1. Field
An exercise monitor and a method for monitoring exercise including determining muscle fatigue are disclosed herein.
2. Background
Exercise monitors and methods for monitoring exercise are known. However, they suffer from various disadvantages.
The embodiments will be described in detail with reference to the following drawings in which like reference numerals refer to like elements wherein:
An apparatus, system, and method for monitoring physical exercise (movement, sports motion, activity, motion, or the like), as embodied and broadly described herein, may reliably monitor physical exercise and obviate or eliminate health risk factors caused by immoderate exercise by measuring muscle fatigue. A level of muscle fatigue may be based on information related to a user's physical activities as detected by an inertial sensor or an electromyographic sensor.
Muscle contraction indicates a phenomenon of muscle being contracted in response to a stimulus. For example, the muscle contraction may indicate a contraction caused due to action potentials observed at skeletal muscles of a vertebrate. Types of muscle contractions may include an isometric contraction in which a muscle is contracted while remaining the same length, an isotonic contraction in which a muscle is contracted while its length is changed, and an isokinetic contraction in which maximum muscular strength may be achieved within a Range of Motion (ROM). Also, the isotonic contraction may be categorized into an eccentric contraction in which a muscle is contracted with the length being extended, and a concentric contraction in which a muscle is contracted with the length being shortened.
The physical information measuring apparatus 200 may measure a user's physical information using a sensor mounted or worn on the user's body or clothing. For instance, the physical information measuring apparatus 200 may generate a signal when a muscle movement is detected (muscle movement signal) via an inertial sensor affixed onto the body, and generate an electromyographic signal when electric activity is detected via an electromyographic sensor that may have one or more electrodes affixed to a muscular surface. The physical information measuring apparatus 200 may send the muscle movement signal and the detected electromyographic signal to the exercise monitoring apparatus 100. Here, the physical information apparatus 200 may periodically receive a transmission request from the exercise monitoring apparatus 100. In response, the physical information apparatus 200 may send the detected muscle movement related signal and electromyographic signal to the exercise monitoring apparatus 100.
The exercise monitoring apparatus 100 may analyze a user's exercise based upon the muscle movement related signal and the electromyographic signal received from the physical information measuring apparatus 200, and may store a result of the analysis or provide the same to the user. The exercise monitoring apparatus 100 may acquire muscle identification information and determine a type of exercise based on the acquired muscle identification information. Also, the exercise monitoring apparatus 100 may measure a level of muscle fatigue based on the muscle movement related signal, the type of exercise, and the electromyographic signal so as to store the measured muscle fatigue in a storage device or output the same via an output device, such as a display.
The physical information measuring apparatus 200 and the exercise monitoring apparatus 100 may be accessed via a wired/wireless network including an Internet network or an access interface. For access via the wired network, the physical information measuring apparatus 200 and the exercise monitoring apparatus 100 may be provided with an Ethernet terminal and the like. Also, various communication technologies may be used for access via the wireless network. Examples of the communication technologies may include Wireless LAN (WLAN) (Wi-Fi), Wireless Broadband (Wibro), Worldwide Interoperability for Microwave Access (Wimax), High Speed Downlink Packet Access (HSDPA), or another appropriate communication protocol. Also, examples of the access protocol may include BLUETOOTH, Radio Frequency IDentification (RFID), Infrared Data Association (IrDA), Ultra-WideBand (UWB), ZigBee, Digital Living Network Alliance (DLNA), and the like.
In one exemplary embodiment, the exercise monitoring apparatus 100 and the physical information measuring apparatus 200 may perform communications by adapting methods defined in ISO/IEEE 11073 PHD (Personal Health Device). In another exemplary embodiment, the exercise monitoring apparatus 100 may be implemented as a stationary terminal, such as an image display device, for example, a TV or the like, as well as a mobile terminal such as a cellular phone, smart phone, PDA, or the like. In addition, in one exemplary embodiment, a plurality of physical information measuring apparatuses 200 may be connected to one or more exercise monitoring apparatuses 100, while a plurality of exercise monitoring apparatuses 100 may be connected to one or more physical information measuring apparatuses 200.
