The present disclosure relates to fitness equipment, and in particular, to fitness equipment to train abdominal muscles.
Various types of exercises have been created for exercising particular muscles of the human body. For example, one relatively popular exercise for exercising the muscles of the abdomen and core is known as “planking.” During such an exercise, a person places his or her body in a prone position or pushup position with legs straight or bent and toes or knees touching a support surface while supporting the upper body with the hands (pushup position) or the forearms (plank position) on a support surface. The idea is to hold the body in an erect horizontal position using the core muscles to stabilize the body. The planking exercise has been performed on a wobble board-type device. When planking on a wobble board on a floor, however, if the user tilts from side to side, the wobble board tends to slide across the floor, forcing the user to move his or her feet to stay properly aligned with the wobble board. This reduces the effectiveness of the planking exercise and increases the likelihood of injury.
In some arrangements, an exercise device includes an upper base, a lower base, one or more wings, and a pivoting mechanism. The upper base and the one or more wings form a device holder being shaped and sized to receive an electronic device.
In some arrangements, a method for using an exercise device includes placing an exercise device as described herein on a surface, positioning the exercise device on the surface, placing one or more hands on the exercise device, and performing one or more exercises using the exercise device.
In some arrangements, a method for manufacturing an exercise device includes providing an upper base, providing a lower base, the lower base coupled to the upper base, providing one or more wings, at least one of the one or more wings being operatively coupled to another of the one or more wings, and providing a pivoting mechanism coupled to the lower base. The upper base and the one or more wings combine to form a device holder, the device holder being shaped and sized to receive an electronic device.
These and other features, together with the organization and manner of operation thereof, will become apparent from the following detailed description when taken in conjunction with the accompanying drawings.
The details of one or more implementations are set forth in the accompanying drawings and the description below. Other features, aspects, and improvements of the disclosure will become apparent from the description, the drawings, and the claims, in which:
It will be recognized that some or all of the figures are schematic representations for purposes of illustration. The figures are provided for the purpose of illustrating one or more implementations with the explicit understanding that they will not be used to limit the scope or the meaning of the claims.
Following below are more detailed descriptions of various concepts related to, and implementations of, methods, apparatuses, and systems for a multi-configurable fitness device. The various concepts introduced above and discussed in greater detail below may be implemented in any number of ways, as the concepts described are not limited to any particular manner of implementation. Examples of specific implementations and applications are provided primarily for illustrative purposes.
Referring generally to the FIGS., the various arrangements disclosed herein relate to systems, apparatuses, and methods for an exercise device used for perform abdominal exercises, including planking exercises. More specifically, arrangements herein relate to an exercise device with removable wings and a dynamic pivoting base that allow for easy positioning of the exercise device and a secure base for performing exercises. In some arrangements, the exercise device is structured to receive or hold a smart device, which can utilize an accelerometer to convert a user's movement as applied to the fitness device to actions in an application on the smart device. The exercised device as described herein provide improved stability and flexibility as compared to existing devices, and further provides layered connectivity between the exercise device and the user's smart device.
Referring now to
When coupled together, the upper base 110, the first wing 120, and the second wing 130 form the device holder 140, which is structured, sized, and shaped to receive an electronic device (e.g., mobile phone, tablet, etc.). As shown, the upper base 110, the first wing 120, and the second wing 130 form a platform, which includes a recessed portion which is the device holder 140. In other words, the device holder 140 (e.g., the recessed portion) is formed out of walls, edges, indentations, or cut-outs in each of the upper base 110, the first wing 120, and the second wing 130 that form a crevice or pocket that is shaped and sized to receive the electronic device. The walls of the upper base 110, the first wing 120, and the second wing 130 define the walls of the device holder 140, which restricts the movement of the electronic device once the electronic device is deposited in the device holder 140. As shown in
A proximal portion of the device 100 (defined by portions of the upper base 110 as well as the first wing 120 and the second wing 130 oriented on opposite sides of the upper base 110) is adapted to receive the forearms of an exercising user. For example, the first wing 120 may be adapted to support a left arm of the user while the second wing 130 may be adapted to support a right arm of the user. In particular, when assembled, the proximal portion of the device 100 (including the portions (e.g., proximal ends) of the first wing 120 and the second wing 130 that are closer to the upper base 110, which is the part of the exercise device 100 closest to a user's torso when the user is using the device 100) may be wider or broader than the distal portion of the device 100 (defined by a distal ends of the first wing 120 and the second wing 130). In other words, when assembled, the device 100 tapers from the proximal portion to the distal portion. In some arrangements such as the one shown in
The exercise device 100 further includes a first ridge 141 and a second ridge 142. As shown in
The first wing 120, the second wing 130, and the upper base 110 can be removably coupled together. As shown in
Similarly, as shown in
As shown in
Referring now to
As shown, a portion of the first wing 120 with the first texture 122 provided thereon may be separate from the rest of the first wing 120 and coupled to the rest of the first wing 120 via suitable attachment mechanisms such as glue, crews, snap fit, Velcro®, or another suitable mechanism. In other arrangements, first texture 122 is formed directly on the first wing 120. Similarly, a portion of the second wing 130 with the second texture 132 provided thereon may be separate from the rest of the second wing 130 and coupled to the rest of the second wing 130 via suitable attachment mechanisms such as glue, crews, snap fit, Velcro®, or another suitable mechanism. In other arrangements, second texture 132 is formed directly on the second wing 130.
