This invention relates to exercise equipment, more specifically to stationary cardiovascular exercise equipment, and most specifically to elliptical exercise equipment.
One type of stationary cardiovascular exercise equipment which has become extremely popular based predominantly upon its low-impact and natural motion is the elliptical exercise machine. A wide variety of elliptical exercise machines have been developed. Briefly, elliptical exercise machines include foot supports supported upon foot links with the foot links pivotally connected at a first end through a linkage system to a drive shaft for travel along a defined closed loop path (e.g., circular, elliptical, oval, etc.) and connected at the other end for reciprocating motion along a defined path as the first end travels along the closed loop path. This combination of looping and reciprocating paths of travel at opposite ends of the foot links impart an “elliptical” type motion to the foot supports attached to the foot links.
Such elliptical exercise machines permit a user to exercise at different speeds. This feature significantly enhances the value of the machine by permitting a user to exercise at varying speeds during a workout and exercise at speeds which suit them. However, the machines do not alter the path of travel of the foot supports to accommodate the inherent difference in stride when running/walking at different speeds.
Accordingly, a need exists for elliptical exercise machines which permit a user to exercise at varying speeds and alters the path of travel of the foot supports dependant upon the speed at which the foot supports are traveling in order to accommodate the inherent difference in stride between faster and slower speeds.
A first embodiment of the invention is an exercise device comprising (i) a frame, (ii) first and second foot supports operably associated with the frame for traveling along a closed loop path relative to a transverse axis defined by the frame, (iii) a means effective for sensing the speed of travel of the foot supports along the closed loop path, and (iv) a means for automatically adjusting the stride length of the closed loop path traveled by the foot supports based upon the sensed speed of travel of the foot supports.
A second embodiment of the invention is an exercise device comprising (i) a frame, (ii) first and second foot supports operably associated with the frame for traveling along a closed loop path relative to a transverse axis defined by the frame, (iii) a means effective for sensing the speed of travel of the foot supports along the closed loop path, and (iv) a means for automatically adjusting the stride height of the closed loop path traveled by the foot supports based upon the sensed speed of travel of the foot supports.
A third embodiment of the invention is an exercise device comprising (i) a frame, (ii) first and second foot supports operably associated with the frame for traveling along a closed loop path relative to a transverse axis defined by the frame, (iii) a means effective for sensing the speed of travel of the foot supports along the closed loop path, and (iv) a means for automatically adjusting the stride length and stride height of the closed loop path traveled by the foot supports based upon the sensed speed of travel of the foot supports.
Nomenclature
As utilized herein, including the claims, the phrase “extension element” includes any component attached to and extending substantially orthogonally from a drive shaft by which circular motion is imparted to the drive shaft. Exemplary extension elements include specifically, but not exclusively, a bent portion of a drive shaft, a crank arm, a drive pulley, and rigidly or pivotally attached combinations thereof.
As utilized herein, including the claims, the phrase “stride height” means the vertical distance between highest and lowest vertical points along the path traveled by a foot support.
As utilized herein, including the claims, the phrase “stride length” means the linear distance between forward most and rearward most points along the path traveled by a foot support.
