The present invention relates generally to an exercise device and more particularly it relates to an exercise device with flexible support elements. The exercise device provides exercise such as simulated walking, striding, jogging, or climbing that more accurately simulates these activities than currently available exercise equipment.
It can be appreciated that exercise devices have been in use for years. Typical of exercise devices that simulate walking or jogging are cross country ski machines, elliptic motion machines, and pendulum motion machines. Typical exercise devices that simulate climbing are reciprocal stair climbers.
Elliptic motion exercise machines provide inertia that assists in direction change of the pedals, which makes the exercise smooth and comfortable. However, rigid coupling to a crank typically constrains the elliptic path to a fixed length. Therefore, the elliptic path may be too long for shorter users, or too short for tall users. Further, a running stride is typically longer than a walking stride, so a fixed stride length does not ideally simulate all weight bearing exercise activities. Therefore, typical elliptic machines cannot optimally accommodate all users. Some pendulum motion machines may allow variable stride length, but the user's feet typically follow the same arcuate path in both forward and rearward motion. Such a motion does not accurately simulate walking, striding, or jogging, where the user's feet typically lift and lower. Reciprocal stair climbers typically allow the user to simulate a stepping motion, but that motion is generally constrained to a vertically oriented arcuate path defined by a linkage mechanism. Such a motion does not accurately simulate a wide range of real world climbing activities such climbing stairs or climbing sloped terrain.
What is needed is an exercise device that overcomes some or all of the above-described disadvantages of the designs of the prior art, and provides a user with the advantages of variable stride length and more accurate simulation of real world activities.
The present invention relates to a stationary exercise device with flexible support elements. In one aspect, the exercise device includes a frame with a base portion that is supported by the floor. A crank system with crank arms is coupled to and supported by the frame. The crank system may be coupled to a brake inertia/device. Right and left pivotal linkage assemblies may each have an arcuate motion member and a foot support member. The arcuate motion member may be coupled to the frame. The foot support member may be coupled to the arcuate motion member. The foot support member may include foot plates. The arcuate motion member may have an upper portion that acts as a handle. The arcuate motion member may be oriented generally vertical and the foot support member may be oriented generally horizontal. Flexible element coupling systems couple the right and left foot support members to the crank system. In this manner, rotation of the crank system alternately lifts and lowers the foot support members.
In one aspect, the right and left pivotal linkage assemblies of a stationary exercise device are cross coupled so that motion of one foot support member causes an opposing motion of the other foot support member. In this manner, a forward motion of one foot support member results in a rearward motion of the other foot support member.
In one aspect, a crank system may be located generally behind the user. A flexible support element may be attached to a generally rearward portion of a foot support member. An arcuate motion member may be coupled to a generally forward portion of the foot support member.
In another aspect, a crank system may be located generally ahead of the user. A flexible support element is attached to a generally forward portion of a foot support member. An arcuate motion member is coupled to a generally rearward portion of the foot support member.
In another aspect, a flexible support element is attached to the foot support member near the foot pedal.
In another aspect, additional links of an exercise apparatus may provide additional lateral positioning of the foot support members.
The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims. The novel features which are believed to be characteristic of the invention, both as to its organization and method of operation, together with further objects and advantages will be better understood from the following description when considered in connection with the accompanying figures. It is to be expressly understood, however, that each of the figures is provided for the purpose of illustration and description only and is not intended as a definition of the limits of the present invention.
Various other objects, features and attendant advantages of the present invention will become fully appreciated as the same becomes better understood when considered in conjunction with the accompanying drawings, in which like reference characters designate the same or similar parts throughout the several views, and wherein:
a depicts an embodiment of an arcuate motion member path;
b depicts an embodiment of a foot support member path;
a depicts a top view of an embodiment of a cross coupling linkage;
a depicts a top view of a flexible element coupling system according to one embodiment;
b depicts a top view of a flexible element coupling system according to another embodiment;
In the following detailed description, reference is made to the accompanying drawings, in which are shown by way of illustration specific embodiments of the present invention. It should be understood that the detailed description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the invention. Numerous changes, substitutions, and modifications may be made without departing from the scope of the present invention.
