The present invention relates to fitness apparatus, and in particular to fitness apparatus that constrain a user's feet and/or arms to travel along variable a path that generally changes as a function of user applied force.
Exercise equipment has been designed to facilitate a variety of exercise motions (including treadmills for walking or running in place; stepper machines for climbing in place; bicycle machines for pedaling in place; and other machines for skating and/or striding in place. Yet another type of exercise equipment has been designed to facilitate relatively more complicated exercise motions and/or to better simulate real life activity. Such equipment converts a relatively simple motion, such as circular, into a relatively more complex motion, such as elliptical. Despite various advances in the elliptical exercise category, room for improvement remains.
An exercise apparatus may provide a novel linkage assembly suitable for linking circular motion to relatively more complex, generally elliptical motion. Left and right rocker links may be rotatably mounted on a frame rotatable about a first axis. Left and right cranks may be mounted on the frame rotatable about a second axis. Left and right force receiving members may be movably connected between respective rocker links and cranks in such a manner that the force receiving members move through variable paths of motion that may change as a function of user applied force.
So that the manner in which the above recited features, advantages and objects of the present invention are attained can be understood in detail, a more particular description of the invention briefly summarized above, may be had by reference to the embodiments thereof which are illustrated in the appended drawings.
It is noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
Elliptical motion exercise apparatus may link rotation of left and right cranks to generally elliptical motion of respective left and right foot supports. The term “elliptical motion” is intended in a broad sense to describe a closed path of motion having a relatively longer major axis and a relatively shorter minor axis. In general, displacement of the cranks move the foot supports in a direction coincidental with one axis of the elliptical path, and displacement of crank driven members move the foot supports in a direction coincidental with the other axis. A general characteristic of elliptical exercise apparatus may be that the crank diameter determines the length of one axis, but does not determine the length of the other axis. As a result of this feature, a user's feet may travel through a generally elliptical path having a desirable aspect ratio, and the apparatus that embody this technology may be made relatively more compact, as well. The embodiments shown and/or described herein are generally symmetrical about a vertical plane extending lengthwise through a floor-engaging base (perpendicular to the transverse ends thereof). In general, the “right-hand” components are one hundred and eighty degrees out of phase relative to the “left-hand” components. Like reference numerals are used to designate both the “right-hand” and “left-hand” parts, and when reference is made to one or more parts on only one side of an apparatus, it is to be understood that corresponding part(s) are disposed on the opposite side of the apparatus. Also, to the extent that reference is made to forward or rearward portions of an apparatus, it is to be understood that a person can typically exercise on such apparatus while facing in either direction relative to the linkage assembly.
Referring first to
Left and right rocker links 112 may be pivotally mounted on respective sides of the stanchion 108. Each rocker link 112 extends generally downward from a rocker hub 114 that is pivotally connected to a transverse rocker shaft 116 fixed proximate the upper end of the stanchion 108. Left and right handle bars 118 are pivotally mounted on respective sides of the stanchion 108. Each handle bar 118 is rigidly connected to respective rocker hubs 114 and extends generally upward from the rocker hub 114. The upper end of each handle bar 118 may include a hand grip 120.
A crank assembly may be rotatably mounted on the rear stanchion 110. The crank assembly may include a crank disk 122 disposed between cranks 124 keyed to an axle 126 rotatably mounted on the rear stanchion 110. Rollers 128 are rotatably mounted at the distal ends of the cranks 124 about a bearing stud 130. The crank disk 122 may be connected to any of various known inertia altering devices, including, for example, a motor, a “stepped up” flywheel, an adjustable braking mechanism, or various combinations thereof.
Left and right foot longitudinal members 132 are rotatable connected to a lower distal end of rocker links 112 at a connection point 134. A foot platform 136 may be rigidly connected to each foot longitudinal member 132 proximate a distal end thereof.
A flexible member 140 may be mounted on an underlying region of each longitudinal member 132 which is in contact with a respective roller 128 as cranks 124 rotate. An anchor post 142 proximate the distal end of the longitudinal member 140 extends downwardly therefrom. An anchor post 144 spaced from the post 142 extends downardly from an intermediate portion of the longitudinal member 140. A first end of the flexible member 140 is securely fastened to a post 142 a second opposite end of the flexible member 140 is securely fastened to a post 144 so that the flexible member 140 is stretched between the anchor posts 142 and 144. The spacing between the anchor posts 142 and 144 may be adjustable in order to effect a general target range of a variable stride length. For example, increasing the distance between the anchor posts 142 and 144 will generally increase the stride length.
Flexible members 140 may be comprise any suitable material of sufficient tensile strength, such as, a strap, cable, belt, roller chain or the like. In the instance where the flexible member 140 may be a roller chain, a roller chain sprocket may be substituted for the roller 128. Adjustable tensioning of the flexible member 140 may be provided to alter the characteristics or alternatively to affect a variable foot stride range as a function of user applied force. For example, a ratcheting winch or the like may be operatively connected to the flexible member 140 for adjusting the tension of the flexible member 140.
The rocker links 112 are interconnected to move in dependent fashion in opposite directions relative to one another. A cross coupler 150 is rotatably mounted on a shaft 152 projecting from the stanchion 108 and rotatable relative thereto about a horizontal axis. The cross coupler 150 may include ball joints 154 secured proximate the distal ends of the cross coupler 150. Coupler rods 156 connect the cross coupler 150 to lobes 158 fixedly secured to the rocker hubs 114. Right and left coupler rods 156 connect respective right and left paired ball joints 154 such that the distance between right and left paired ball joints 154 remains constant. The ball joints 154 may be secured to a stud shaft 160 or the like to accommodate pivotal and rotational motions at the ball joints 154.