Construction
As shown in
As shown in
As shown in
As shown in
As shown in
Foot supports 70 are supported upon first and second foot links 60. The foot supports 70 may be supported upon the foot links 60 at any point along the length (unnumbered) of the foot links 60 so long as the foot link 60 moves in a closed loop path at the point of connection (unnumbered). For example, the embodiment of the invention shown in
The first and second foot links 60 may be associated with the frame 20 in a variety of different ways to accomplish and impart the necessary closed loop path of travel to the foot supports 70 attached to the foot links 60. Exemplary connective structures and arrangements are disclosed in U.S. Pat. No. 3,316,898 issued to Brown, U.S. Pat. No, 5,242,343 issued to Miller, U.S. Pat. No. 5,352,169 issued to Eschenbach, U.S. Pat. No, 5,383,829 issued to Miller, U.S. Pat. No, 5,423,729 issued to Eschenbach, U.S. Pat. No. 5,518,473 issued to Miller, U.S. Pat. No, 5,529,554 issued to Eschenbach, U.S. Pat. No, 5,562,574 issued to Miller, U.S. Pat. No. 5,577,985 issued to Miller, U.S. Pat. No, 5,611,756 issued to Miller, U.S. Pat. No, 5,685,804 issued to Whan-Tong et al., U.S. Pat. No. 5,692,994 issued to Eschenbach, U.S. Pat. No, 5,707,321 issued to Maresh, U.S. Pat. No, 5,725,457 issued to Maresh, U.S. Pat. No. 5,735,774 issued to Maresh, U.S. Pat. No, 5,755,642 issued to Miller, U.S. Pat. No, 5,788,609 issued to Miller, U.S. Pat. No, 5,788,610 issued to Eschenbach, U.S. Pat. No, 5,792,026 issued to Maresh et al., U.S. Pat. No. 5,803,871 issued to Stearns et al., U.S. Pat. No. 5,836,854 issued to Kuo, U.S. Pat. No, 5,836,855 issued to Eschenbach, U.S. Pat. No, 5,846,166 issued to Kuo, U.S. Pat. No, 5,848,954 issued to Stearns et al., U.S. Pat. No. 5,857,941 issued to Maresh et al., U.S. Pat. No. 5,876,307 issued to Steams et al., U.S. Pat. No. 5,876,308 issued to Jarvie, U.S. Pat. No, 5,879,271 issued to Steams et al., U.S. Pat. No. 5,882,281 issued to Steams et al., U.S. Pat. No. 5,882,281 issued to Steams et al., U.S. Pat. No. 5,893,820 issued to Maresh et al., U.S. Pat. No. 5,895,339 issued to Maresh, U.S. Pat. No. 5,897,463 issued to Maresh, U.S. Pat. No, 5,911,649 issued to Miller, U.S. Pat. No, 5,916,064 issued to Eschenbach, U.S. Pat. No. 5,919,118 issued to Steams et al., U.S. Pat. No. 5,921,894 issued to Eschenbach, U.S. Pat. No, 5,924,963 issued to Maresh et al., U.S. Pat. No. 5,935,046 issued to Maresh, U.S. Pat. No, 5,938,568 issued to Maresh et al., U.S. Pat. No. 5,938,570 issued to Maresh, U.S. Pat. No. 5,947,872 issued to Eschenbach, U.S. Pat. No, 5,957,814 issued to Eschenbach, U.S. Pat. No, 5,993,359 issued to Eschenbach, U.S. Pat. No, 5,997,445 issued to Maresh et al., U.S. Pat. No. 6,126,574 issued to Steams et al., U.S. Pat. No. 6,248,044 issued to Steams et al., U.S. Pat. No. 6,024,676 issued to Eschenbach, U.S. Pat. No, 6,027,430 issued to Stearns et al., U.S. Pat. No. 6,027,431 issued to Stearns et al., U.S. Pat. No. 6,030,320 issued to Steams et al., U.S. Pat. No. 6,042,512 issued to Eschenbach, U.S. Pat. No, 6,045,487 issued to Miller, U.S. Pat. No, 6,045,488 issued to Eschenbach, U.S. Pat. No, 6,053,847 issued to Steams et al., U.S. Pat. No. 6,063,009 issued to Steams et al., U.S. Pat. No. 6,077,196 issued to Eschenbach, U.S. Pat. No, 