The crank system may also include brake/inertia device 119 coupled to the crankshaft through belt 115 and pulley 118. Rotation of crank arms 112 about the axis of crankshaft 114 causes rotation of brake/inertia device 119. Brake/inertia device 119 may provide a braking force that provides resistance to the user during exercise, and/or it may provide inertia that smoothes the exercise by receiving, storing, and delivering energy during rotation. Although the embodiment shown in
A pivotal linkage assembly may include arcuate motion member 130 and foot support member 134. Although only the elements of the right side pivotal linkage assembly are numbered, it is understood that there is a left side pivotal linkage assembly with comparable elements. In the context of this specification, the term “member” includes a structure or link of various sizes, shapes, and forms. For example, a member may be straight, curved, or a combination of both. A member may be a single component or a combination of components coupled to one another. Arcuate motion member 130 has an upper portion 132. Upper portion 132 can be used as a handle by the user. Arcuate motion member 130 may be straight, curved, or bent. Foot support member 134 has foot plate 136 on which the user stands. Foot support member 134 may be straight, curved, or bent. Foot support member 134 is coupled to arcuate motion member 130 at coupling location 138. Coupling may be accomplished with a pivotal pin connection as shown in
As shown in
A flexible element coupling system may include flexible element 150. Flexible element 150 may be a belt, a cog belt, a chain, a cable, or any flexible component able to carry tension. Flexible element 150 may have some compliance in tension, such as a rubber belt, or it may have little compliance in tension, such as a chain. At one end, flexible element 150 couples to foot support member 134 at coupling location 142. At its other end, flexible element 150 couples to crank arm 112 at location 117. Flexible element 150 engages guide element 152. Guide element 152 may be any component that can guide or support a flexible element such as a pulley, a cog belt pulley, a sprocket, a roller, or a slide block.
Arcuate motion member 130 may be oriented in a generally vertical position. In the context of this specification, an element is oriented in a “generally vertical” position if the element, as measured with respect to its connection points to other elements of the system considered within the range of motion for the element, tends to be closer to vertical than horizontal.
Foot support member 134 may be oriented in a generally horizontal position. In the context of this-specification, an element is oriented in a “generally horizontal” position if the element, as measured with respect to its connection points to other elements of the system considered within the range of motion for the element, tends to be closer to horizontal than vertical.
During operation, the user ascends the exercise device, stands on foot plates 136, and initiates a climbing motion by placing his/her weight on one of foot plates 136. As the user steps downward, force is transmitted through flexible support element 150 causing rotation of crank shaft 114 and brake/inertia device 119. As crank shaft 114 continues to rotate, foot support members 134 alternately lift and lower. This lifting and lowering motion simulates the lifting and lowering motion that a user's foot may undertake during walking, striding, jogging, and climbing. The user may instantaneously alter stride length by altering the forward and rearward force he/she applies to foot plates 136. The user may instantaneously select a nearly vertical step with little horizontal displacement, or he/she may instantaneously select a longer stride with greater horizontal displacement. When the user displaces the foot plates horizontally, the combined motions of lifting and lowering and horizontal displacement results in a closed path where the amount of horizontal displacement is instantaneously controllable by the user. Handles 132 may move in an arcuate pattern and may be grasped by the user. If the user stands stationary on foot plates 136 for an extended period of time, the crank system may settle into a locked “top dead center” condition. In such a circumstance, counterweight 113 may apply a downward force to push the crank system through the “top dead center” condition.
The right and left side pivotal linkage assemblies may be cross coupled through the left and right arcuate motion members so that the right and left foot plates 136 move in opposition. The cross coupling system may include pulleys 120R and 120L working in conjunction with idlers 121U and 121L. Belt 122 is a continuous belt that is coupled to pulleys 120R and 120L so that there is no slippage between belt 122 and pulleys 120L and 120R. Pulleys 120R and 120L are coupled to right and left arcuate motion members 130. Belt 122 causes pulleys 120R and 120L to rotate in direct opposition to one another thereby cross coupling the right and left side pivotal linkage assemblies.
Frame 101 includes a basic supporting framework including base 102 and front and rear upper stalks 103, 104. The lower portion of the frame engages and is supported by the floor. A crank system may include crank members 112 attached to crank shaft 114. Crank shaft 114 is supported by frame 101 so that the crank shaft may rotate about its longitudinal axis. One of the crank arms may include counterweight 113. The crank system may also include brake/inertia device 119 coupled to the crank through belt 115 and pulley 118. Rotation of crank arms 112 about the axis of crankshaft 114 causes rotation of brake/inertia device 119. Brake/inertia device 119 may provide a braking force that provides resistance to the user during exercise, and/or it may provide inertia that smoothes the exercise by receiving, storing, and delivering energy during rotation.
A pivotal linkage assembly may include arcuate motion member 130 and foot support member 134. Arcuate motion member 130 may be straight, curved, or bent. Foot support member 134 has foot plate 136 on which the user stands. Foot support member 134 may be straight, curved, or bent. Foot support member 134 is coupled to arcuate motion member 130 at coupling location 138. Arcuate motion member 130 is coupled to frame 101 at coupling location 140.
A flexible coupling system may include flexible element 150. Flexible element 150 couples to foot support member 134 at coupling location 142. At its other end, flexible element 150 couples to crank arm 112 at location 117. Flexible element 150 engages guide element 152.
The cross coupling system includes continuous belt 164. Continuous belt 164 may engage pulleys 166 and 168. Continuous belt 164 is coupled to foot support members 134 at coupling locations 135. As one foot support member moves forward, the opposing foot support member moves rearward. Continuous belt 164 may have a slight amount of compliance that allows it to accommodate the varying geometry of the system as foot support members 134 move forward and rearward.