As shown, the upper base 110 is operatively coupled to the lower base 160 via suitable attachment mechanisms such as screws. Other suitable attachment mechanisms can be suitable implemented. In some arrangements, each of the first wing 120 and the second wing 130 can be operatively coupled to the lower base 160 via suitable attachment mechanisms such as screws. Other suitable attachment mechanisms can be suitable implemented. In some arrangements, each of the first wing 120 and the second wing 130 may include additionally coupling mechanism (e.g., screws, glue, crews, snap fit, Velcro®, or another suitable mechanism) for attaching each of the first wing 120 and the second wing 130 to the upper base 110, to further secure the components of the device 100.
Referring now to
The pivot dome 150 is structurally coupled to the lower base 160 (and therefore the rest of the exercise device 100) via a shaft 154, which is configured to couple to a nut 158 through a buffer ring 156 and a washer 159. The shaft 154 is coupled to the lower base 160 in such a way that the shaft 154 is able to pivot around the coupling point (e.g., ball and socket joint, hinge, etc.). In this way, the end of the shaft 154 coupled to the lower base 160 (e.g., to the nut 158) is in a fixed position, and the end of the shaft coupled to the pivot dome 150 is able to move. In some arrangements, such as the one shown in
In some arrangements, the shaft 154 may be spring-loaded, such that the shaft 154 includes a spring within the shaft 154 or is coupled to the lower base 160 via a spring. Because the shaft 154 is spring-loaded, the shaft 154 has a first length and a second length, with the first length (the spring being more stretched) being longer than the second length (the spring being more compressed) and with the spring constant of the spring of the shaft 154 causing the shaft 154 to be pre-disposed to the first length (without force being applied). The pivot dome 150 may have a first position (corresponding to the first length of the shaft 154) and a second position (corresponding to the second length). When in the pivot dome 150 is in the first position, the pivot dome 150 is positioned slightly away from the lower base 160 (such that there is space between the pivot dome 150 and the lower base 160 as shown). The pivot dome 150 and shaft 154 are able to move and pivot more freely in the first position. When the pivot dome 150 is in the second position, the flat surface of the pivot dome 150 is flush with and contacting the lower base 160, and movement of the pivot dome 150 is substantially restricted due to contact with the lower base 160. In some arrangements, a plurality of nubs 152 are fixed to the flat surface of the pivot dome 150. The plurality of nubs 152 are constructed of a non-slip material (e.g., rubber, latex) and provide strong frictional resistance to movement of the pivot dome 150 when the pivot dome 150 is in the second position, due to the plurality of nubs 152 interacting with the lower base 160.
In some arrangements, a user may place the exercise device 100 on the ground in order use the exercise device 100 to perform a modified push-up exercise. While the user is positioning the exercise device 100, the user is not bearing down on the exercise device 100, so the shaft 154 is not being compressed and the pivot dome 150 is in the first position. As such, the user is able to move the exercise device 100, in part, due to the pivoting motion of the pivot dome 150. However, once the user has positioned the exercise device 100 and is ready to perform exercises (e.g., the modified push-up), the user place their forearms on the first wing 120 and the second wing 130, and bears down on the exercise device 100 with their body weight, thus compressing the shaft 154 and moving the pivot dome 150 to the second position. In the second position, the pivot dome 150 is unable to move or pivot, so the exercise device 100 is substantially fixed in place and will not slip or slide while the user is exercising. This particular feature presents a substantial improvement over current exercise devices, which can slip while in use and injure or otherwise harm the user.
