythm of the rotational speed and thereby obtaining self-perception of physical exercise. In the practice mode (step S1020), the processing unit 150 is pre-determined to provide the low pedaling resistance level, and the processing unit 150 allows the user to set up the “practice rotational speed” (e.g., 40 RPM, 50 RPM, or 60 RPM) for the rhythmic practice of the pedaling activity at a rotational speed. The user may choose from at least one specific pedaling resistance level (e.g., 5% or 10%) in the exercise bike 100, such that the user may get the rhythmic practice of the pedaling activity at a rotational speed for a period of time (e.g., 3 minutes). In the practice mode, the user is required to make sure that the rotational speed of the exercise bike 100 complies with the selected practice rotational speed. After the practice mode ends, the processing unit 150 through the guidance unit 110 displays a coefficient of variation (CV), the average rotational speed (RPM), the average peak torque (Nm), and/or the average work (Watt). If the CV value falls within a safety range (e.g., 5%), the next phase may be adopted after rest (step S1030). The purpose of rest lies in that the user may recover and regain the physical condition as if the user were in rest. For instance, the heart rate of the user after exercise is kept equal to the heart rate of the user in rest. The resting time may be determined by the user or set up in advance, e.g., 3 minutes. If the CV value exceeds the safety range (e.g., 5%), the exercise bike 100 is required to be in the practice mode again (step S1020) until the user gets accustomed to the rhythm of the rotational speed.
In step S1023, the processing unit 150 may guide the user through the guidance unit 110 (e.g., through sound, light, rhythm, etc.) to maintain the rotational speed of the exercise bike 100 to be the practice rotational speed. In step S1024, the processing unit 150 determines whether the time of the test mode is over. If the time of the test mode is not over, the processing unit 150 performs step S1022. If the time of the test mode is over, the processing unit 150 ends the test mode, and the next phase may be adopted after rest (step S1030).
If the database 160 stores the information of the user, the processing unit 150 loads the information of the user from the database 160 in step S1215. For instance, the processing unit 150 may load the basic information of the user previously stored in the database 160, and the basic information may include a nickname, the age, the birthday, the gender, and/or hazardous factors. If the database 160 does not contain the information of the user, the processing unit 150 establishes a new file folder for recording the information of the user in step S1220.
Next, the processing unit 150 performs step S1225, so as to inform the user of using a contact-type or a non-contact-type PMU 140 (e.g., a heart rate measurement device). For instance, the processing unit 150 may ask the user to wear a heart rate measurement device or to tightly hold the PMU 140 which is located on the handlebar of the exercise bike 100. Through the PMU 140, the processing unit 150 is able to monitor the exercise condition of the user. In step S1225, the processing unit 150 may connect the physiological measurement device for further confirmation. In the present embodiment, the user is able to determine whether to wear/use the PMU 140. Based on actual situations, the user may decide to omit step S1225. If the exercise bike is not equipped with the PMU 140, the processing unit 150 may automatically make dynamic adjustment based on the rate of perceived exertion (RPE), which is elaborated below with reference to
The processing unit 150 then performs step S1230 to determine whether the user information file in the database 160 contains the test record of the user. If the database 160 has the test record of the user, step S1245 is performed. If the database 160 does not have the test record of the user, steps S1235 and S1240 are performed to establish the test record for the user and save the test record into the database 160.
The details of steps S1235, S1240, S1245, and S1250 shown in
Through establishing the three-phase exercise model (includes the practice mode, the test mode, and the sport mode), the exercise bike 100 is capable of providing appropriate physical training in consideration of the physical condition of each individual. In the practice mode, the user gets accustomed to the rhythm of the physical activity and obtains self-perception of physical exercise when different rotational speed and different pedaling resistance levels are given. The test result sometimes may be deviated because the user is unfamiliar with the stationary bike; however, in the test mode following the practice mode, said deviation may be reduced. Besides, in the test mode, the exercise bike 100 may analyze the user's maximum physical load and/or perception exertion regarding physical activity in the event that different rotational speed and/or different pedaling resistance levels are given. According to the test and analysis result, the exercise bike 100 is able to provide the user with a completely customized menu, such that the physical exercise preferences of the user may be taken into account.
During the exercise, the exercise bike 100 constantly conducts the physiological measurement and/or evaluates the perceived exertion. According to the physiological characteristics collected by the PMU 140 or the rate of perceived exertion regarding the user's physical activity, the exercise bike 100 is capable of performing a feed-back control. Specifically, the safety of the user during workout is ensured, and the evaluation result is instantly fed back, so as to dynamically adjust the exercise intensity and demonstrates the scenario corresponding to the exercise. In the exercise bike 100, the dynamic physiological characteristics of the user and/or the rate of perceived exertion may be continuously collected/evaluated, so as to make instant feed-back for timely adjusting the scenario corresponding to the exercise and changing the pedaling resistance. Thereby, the safety of the pedaling exercise and the effects that can be achieved by the pedaling exercise may both be improved.
After the step S1322 is completed, the processing unit 150 through the guidance unit 110 inquires the user about the rate of perceived exertion, so as to obtain the psychological value RPE corresponding to the current pedaling resistance. Details of the step S1323 may be referred to as the details shown in
It is assumed that the database 160 stores the correspondence relationship (i.e., the second correspondence relationship) between the psychological values RPE of the user and the physiological values (e.g., the average heart beat AHR) of the user. The second correspondence relationship stored in the database 160 may be historical records of the same user previously using the exercise bike 100, which may be referred to as that depicted in
After obtaining the average heart rates AHR, the processing unit 150 performs step S1325 to obtain the exercise intensities ES by calculating the average heart rates AHR. For instance, in the present exemplary embodiment, the processing unit 150 calculates an estimated maximum heart rate MHR of the user and the user's exercise intensity ES by applying the equations (1) and (2): The processing unit 150 may then store the correspondence relationship (i.e., the first correspondence relationship) between the pedaling resistance level (e.g., 5%) and the exercise intensity ES into the database 160.