6,077,197 issued to Steams et al., U.S. Pat. No. 6,077,198 issued to Eschenbach, U.S. Pat. No, 6,080,086 issued to Stearns et al., U.S. Pat. No. 6,083,143 issued to Maresh, U.S. Pat. No, 6,090,013 issued to Eschenbach, U.S. Pat. No, 6,090,014 issued to Eschenbach, U.S. Pat. No. 6,099,439 issued to Eschenbach, U.S. Pat. No, 6,113,518 issued to Maresh et al., U.S. Pat. No. 6,123,650 issued to Birrell, U.S. Pat. No. 6,135,923 issued to Steams et al., U.S. Pat. No. 6,142,915 issued to Eschenbach, U.S. Pat. No, 6,146,313 issued to Whan-Tong et al., U.S. Pat. No. 6,165,107 issued to Birrell, U.S. Pat. No, 6,168,552 issued to Eschenbach, U.S. Pat. No, 6,171,215 issued to Steams et al., U.S. Pat. No. 6,171,217 issued to Cutler, U.S. Pat. No, 6,176,814 issued to Eschenbach, U.S. Pat. No, 6,183,397 issued to Steams et al., U.S. Pat. No. 6,183,398 issued to Rufino et al., U.S. Pat. No. 6,190,289 issued to Pyles et al., U.S. Pat. No. 6,196,948 issued to Steams et al., U.S. Pat. No. 6,206,804 issued to Maresh, U.S. Pat. No, 6,210,305 issued to Eschenbach, U.S. Pat. No, 6,217,485 issued to Maresh, U.S. Pat. No, 6,248,045 issued to Steams et al., U.S. Pat. No. 6,248,046 issued to Maresh et al., U.S. Pat. No. 6,254,514 issued to Maresh et al., U.S. Pat. No. 6,277,054 issued to Kuo, U.S. Pat. No, 6,283,895 issued to Steams et al., U.S. Pat. No. 6,302,825 issued to Steams et al., U.S. Pat. No. 6,312,362 issued to Maresh et al., U.S. Pat. No. 6,338,698 issued to Stearns et al., U.S. Pat. No. 6,340,340 issued to Steams et al., U.S. Pat. No. 6,361,476 issued to Eschenbach, U.S. Pat. No, 6,387,017 issued to Maresh, U.S. Pat. No, 6,390,953 issued to Maresh et al., U.S. Pat. No. 6,398,695 issued to Miller, U.S. Pat. No, 6,409,632 issued to Eschenbach, U.S. Pat. No, 6,409,635 issued to Maresh et al., U.S. Pat. No. 6,416,442 issued to Stearns et al., U.S. Pat. No. 6,422,976 issued to Eschenbach, U.S. Pat. No. 6,422,977 issued to Eschenbach, U.S. Pat. No, 6,436,007 issued to Eschenbach, U.S. Pat. No, 6,440,042 issued to Eschenbach, U.S. Pat. No, 6,454,682 issued to Kuo, U.S. Pat. No, 6,461,277 issued to Maresh et al., U.S. Pat. No. 6,482,130 issued to Pasero et al., U.S. Pat. No. 6,482,132 issued to Eschenbach, U.S. Pat. No, 6,500,096 issued to Farney, U.S. Pat. No, 6,527,677 issued to Maresh, U.S. Pat. No, 6,527,680 issued to Maresh, U.S. Pat. No, 6,540,646 issued to Stearns et al., U.S. Pat. No. 6,544,146 issued to Stearns et al., U.S. Pat. No. 6,547,701 issued to Eschenbach, U.S. Pat. No, 6,551,217 issued to Kaganovsky, U.S. Pat. No, 6,551,218 issued to Goh, U.S. Pat. No, 6,554,750 issued to Stearns et al., U.S. Pat. No. 6,565,486 issued to Stearns et al., U.S. Pat. No. 6,569,061 issued to Stearns et al., U.S. Pat. No. 6,575,877 issued to Rufino et al., U.S. Pat. No. 6,579,210 issued to Stearns et al., U.S. Pat. No. 6,612,969 issued to Eschenbach, U.S. Pat. No, 6,629,909 issued to Stearns et al., and U.S. Patent Application Publication Nos. 2001/0011053 filed by Miller, 2001/0051562 filed by Stearns et al., 2002/0019298 filed by Eschenbach, 2002/0055420 filed by Stearns et al., 2002/0128122 filed by Miller, 2002/0142890 filed by Ohrt et al., 2002/0155927 filed by Corbalis et al., 2003/0022763 filed by Eschenbach, which disclosure is hereby incorporated by reference.