The communication unit 110 may be operable to allow communications between the exercise monitoring apparatus 100 and the physical information measuring apparatus 200. For example, the communication unit 110 may be operable to receive the muscle movement signal and the electromyographic signal from the physical information measuring apparatus 200 in a periodic manner. In addition, the communication unit 110 may be operable to send a request for the muscle movement signal and the electromyographic signal to the physical information measuring apparatus 200, and receive those signals from the physical information measuring apparatus 200. In one exemplary embodiment, the communication unit 110 may receive muscle identification information from the physical information measuring apparatus 200.
The storage device 120 may be operable to store a program to operate the controller 150 and may temporarily store input/output data. The storage device 120 may also store a level of muscle fatigue determined by the controller 150. The storage device 120 may store the muscle identification information acquired by the controller 150 or the determined type of exercise in association with the muscle fatigue.
The input device 130 may be operable to allow a user to generate input data for operation control of the exercise monitoring apparatus 100. The input device 130 may include a keypad, a dome switch, a touchpad (e.g., static pressure/capacitance), a jog wheel, a jog switch, or another appropriate type of an input interface. The input device 130 may also allow the user to select a function provided in the exercise monitoring apparatus 100, execute a command, input muscle identification information, or the like.
The output device 140 may be operable to generate outputs related to visual, audible and tactile senses, and include, a display, an audio output module, an alarm, a haptic module, or another appropriate type of output interface. The display or audio output module may be configured to output the level of muscle fatigue determined by the controller 150. Also, the display or audio output module may be configured to output the level of muscle identification information determined by the controller 150 or the determined type of exercise together with the level of muscle fatigue. The display or audio output module may also output a value for exercise intensity measured by the controller 150 or a level of exercise risks determined by the controller 150. The display or audio output module may output an alert message generated by the controller 150. The display or audio output module may output the alert message generated by the controller 150 via the alarm or haptic module.
The controller 150 may control an overall operation of the exercise monitoring apparatus 100. The controller 150 may control the communication interface 110 to send a transmission request for the muscle movement related signal and the electromyographic signal to the physical information measuring apparatus 200. Also, the controller 150 may acquire muscle identification information and check a type of exercise based upon the acquired muscle identification information. The controller 150 may also measure a level of muscle fatigue based upon the checked type of exercise and the muscle movement related signal and the electromyographic signal received via the communication unit 110.
Also, the controller 150 may store the muscle fatigue, the muscle identification information, the type of exercise and the like in the storage device 120. The controller 150 may receive the muscle identification signal input via the input device 130. The controller 150 may output the muscle fatigue, the exercise intensity, the type of exercise, the exercise risks, the alert message or the like via the output device 140.
The movement sensing unit 210 may measure a type of muscle movement and/or duration of a movement generated in muscles by using an inertial sensor affixed or worn on a human body or clothes. In one exemplary embodiment, the inertial sensor may include an acceleration sensor or a gyro sensor.
The acceleration sensor is a device that converts an acceleration change in one direction into an electric signal. In general, the acceleration sensor may be configured to convert acceleration changes in three axes with respect to the movement of the physical information measuring apparatus 200 into electric signals, so as to allow measuring of the acceleration in each axis.
The gyro sensor is a sensor that measures an angular velocity of the physical information measuring apparatus 200 performing a rotary motion, which senses (detects) a rotated angle from each reference direction. For example, the gyro sensor may detect each rotation angle based upon three directional axes, namely, yaw, pitch and roll.
The exercise monitoring apparatus 100 may detect, from acceleration data detected from the muscle movement related signal, whether any movement is generated in the muscles, whether the movement generated in the muscles is a rotational movement, whether the rotational movement is an internal rotation or an external rotation, and the like. Also, the exercise monitoring apparatus 100 may detect, from angular velocity data detected from the muscle movement related signal, an existence of a centripetal acceleration (motion) generated by a rotation of the muscles, a centripetal direction, and the like.