After the step S1325 is completed, the processing unit 150 performs step S1326 to determine whether there is any non-selected pedaling resistance. For instance, the resistance with the resistance level 5% is used by the processing unit 150 in the phase-one pedaling test described above, while the resistances with the resistance levels 15%, 25%, . . . , and 95% are yet selected and used. Hence, the processing unit 150 in step S1327 selects the next pedaling resistance. For instance, the processing unit 150 selects the lowest pedaling resistance level (15%) from the resistance levels of 15%, 25%, . . . , and 95% and thereby sets the pedaling resistance of the resistance unit 130. After the processing unit 150 determines the pedaling resistance of the resistance unit 130 to be at the resistance level 15%, the processing unit 150 performs the steps S1322, S1323, S1324, S1325, and S1326 in a second sub-test time interval. So far, the user completes the phase-two pedaling test, and the rest may be deduced from the above.
As long as the processing unit 150 determines that there is no non-selected pedaling resistance, the heart rate of the user exceeds the safety value, or the exercise intensity ES of the user exceeds the safety value (e.g. 95%), the processing unit 150 performs step S1328 to determine a recommended pedaling resistance. Details of the step S1328 may be referred to as the details shown in
With reference to
After step S1330 is completed, the processing unit 150 provides the recommended pedaling resistance to the user for performing the pedaling activity when the exercise bike is in the sport mode (step S1340). In the sport mode, the evaluation of sport-related perceived exertion may be conducted instantly according to the user's physical exercise preferences. Besides, in step S1340, the exercise intensity may be dynamically adjusted, the scenario corresponding to the exercise may be displayed, and it is also possible to play the music corresponding to the exercise. Details of the step S1340 may be referred to as the details shown in
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the disclosed embodiments without departing from the scope or spirit of the disclosure. In view of the foregoing, it is intended that the disclosure cover modifications and variations of this disclosure provided they fall within the scope of the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
101138716 A | Oct 2012 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
4378111 | Tsuchida et al. | Mar 1983 | A |
5067710 | Watterson et al. | Nov 1991 | A |
5318487 | Golen et al. | Jun 1994 | A |
5387164 | Brown, Jr. | Feb 1995 | A |
5410472 | Anderson | Apr 1995 | A |
5512025 | Dalebout et al. | Apr 1996 | A |
5598849 | Browne | Feb 1997 | A |
6033344 | Trulaske | Mar 2000 | A |
6447424 | Ashby et al. | Sep 2002 | B1 |
6450922 | Henderson et al. | Sep 2002 | B1 |
6740007 | Gordon et al. | May 2004 | B2 |
20040077465 | Schmidt | Apr 2004 | A1 |
20040229729 | Albert et al. | Nov 2004 | A1 |
20060032315 | Saalastic | Feb 2006 | A1 |
20060160669 | Lizarralde | Jul 2006 | A1 |
20070042868 | Fisher | Feb 2007 | A1 |
20090312150 | Wu | Dec 2009 | A1 |
20090312658 | Thieberger | Dec 2009 | A1 |
20110082397 | Alberts | Apr 2011 | A1 |
20110092337 | Srinivasan et al. | Apr 2011 | A1 |
20120077641 | Dyer et al. | Mar 2012 | A1 |
20120083705 | Yuen | Apr 2012 | A1 |
20130123071 | Rhea | May 2013 | A1 |
Number | Date | Country |
---|---|---|
102407003 | Apr 2012 | CN |
4249173 | Apr 2009 | JP |
258931 | Oct 1995 | TW |
403668 | Sep 2000 | TW |
I220387 | Aug 2004 | TW |
200950851 | Dec 2009 | TW |
M398440 | Feb 2011 | TW |
201107017 | Mar 2011 | TW |
201121616 | Jul 2011 | TW |
201121625 | Jul 2011 | TW |
M409867 | Aug 2011 | TW |
I357343 | Feb 2012 | TW |
201208735 | Mar 2012 | TW |
201212976 | Apr 2012 | TW |
Entry |
---|
Ruiter et al., “A Variable Resistance Virtual Exercise Platform for Physiotherapy Rehabilitation”, 15th International Conference on Mechatronics and Machine Vision in Practice, Dec. 2008, p. 533-p. 538. |
Guo et al., “Development and Qualitative Assessment of the GAMECycle Exercise System”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Mar. 2006, vol. 14, p. 83-p. 90. |
Kamnik et al., “Exercise Device for Upper-Extremity Sensory-Motor Capability Augmentation Based on Magneto-Rheological Fluid Actuator”, 19th International Workshop on Robotics in Alpe-Adria-Danube Region, Jun. 2010, p. 71-p. 74. |
Chen et al., “Feedback Control of an LVAD Supporting a Failing Cardiovascular System Regulated by the Baroreflex”, Proceedings of the 45th IEEE Conference on Decision & Control, Dec. 2006, p. 655-p. 660. |
Repperger et al., “Perfect Velocity Tracking for Biomedical Applications Using a Pneumatic Muscle Actuator”, Proceedings of the IEEE 2009 National Aerospace & Electronics Conference, Jul. 2009, p. 195-p. 199. |
“Office Action of Taiwan Counterpart Application”, issued on Apr. 16, 2014, p. 1-p. 5. |
“Office Action of China Counterpart Application”, issued on Jul. 9, 2015, p. 1-p. 8. |
Number | Date | Country | |
---|---|---|---|
20140113768 A1 | Apr 2014 | US |