Furthermore, the user may then perform a push-up motion in order to target muscle development in the user's shoulders and chest, with the unstable support provided by the semi-spherical shape of the pivot dome 150 adding difficulty in comparison to the standard push-up. The user may also place an electronic device (e.g., smart phone) in the device holder 140, and the exercise device 100 is then able to utilize the accelerometer from the electronic device in order to play a game on the electronic device. In one such example, the game may be a driving simulator in which the steering controls are mapped to the exercise device 100. In this example, by twisting/rotating the exercise device 100 as one would twist/rotate a steering wheel, the user is able to play the driving simulator while exercising using the exercise device 100.
Any of the arrangements described may also include custom applications for the associated smart device. The applications guide the user through fun, interactive workouts. The applications will be calibrated and synchronized with the range of movement of the exercise device. The applications will also be able to be controlled by via another smart device so as a fitness trainer can send instructions to the users in real time using a separate smart device.
Any of the arrangements described may also function as a full-body controller for integrated or remote gaming. By leveraging an accelerometer of the mounted smart device (e.g., by the device holder 140), the exercise device 100 provides an immersive and intuitive gaming experience for a variety of applications. For example, the exercise device 100 could be used to play a car racing game by having the motion of the exercise device 100 serve as the steering controller for the car. The exercise device 100 can also function as a social media tool with which a user can perform a workout that is recorded visually with a graphical user interface and then sent to others as an invitation to attempt to complete the workout. Tilting of the exercise device 100 (as measured by the smart device) can control directional motion, speed, and other gaming aspects.
Referring now to
Referring now to
Referring to
As discussed herein, the exercise device 100 provides a safer and more effective workout experience through the dynamic pivot dome 150, which enables relatively free movement when the user's weight is lifted from the exercise device 100 and then provides a secure base when the user bears down. The exercise device 100 also provides an increased degree of customization and flexibility via the removably coupled wings (i.e., the first wing 120 and the second wing 130), which can be free removed or replaced to allow for cleaning or repair or for replacement by an alternate attachment (e.g., tension band, handle, etc.). Furthermore, by being adapted to receive a smart phone (or other smart device), the exercise device 100 works in tandem with an accelerometer of the smart phone in order to provide inputs to a mobile phone application. This application may be a dedicated game that maps the movement of the exercise device 100 to movement within the game, such that pivoting the exercise device 100, in one example, turns a steering wheel for a vehicle within the game. Through such direct interactivity in combination with the attachments, the exercise device 100 provides an enhanced user experience.
The foregoing description of arrangements has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure to the precise form disclosed, and modifications and variations are possible in light of the above teachings or may be acquired from this disclosure. The arrangements were chosen and described in order to explain the principals of the disclosure and its practical application to enable one skilled in the art to utilize the various arrangements and with various modifications as are suited to the particular use contemplated. Other substitutions, modifications, changes and omissions may be made in the design, operating conditions and arrangement of the arrangements without departing from the scope of the present disclosure as expressed in the appended claims.
The above used terms, including “attached,” “connected,” “secured,” and the like are used interchangeably. In addition, while certain arrangements have been described to include a first element as being “coupled” (or “attached,” “connected,” “fastened,” etc.) to a second element, the first element may be directly coupled to the second element or may be indirectly coupled to the second element via a third element.
Number | Name | Date | Kind |
---|---|---|---|
2714007 | Lightfoot | Jul 1955 | A |
5897474 | Romero | Apr 1999 | A |
6945920 | Kemery | Sep 2005 | B1 |
7175577 | Greenspan | Feb 2007 | B2 |
9555275 | Izzolo, Jr. | Jan 2017 | B1 |
10265582 | Price | Apr 2019 | B2 |
10583321 | Panes | Mar 2020 | B2 |
20100087301 | Juncker | Apr 2010 | A1 |
20100183814 | Rios | Jul 2010 | A1 |
20140051553 | Hetzel | Feb 2014 | A1 |
20150238795 | Domesick | Aug 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20230310930 A1 | Oct 2023 | US |