The electromyogram detecting unit 220 may detect an electric signal (electromyographic signal) generated according to the level of muscle contraction by use of electrodes affixed onto the muscular surfaces. The electromyographic signal may include a recording of motion-unit-action-potentials conducted along muscular fibers, which may be generated when muscles are contracted or relaxed. Also, when muscles are fatigued, an amplitude of the signal may increase, resulting in an extension of the period. The analysis for muscle fatigue may be done using a root-mean-square (RMS) amplitude based upon the amplitude of the electromyographic signal, a Median frequency according to a frequency spectrum analysis, an average frequency, and the like.
The communication unit 230 may allow communications between the physical information measuring apparatus 200 and the exercise monitoring apparatus 100. The communication unit 230 may periodically send the muscle movement signal and the electromyographic signal to the exercise monitoring apparatus 100. Alternatively, the communication unit 230 may send the muscle movement signal and the electromyographic signal in response to the request by the exercise monitoring apparatus 100. Also, the communication unit 230 may periodically send muscle identification information to the exercise monitoring apparatus 100 in response to the request by the exercise monitoring apparatus 100.
The controller 240 may control operations of the movement sensing unit 210 (movement sensor), the electromyogram detecting unit 220 (electromyogram sensor) and the communication unit 230. For example, the controller 150 may amplify signals detected by the movement sensing unit 210 and/or the electromyogram detecting unit 220, and may convert the amplified signals into signals having a format to be sent to the exercise monitoring apparatus 100 via the communication unit 110. The controller 240 may send the converted signals to the exercise monitoring apparatus 100 via the communication unit 230.
The input device 235 may allow a user to generate input data to control the physical information measuring apparatus 200. In one exemplary embodiment, the input device 235 may allow a user to input the muscle identification information.
In the meantime, the physical information measuring apparatus 200 may further include a storage device which may store a program to operate the controller 240 and may temporarily store input/output data, and an output device that may generate visual, audible, tactile, another appropriate type of outputs based on a content of the output.
The embodiments as broadly described herein may be implemented in a computer-readable medium using, for example, software, hardware, or some combination thereof. For a hardware implementation, the embodiments described herein may be implemented within one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), Programmable Logic Devices (PLDs), Field Programmable Gate Arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, other electronic units designed to perform the functions described herein, or a selective combination thereof. In some cases, such embodiments as described herein may be implemented in the controller 150, 240.
For a software implementation, certain embodiments of procedures and functions may be implemented together as separate software modules, each of which may perform at least one of the disclosed functions or operations. The software codes may be implemented with a software application written in any suitable programming language. Also, the software codes may be stored in the storage device and executed by the controller 150, 240.
In one exemplary embodiment, the controller 150 may determine the type of exercise, for example, a type of muscle contraction, based upon the muscle identification information and the muscle movement related signal. To this end, the controller 150 may extract acceleration data and angular velocity data from the muscle movement related signal.
For example, if a type of muscle is the biceps brachii and the extracted acceleration data indicates no changes in acceleration, the controller 150 may determine the type of exercise which the user is performing to be an isometric contraction. In this case, no change may be detected from the angular velocity data. Also, if the extracted acceleration data indicates that acceleration has changed, the controller 150 may determine the type of exercise the user is performing to be an isotonic contraction. In this case, the acceleration data may be divided into an adduction and an abduction.
If the acceleration is in a direction of the adduction and the angular velocity is a positive centripetal acceleration (motion), the controller 150 may determine the type of exercise to be a concentric contraction. Furthermore, if the acceleration is in a direction of the abduction and the angular velocity is a negative centripetal acceleration, the controller 150 may determine the type of exercise to be an eccentric contraction. In addition, when the type of muscle is a femoral muscle, if the extracted acceleration component is rotational and the angular velocity component contains a positive centripetal acceleration and a negative centripetal acceleration in a periodical manner, the controller 150 may determine the type of exercise to be an isokinetic contraction. The exercise monitoring apparatus 100 may then measure a level muscle fatigue based upon the type of exercise, the muscle movement related signal and the electromyographic signal, in step S400.
