The present invention relates to an exercise machine, more particularly, a stationary exercise machine which provides vertical, lateral and longitudinal foot path motion to exercise lower body muscles.
Three popular categories of exercise machines known to exercise various muscle groups in the human body include bicycle machines, stair steppers, and skiing machines. These machines have been successful because they offer an effective form of an aerobic, low impact exercise.
Bicycle machines provide resistance to leg motion by causing two foot petals to resistively travel along a circular path, mutually in the same direction, about a coaxial, horizontal axis of rotation, while maintaining the pedals diametrically opposite and with constant lateral distance between them.
Stair steppers provide resistance to leg motion such that work is performed during the unbending (or straightening) of each leg as two pedals or foot platforms are continuously and alternatively stepped upon and released.
Skiing machines offer resistance to leg motion by allowing two foot platforms to alternately travel rearward with resistance and forward with minimal resistance in a linear side by side manner. During use, dependent upon the specific machine design, the two foot platforms may have to be continuously coordinated and synchronized by the user to be out of phase with each other by half of a cycle.
In an exercise machine, foot platform support members, each with their own distinct axis of rotation, may include a foot platform rotatably installed at an outer end. The foot platforms may travel in inclined circular paths to establish the three dimensional operational characteristics. The platform support members may be rotationally synchronized by connected mechanical components such that they are maintained out of phase with each other by one half of a cycle or 180 degrees in counter rotational directions. Inertial characteristics during operation, may be provided by a mechanical flywheel, with its respective driven pulley, installed remote from the platform support members, and belt or chain driven by a drive pulley secured at an inner end to one of the rotatable platform support members. Crank synchronization in an inclined plane at angle β during operation of the exercise machine may provide three-dimensional foot travel in vertical, lateral and longitudinal directions.
So that the manner in which the above recited features, advantages and objects of the present invention are attained can be understood in detail, a more particular description of the invention briefly summarized above, may be had by reference to the embodiments thereof which are illustrated in the appended drawings.
It is noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
Referring first to
The stanchion 114 may include a pair of stanchion leg members 116 spaced apart from one another. A frame bridge member 118 may extend across the space separating the stanchion leg members 116. Opposite distal ends of the stanchion bridge member 118 may be fixedly secured to the upper distal ends of the stanchion leg members 116. Alternatively, the stanchion 114 may be fabricated as a single unitary frame member fixedly secured proximate the forward end of the base 112.
The exercise machine 100 may include a stationary handle bar (not shown in the drawings) for grasping by an operator while exercising. It may be noted that a stationary handle bar may be replaced with handles which move under resistance, if an upper body workout is also desired. Such handles may for example pivot about an axis perpendicular to the side of the exercise machine 100, and be bent such that the hand grips are located at a comfortable position to operate. Because various designs of upper body workout handles, poles, or cranks or levers are incorporated upon many different categories of exercise machines, the potential for including any one of them upon the exercise machine 100 is considered obvious.
Left and right cranks 120, 122 may be rotatably secured to the stanchion 114. A flywheel timing belt 124 may engage a series of timing pulleys 126, 128 and 130 in a circuitous manner so that counter rotation of the cranks 120, 122 may be established in a manner known in the art.
Left and right cranks 120, 122 may be rotatably mounted at proximate the upper distal ends of respective stanchion leg members 116 and rigidly secured to respective crank shafts 132. The crank shafts 132 may extend through respective boreholes 133 in the stanchion leg members 116. The crank shafts 132 may be keyed to respective timing pulleys 126 by a key and slot 134 connection so that the cranks shafts 120, 122 and respective timing pulleys 126 rotate together.
The crank shafts 132 may extend through respective fixed timing pulleys 136 disposed between the cranks 120, 122 and stanchion leg members 116. The crank shafts 132 may be rotatably secured to respective fixed timing pulleys 136 by radial and thrust bearings 138. The fixed timing pulleys 136, radial and thrust bearings 138 and boreholes 133 may be concentric to one another.
The exercise machine 100 may include foot platforms 140 supported by respective cranks 120, 122. Foot platform shafts 142 may rigidly secure the foot platforms 140 to respective timing pulleys 143 by a key and slot 144 connection. The foot platform shafts 142 may be rotatably secured to respective cranks 120, 122 by radial thrust bearings 146 concentrically received in a bore 148 of respective cranks 120, 122, best shown in
Referring again to
Generally, the three spatial dimensions that an operator may experience include, a first spatial dimension corresponding to the forward and back (longitudinal) motion of the foot pedals traveling along their inclined circular paths. The magnitude of the first dimension is inversely proportional to the angle β to which the plane defining the circular path of the foot pedals has been inclined from horizontal. The second spatial dimension corresponds to the up and down (vertical) motion of the foot platforms traveling along their inclined circular paths. The magnitude of the second dimension is directly proportional to the inclination angle β of the circular path plane, and as follows, would be zero if the path is level. The third spatial dimension corresponds to the side to side (transverse) motion of the foot platforms traveling along their circular path, and, because the path plane has not been inclined transversely, the magnitude of this third dimension is not a function of the degree to which the inclined path of the foot pedals traveling along their circular paths has been inclined.
Referring next to
The stanchion 214 may include a pair of stanchion leg members 216 spaced apart from one another. A frame bridge member 218 may extend across the space separating the stanchion leg members 216. Opposite distal ends of the stanchion bridge member 218 may be fixedly secured to the upper distal ends of the stanchion leg members 216. Alternatively, the stanchion 214 may be fabricated as a single unitary frame member fixedly secured proximate the forward end of the base 112.