One specific embodiment of a structure for operably interconnecting the first and second foot links 60 with the frame 20 is shown in
One suitable connecting system is shown in
A second specific embodiment of a structure for operably interconnecting the first and second foot links 60 with the frame 20 is shown in
A third specific embodiment of a structure for operably interconnecting the first and second foot links 60 with the frame 20 is shown in
The exercise device 10 preferably include a system attached to the frame 20 and in communication with the system through which the foot supports 70 are operably associated with the frame 20, such as a brake 100 and braking control system 110, for exerting a controlled variable resistive force against movement of the foot supports 70 along the closed loop path of travel 70p. It is preferred to provide a separate resistance device for each foot support 70. Many types of resistance devices are known such as pivoting devices, sliding devices, weights on cables or levers, braking motors, generators, brushless generators, eddy current systems, magnetic systems, alternators, tightenable belts, friction rollers, etc., any of which could be effectively utilized in the present invention. Exemplary resistance devices suitable for use in this invention include those disclosed in U.S. Pat. No. 5,423,729 issued to Eschenbach, 5,685,804 issued to Whan-Tong et al., U.S. Pat. No. 5,788,610 issued to Eschenbach, U.S. Pat. No, 5,836,854 issued to Kuo, 5,836,855 issued to Eschenbach, U.S. Pat. No, 5,846,166 issued to Kuo, U.S. Pat. No, 5,895,339 issued to Maresh, 5,947,872 issued to Eschenbach, U.S. Pat. No, 5,957,814 issued to Eschenbach, U.S. Pat. No, 6,042,512 issued to Eschenbach, U.S. Pat. No, 6,053,847 issued to Stearns et al., U.S. Pat. No. 6,090,013 issued to Eschenbach, U.S. Pat. No, 6,146,313 issued to Whan-Tong et al., U.S. Pat. No. 6,217,485 issued to Maresh, U.S. Pat. No, 6,409,632 issued to Eschenbach, U.S. Pat. No, 6,482,130 issued to Pasero et al., U.S. Pat. No. 6,544,146 issued to Stearns et al., U.S. Pat. No. 6,575,877 issued to Rufino et al., and 6,612,969 issued to Eschenbach, which disclosure is hereby incorporated by reference.
The exercise device 10 also preferably includes an inertia generation system 180 attached to the frame 20 and in communication with the system through which the foot supports 70 are operably associated with the frame 20. Such inertia generation system 180 are widely known and commonly utilized on stationary exercise equipment. An exemplary inertia generation system 180 is disclosed in U.S. Patent Application Publication No. 2002/0055420, the disclosure of which is hereby incorporated by reference. This system is shown in
The speed of travel of the foot supports 70 along the closed loop path 70p can be determined by a variety of systems known to those skilled in the art including specifically, but not exclusively, audible (sensing tone emitted when air moves through a device which emits different tones when air moves through at different speeds), electrical (e.g., sensing current level), magnetic (e.g., detecting rpm as rate at which magnet on rotating element is sensed by stationary sensor), mechanical (e.g., detecting rpm as rate at which flexible finger on rotating element contacts a stationary pressure switch), visual (e.g., detecting rpm as rate at which aperture through rotating element permits light to pass through the rotating element and strike a stationary light sensor or detecting rpm as rate at which reflective area on rotating element reflects light emitted by a stationary light source which is then detected by a stationary light sensor), etc.
Referring to
Other suitable speed sensing systems 160 are well known to those skilled in the art such those shown and described in U.S. Pat. No. 6,095,951 issued to Skowronski et al. at column 11 line 49 through column 12, line 14 and
Adjustment of stride height SH and/or stride length SL may be accomplished in various ways. Two preferred methods, which may be employed individually or in combination, are (i) adjusting the angle of incline of the guide rail 120, and (ii) adjusting the position of one or more of the pivot points (not collectively referenced) about which an arm or link (not collectively referenced) pivots as the foot supports 70 travel along the closed loop path of travel 70p.