Operation of the embodiment shown in
Frame 101 includes a basic supporting framework including base 102 and a front upper stalk 103. The lower portion of the frame engages and is supported by the floor. A crank system may include crank members 112 attached to crank shaft 114. Crank shaft 114 is supported by frame 101 so that the crank shaft may rotate about its longitudinal axis. One of crank arms 112 may include a counterweight 113. The crank system may also include brake/inertia device 119 coupled to the crank through belt 115 and pulley 118. Rotation of crank arms 112 about the axis of crankshaft 114 causes rotation of brake/inertia device 119. Brake/inertia device 119 may provide a braking force that provides resistance to the user during exercise, and/or it may provide inertia that smoothes the exercise by receiving, storing, and delivering energy during rotation.
A pivotal linkage assembly may include arcuate motion member 130 and foot support member 134. Arcuate motion member 130 has an upper portion 132. Upper portion 132 can be used as a handle by the user. Arcuate motion member 130 may be straight, curved, or bent. Foot support member 134 has foot plate 136 on which the user stands. Foot support member 134 may be straight, curved, or bent. Foot support member 134 is coupled to arcuate motion member 130 at coupling location 138. Arcuate motion member 130 is coupled to frame 101 at coupling location 140.
A flexible coupling system may include flexible element 150. Flexible element 150 couples to foot support member 134 at coupling location 142. At its other end, flexible element 150 couples to crank arm 112 at location 117. Flexible element 150 engages guide element 152.
In the embodiment shown in
Operation of the embodiment shown in
a and 6b depict embodiments of coupling systems using flexible elements.
Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
This Application is a Continuation of U.S. application Ser. No. 12/391,788 filed Feb. 24, 2009, which is a Continuation of U.S. application Ser. No. 11/388,845 filed on Mar. 24, 2006, which claims priority to U.S. Provisional Patent Applications Ser. No. 60/665,268 filed on Mar. 25, 2005 entitled “Pendulum Striding Exercise Device” and Ser. No. 60/676,833 filed on May 2, 2005 entitled “Pendulum Striding Exercise Device,” the disclosures of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1166304 | Albert | Dec 1915 | A |
3756595 | Hague et al. | Sep 1973 | A |
4869496 | Colombo et al. | Sep 1989 | A |
4940233 | Bull et al. | Jul 1990 | A |
5299993 | Habing | Apr 1994 | A |
5611756 | Miller | Mar 1997 | A |
5735773 | Vittone et al. | Apr 1998 | A |
5795268 | Husted | Aug 1998 | A |
5910072 | Rawls et al. | Jun 1999 | A |
5967944 | Vittone et al. | Oct 1999 | A |
5989163 | Rodgers, Jr. | Nov 1999 | A |
6004244 | Simonson | Dec 1999 | A |
6036622 | Gordon | Mar 2000 | A |
6045487 | Miller | Apr 2000 | A |
6113518 | Maresh et al. | Sep 2000 | A |
6123650 | Birrell | Sep 2000 | A |
6152859 | Stearns | Nov 2000 | A |
6165107 | Birrell | Dec 2000 | A |
6340340 | Stearns et al. | Jan 2002 | B1 |
6579210 | Stearns et al. | Jun 2003 | B1 |
6626802 | Rodgers, Jr. | Sep 2003 | B1 |
6689019 | Ohrt et al. | Feb 2004 | B2 |
6726600 | Miller | Apr 2004 | B2 |
6761665 | Nguyen | Jul 2004 | B2 |
6926646 | Nguyen | Aug 2005 | B1 |
7507184 | Rodgers, Jr. | Mar 2009 | B2 |
20010012811 | Gordon | Aug 2001 | A1 |
20020094914 | Maresh et al. | Jul 2002 | A1 |
20040058784 | Roberts | Mar 2004 | A1 |
20040077463 | Rodgers | Apr 2004 | A1 |
20040235621 | Eschenbach | Nov 2004 | A1 |
20040248708 | Rodgers, Jr. | Dec 2004 | A1 |
20040248709 | Rodgers, Jr. | Dec 2004 | A1 |
20050049117 | Rodgers, Jr. | Mar 2005 | A1 |
20050124466 | Rodgers, Jr. | Jun 2005 | A1 |
20050124467 | Rodgers, Jr. | Jun 2005 | A1 |
20060217234 | Rodgers, Jr. | Sep 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20100173754 A1 | Jul 2010 | US |
Number | Date | Country | |
---|---|---|---|
60665268 | Mar 2005 | US | |
60676833 | May 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12391788 | Feb 2009 | US |
Child | 12725030 | US | |
Parent | 11388845 | Mar 2006 | US |
Child | 12391788 | US |