Left and right cranks 120, 122 may be rotatably secured to the stanchion 214 proximate the upper distal ends of respective stanchion leg members 216 and rigidly secured to respective crank shafts 132. The crank shafts 132 may extend through respective boreholes in the stanchion leg members 216. The crank shafts 132 may be keyed to respective timing pulleys 126 by a key and slot connection so that the cranks shafts 120, 122 and timing pulleys 126 rotate together. The crank shafts 132 may extend through respective fixed timing pulleys 136 disposed between the cranks 120, 122 and stanchion leg members 216. The crank shafts 132 may be rotatably secured to respective fixed timing pulleys 136 by radial and thrust bearings 138. The fixed timing pulleys 136 and radial and thrust bearings 138 may be concentric to one another.
The exercise machine 200 may include foot support members 139 supported by respective cranks 120, 122. Shafts 142 may rigidly secure the foot support members 139 to respective timing pulleys 143 by a key and slot connection. The shafts 142 may be rotatably secured to respective cranks 120, 122 by radial and thrust bearings 146 concentrically received in a bore 148 of respective cranks 120, 122.
Left and right inclined counter rotating gears 248 may be rotatably secured to the stanchion 214 proximate the upper distal ends of respective stanchion leg members 216 and rigidly secured to respective crank shafts 132 by a key and slot connection or other means known in the art. Fixed timing pulleys 136 and respective timing pulleys 143 may be engaged by a synchronous belt 150, thereby causing the orientation of the foot platforms 140 to remain constant as the foot platforms 140 move in a non-vertical plane.
Foot platforms 140 may be rotatably connected to respective foot support members 139 about a pivot shaft 250 defining a generally vertical axis S, shown in
During use, movement of the forward region of a foot platform 140 laterally outward generally about vertical pivot shaft 250 compresses the biasing spring 252. Typically, a user will push downward while pushing the toe portion of the user's foot laterally outward in a manner typically experienced with “toe out pushing” while skating and the like, although those skilled in the art will recognize that an alternate arrangement may be provided such that the foot platform 140 may be biased in any direction and/or where the foot platform 140 may be rotatably secured to forward region of the foot platform 140 such that “heel in or out” movement may be accomplished. A lock pin 260 mounted proximate a forward end of the foot platforms 140 may be pushed into a receiving hole 262 in the foot support members 139 to prevent lateral movement of the foot platforms 140.
Referring again to
Left and right handlebar drives 272 may be secured to respective left and right handlebars 268 at ball joint bearings 274. The lower distal ends of the left and right handlebar drivers 272 may be secured to forward distal ends of the foot support members 139 at ball joint bearings 276. The linkage arrangement of the handlebars 268 and the handlebar drivers 272 between the frame 110 and the foot support members 139 links movement of the handlebars 268 and foot support members 139 in closed paths relative to the frame 110 in response to forces a user applies to the handlebars 268 and foot support members 139 for exercising the upper and lower body of a user.
Referring now to
Referring now to
Referring now to
The foot platform 140 may hang from a distal end of the foot support member 524. Due to gravity, the foot platform 140 generally remains level front to rear because pivot shaft 526, which connects the foot platform 140 to the foot support member 524, is oriented generally above a user's foot path. The front to rear or transverse orientation of the foot platforms 140 may be further maintained by low velocity rate dampers 528 connected to the foot platforms 140 at a pivot shaft 530 and to the foot support member 524 at a pivot shaft 532. Typically, the dampers 528 may cause change in the front to back orientation of the foot platforms 140 of about one or two degrees per second, corresponding to a change in the angular incline of the subframe 510 of about forty-five (45°) degrees over a period of 30 seconds operation of the actuator 520, thereby adjusting a generally vertical foot path to a foot path that may be inclined at an angle of about up to forty-five (45°) degrees.
While a preferred embodiment of the invention has been shown and described, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims which follow.
This application claims the benefit of U.S. Provisional Application Ser. No. 62/392,879, filed Jun. 13, 2016, and U.S. Provisional Application Ser. No. 62/496,117, filed Oct. 15, 2016, and is a continuation-in-part of U.S. Non-Provisional application Ser. No. 15/615,825, filed Jun. 6, 2017, which claims the benefit of U.S. Provisional Application Ser. No. 62/392,617, filed Jun. 6, 2016, which applications are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
8147384 | Stearns | Apr 2012 | B2 |
8272995 | Stearns | Sep 2012 | B2 |
8852059 | Stearns | Oct 2014 | B1 |
20020155926 | Lat | Oct 2002 | A1 |
20030216222 | Kuo | Nov 2003 | A1 |
20050272562 | Alessandri | Dec 2005 | A1 |
20060046902 | Chang | Mar 2006 | A1 |
20070298935 | Badarneh | Dec 2007 | A1 |
20080146417 | Chang | Jun 2008 | A1 |
20090209395 | Maresh | Aug 2009 | A1 |
20120004077 | Chu | Jan 2012 | A1 |
20160089562 | Grossmann | Mar 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
62392879 | Jun 2016 | US | |
62496117 | Oct 2016 | US | |
62392617 | Jun 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15615825 | Jun 2017 | US |
Child | 15622068 | US |