A wide variety of systems effective for adjusting the angle of incline of the guide rail 120 are known to those skilled in the art. Exemplary systems suitable for use in this invention are disclosed in U.S. Pat. No. Des. 372,282 issued to Passero et al., Des. 388,847 issued to Whan-Tong et al., U.S. Pat. No. 5,685,804 issued to Whan-Tong et al., U.S. Pat. No. 5,803,871 issued to Stearns et al., U.S. Pat. No. 5,836,854 issued to Kuo, U.S. Pat. No, 5,836,855 issued to Eschenbach, U.S. Pat. No, 5,848,954 issued to Stearns et al., U.S. Pat. No. 5,857,941 issued to Maresh et al., U.S. Pat. No. 5,882,281 issued to Steams et al., U.S. Pat. No. 5,882,281 issued to Stearns et al., U.S. Pat. No. 5,893,820 issued to Maresh et al., U.S. Pat. No. 5,938,568 issued to Maresh et al., U.S. Pat. No. 5,957,814 issued to Eschenbach, U.S. Pat. No, 5,993,359 issued to Eschenbach, U.S. Pat. No, 5,997,445 issued to Maresh et al., U.S. Pat. No. 6,042,512 issued to Eschenbach, U.S. Pat. No, 6,063,009 issued to Steams et al., U.S. Pat. No. 6,090,014 issued to Eschenbach, U.S. Pat. No. 6,126,574 issued to Steams et al., U.S. Pat. No. 6,146,313 issued to Whan-Tong et al., U.S. Pat. No. 6,168,552 issued to Eschenbach, U.S. Pat. No, 6,171,215 issued to Steams et al., U.S. Pat. No. 6,210,305 issued to Eschenbach, U.S. Pat. No, 6,254,514 issued to Maresh et al., U.S. Pat. No. 6,277,054 issued to Kuo, U.S. Pat. No, 6,302,825 issued to Steams et al., U.S. Pat. No. 6,334,836 issued to Segasby, U.S. Pat. No, 6,340,340 issued to Steams et al., U.S. Pat. No. 6,422,977 issued to Eschenbach, U.S. Pat. No, 6,440,042 issued to Eschenbach, U.S. Pat. No, 6,450,925 issued to Kuo, U.S. Pat. No, 6,454,682 issued to Kuo, U.S. Pat. No, 6,554,750 issued to Steams et al., U.S. Pat. No. 6,612,969 issued to Eschenbach, U.S. Pat. No, 6,629,909 issued to Steams et al., and U.S. Patent Application Publication Nos. 2002/0019298 filed by Eschenbach, and 2002/0142890 filed by Ohrt et al, which disclosures are hereby incorporated by reference.
A wide variety of systems effective for adjusting the position of one or more of the pivot points about which an arm or link pivots as the foot supports 70 travel along the closed loop path of travel 70p are known to those skilled in the art. Exemplary systems suitable for use in this invention are disclosed in U.S. Pat. No. 5,562,574 issued to Miller, U.S. Pat. No, 5,788,610 issued to Eschenbach, U.S. Pat. No, 5,836,854 issued to Kuo, U.S. Pat. No, 5,836,855 issued to Eschenbach, U.S. Pat. No, 5,882,281 issued to Stearns et al., U.S. Pat. No. 5,893,820 issued to Maresh et al., U.S. Pat. No. 5,895,339 issued to Maresh, U.S. Pat. No, 5,919,118 issued to Stearns et al., U.S. Pat. No. 5,921,894 issued to Eschenbach, U.S. Pat. No, 5,957,814 issued to Eschenbach, U.S. Pat. No. 5,993,359 issued to Eschenbach, U.S. Pat. No, 6,027,430 issued to Stearns et al., U.S. Pat. No. 6,027,431 issued to Stearns et al., U.S. Pat. No. 6,030,320 issued to Stearns et al., U.S. Pat. No. 6,045,488 issued to Eschenbach, U.S. Pat. No, 6,053,847 issued to Stearns et al., U.S. Pat. No. 6,077,196 issued to Eschenbach, U.S. Pat. No, 6,077,197 issued to Stearns et al., U.S. Pat. No. 6,077,198 issued to Eschenbach, U.S. Pat. No, 6,080,086 issued to Stearns et al., U.S. Pat. No. 6,090,013 issued to Eschenbach, U.S. Pat. No. 6,113,518 issued to Maresh et al., U.S. Pat. No. 6,135,923 issued to Stearns et al., U.S. Pat. No. 6,171,215 issued to Stearns et al., U.S. Pat. No. 6,196,948 issued to Stearns et al., U.S. Pat. No. 6,217,485 issued to Maresh, U.S. Pat. No, 6,248,044 issued to Stearns et al., U.S. Pat. No. 6,248,045 issued to Stearns et al., U.S. Pat. No. 6,248,046 issued to Maresh et al., U.S. Pat. No. 