Referring now to
The compression spring 216 applies a force against the stop arm 206 to maintain the flexible member at a predetermined tension threshold. In the event the threshold tension of the flexible member 140 is exceeded, the anchor stop 200 rotates and compresses the spring 216 thereby permitting some slack in the flexible member 140 and a reduction in the flexible member tension, so that the tensile load of the flexible member 140 does not exceed a given predetermined value in order to avoid tensile load failures. Additionally, actuation of the stop 200 may impart changeable foot path characteristics dependent upon the tension of the flexible member 140.
Referring now to
On each side of the apparatus 300, a crank disk 324 is keyed to a common shaft rotatably mounted proximate the rear of the frame by means know in the art. A conventional drag strip or other known resistance device may be connected to the crank disk 324 to resist rotation.
One each side of the apparatus 300, a force receiving member 332 has a forward end rotatably connected to lower end of a respective rocker link 312 at a connection point 334. Each rocker link 312 is rotatably mounted to an upstanding forward stanchion of the apparatus frame. An upper end of each forward rocker link 312 may be sized and configured into a hand grip 320.
A flexible member 340 may be mounted on an underlying region of each force receiving member 332. The flexible member 340 is in contact with a respective roller 128 mounted on each respective crank 324. An anchor post 342 is mounted proximate the distal end of the force receiving member 340 and extends downwardly therefrom. One end of the flexible member 340 is securely fastened to the anchor post 342. The opposite end of the flexible member 340 is securely fastened to lower end of an anchor link 370 that is rotatably secured to the force receiving member 332 at bearing 372. A drawbar 374 has a distal end rotatably connected to an upper end of the anchor link 370 at bearing 373 and a proximal end rotatably connected to the rocker link 312 at bearing 376.
In the configuration of the apparatus 300 shown in
Referring now to
On each side of the apparatus 400, a crank disk 424 is keyed to a common shaft rotatably mounted proximate the rear of the frame by means know in the art. A conventional drag strip or other known resistance device may be connected to the crank disk 424 to resist rotation.
One each side of the apparatus 400, a force receiving member 432 has a forward end rotatably connected to lower end of a respective rocker link 412 at a connection point 434. Each rocker link 412 is rotatably mounted to an upstanding forward stanchion of the apparatus frame. An upper end of each forward rocker link 412 may be sized and configured into a hand grip 420.
A flexible member 440 may be mounted on an underlying region of each force receiving member 432. The flexible member 440 is in contact with a respective roller 428 mounted on each respective crank 424. An anchor post 442 is mounted proximate the distal end of the force receiving member 432 and extends downwardly therefrom. One end of the flexible member 440 is securely fastened to the anchor post 342. The opposite end of the flexible member 440 is secured substantially flush with the underside of the force receiving member 432 at bracket 450. The reader will note that because a cross connect coupler (described above with reference to apparatus 100) the stride length is limited at both the right and left force receiving members 432. Essentially, the cross connect coupler establishes instantaneous reciprocal movement of the force receiving members 432 such that as the movement of one force receiving member 432 is limited as the crank roller 428 approaches the anchor stop 442, the movement of the opposite force receiving member 432 is limited due to forces transmitted through the cross connect coupler. At this instant in time the opposite force receiving member 432 is at its forward position upon reversing directions.
While a preferred embodiment of the invention has been shown and described, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims which follow.
This application is a continuation of U.S. patent application Ser. No. 13/526,515, filed Jun. 18, 2012, which claims the benefit of U.S. Provisional Application Ser. No. 61/520,961, filed Jun. 17, 2011, which applications are incorporated herein in their entirety by reference.
Number | Name | Date | Kind |
---|---|---|---|
6063009 | Stearns | May 2000 | A |
6302825 | Stearns | Oct 2001 | B1 |
6340340 | Stearns | Jan 2002 | B1 |
6409632 | Eschenbach | Jun 2002 | B1 |
6626802 | Rodgers, Jr. | Sep 2003 | B1 |
6689021 | Stevens | Feb 2004 | B2 |
6846273 | Stearns | Jan 2005 | B1 |
7172531 | Rodgers, Jr. | Feb 2007 | B2 |
7874963 | Grind | Jan 2011 | B2 |
8272995 | Stearns | Sep 2012 | B2 |
8317663 | Stewart | Nov 2012 | B2 |
20010056010 | Stearns | Dec 2001 | A1 |
20020082146 | Stearns | Jun 2002 | A1 |
20020094914 | Maresh | Jul 2002 | A1 |
20050043148 | Maresh | Feb 2005 | A1 |
20050049120 | Maresh | Mar 2005 | A1 |
20050101446 | Stearns | May 2005 | A1 |
20050187073 | Krull | Aug 2005 | A1 |
20070087904 | Yang | Apr 2007 | A1 |
20070161464 | Chiles | Jul 2007 | A1 |
20070219061 | Rodgers, Jr. | Sep 2007 | A1 |
20070219063 | Anderson | Sep 2007 | A1 |
20100137110 | Rodgers, Jr. | Jun 2010 | A1 |
20100173754 | Rodgers, Jr. | Jul 2010 | A1 |
20100248899 | Bedell | Sep 2010 | A1 |
20110136628 | Stearns | Jun 2011 | A1 |
20110281692 | Maresh | Nov 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
Parent | 13526515 | Jun 2012 | US |
Child | 14531887 | US |