6,254,514 issued to Maresh et al., U.S. Pat. No. 6,277,054 issued to Kuo, U.S. Pat. No, 6,283,895 issued to Stearns et al., U.S. Pat. No. 6,334,836 issued to Segasby, U.S. Pat. No, 6,338,698 issued to Stearns et al., U.S. Pat. No. 6,361,476 issued to Eschenbach, U.S. Pat. No, 6,387,017 issued to Maresh, U.S. Pat. No, 6,390,953 issued to Maresh et al., U.S. Pat. No. 6,416,442 issued to Stearns et al., U.S. Pat. No. 6,440,042 issued to Eschenbach, U.S. Pat. No, 6,450,925 issued to Kuo, U.S. Pat. No, 6,547,701 issued to Eschenbach, U.S. Pat. No, 6,554,750 issued to Stearns et al., U.S. Pat. No. 6,565,486 issued to Stearns et al., U.S. Pat. No. 6,579,210 issued to Stearns et al., U.S. Pat. No. 6,612,969 issued to Eschenbach, U.S. Pat. No, 6,629,909 issued to Stearns et al., and U.S. Patent Application Publication Nos. 2001/0051562 filed by Stearns et al., 2002/0019298 filed by Eschenbach, 2002/0055420 filed by Stearns et al., and 2002/0142890 filed by Ohrt et al., which disclosures are hereby incorporated by reference.
Other systems for adjusting stride height SH and/or stride length SL which may be utilized include specifically, but not exclusively, (a) adjusting the position of the foot supports 70 along the length of the foot links 60, such as shown and described in U.S. Pat. No. 6,171,217 issued to Cutler, the disclosure of which is hereby incorporated by reference (b) adjusting the position of the roller 69 along the length of the foot link 60, and (c) adjusting the lateral x and/or longitudinal y position of the drive shaft 30, such as shown and described in U.S. Pat. No. 6,146,313 issued to Whan-Tong et al., the disclosure of which is hereby incorporated by reference.
One specific embodiment of a system for adjusting stride height SH and stride length SL is shown in
This embodiment of a system for adjusting stride height SH and stride length SL may also include (iii) a second pivot point repositioning unit (not shown) in communication with the master control unit 140 and operably engaging the rocker link 80 and the connector link 90 so as to define the rocker pivot point p3 and permit repositioning of the rocker pivot point p3 along the length of the rocker link 80 and/or the connector link 90 based upon a control signal from the master control unit 140, and (iv) a third pivot point repositioning unit (not shown) in communication with the master control unit 140 and operably engaging the crank arm 40 and the connector link 90 so as to define the crank pivot point p4 and permit repositioning of the crank pivot point p4 along the length of the crank arm 40 and/or the connector link 90 based upon a control signal from the master control unit 140.
The alternative embodiment for supporting the second end portion 60b of each foot link 60 to the frame 20 shown in
Another specific embodiment of a system for adjusting stride height SH and stride length SL is shown in
Yet another specific embodiment of a system for adjusting stride height SH and stride length SL is shown in
A master control unit 140 communicates with the incline adjustment system 130, speed sensing system 160, the repositioning unit 171, and the linear actuator 230 for receiving signals from the speed sensing system 160, processing those signals to determine the speed of travel of the foot supports 70, and adjusting the stride length SL and/or stride height SH of the closed loop path 70p traveled by the foot supports 70 according to a preprogrammed adjustment in incline and/or pivot point locations, based upon the speed of travel of the foot supports 70.
The master control unit 140 is also in communication with a user interface panel 150 ical for stationary exercise equipment.