In accordance with the one exemplary embodiment, the controller 150 may measure the level of muscle fatigue by converting the electromyographic signal received from the physical information measuring apparatus 200 via the communication unit 110 into frequencies. Alternatively, the controller 150 may measure the level of muscle fatigue based upon the difference between an initial Median frequency and a final Median frequency, computed from the electromyographic signal received from the physical information measuring apparatus 200 via the communication unit 110. In one exemplary embodiment, the initial Median frequency and the final Median frequency may be Median frequencies computed at a start time and an end time within each muscle fatigue measuring section. The measuring section may be divided into a plurality of sections, and the initial Median frequency and the final Median frequency may be Median frequencies, computed at a start time and an end time of each divided section.
Meanwhile, when measuring the level of muscle fatigue by using only the electromyographic signal, for example, when no muscle movement is detected, a Median frequency estimated from the electromyographic signal generated may be low. Accordingly, in spite of the level of muscle fatigue not actually being high, the level of muscle fatigue may be measured as being in a high state. This problem may be caused when the Median frequency is generated as being low, for example, when the Median frequency is estimated from an electromyographic signal resulting from an instantaneous or temporary tension, twisting, or trembling of muscles. Consequently, the muscle fatigue is erroneously measured as being high.
In this embodiment, when the muscle movement related signal received from the physical information measuring apparatus 200 is used in the determination of a level of muscle fatigue, the exercise monitoring apparatus 100 may measure the muscle fatigue based on whether any movement has been detected from muscles (e.g., the exercise monitoring apparatus 100 may determine that the muscle movement is present when the detected muscle movement is higher than a threshold value for a predetermined time) and/or a duration of the muscle movement. Therefore, the exercise monitoring apparatus 100 may obviate or mitigate erroneous measurements of muscle fatigue levels caused by temporary tension, twisting, or trembling of the muscles, so as to accurately measure the actual muscle fatigue.
In one exemplary embodiment, the controller 150 may analyze a muscle movement related signal received from the physical information measuring apparatus 200 via the communication unit 110, and determine whether any muscle movement has been generated based upon the analyzed signal. For instance, during an isometric contraction exercise, the controller 150 may detect a minute trembling of muscles from the analyzed signal with respect to the muscle movement, and then measure a level of muscle fatigue from the electromyographic signal only when an excessive muscle contraction time (duration) which caused the muscle fatigue is higher than a threshold value, or measure a muscle fatigue by using the muscle contraction time (duration) as a weight value. As another example, during an isotonic contraction or isokinetic contraction exercise, the controller 150 may determine whether any muscle movement has been detected based upon the analyzed signal with respect to the muscle movement, and/or determine whether any muscle movement which may increase the muscle fatigue has been detected based upon the duration of the muscle movement. Alternatively, the controller 150 may measure a muscle fatigue based upon the electromyographic signal by determining a level (e.g., velocity and time) of the muscle movement and converting the determined movement level into a weight value.
Referring to
That is, the controller 150 may obtain identification information related to a joint attached with muscles, to which a sensor is substantially affixed or worn, based upon the muscle movement related signal received from the physical information measuring apparatus 200. The muscle identification information may also be obtained based upon the obtained joint related identification information.
Joints may be classified into immovable joints (immovable articulation, synarthrosis) and movable joints (movable articulation, synovial joints). The movable joints as mobility joints may be divided according to the figure of an articular facet into plane joints, hinge joints, pivot (trochoid) joints, ellipsoidal joints, saddle joints and ball-and-socket joints. The plane joints are found, for example, in the wrists and opposed surfaces of the bones are almost flat with limited movements. The hinge joint is a bone joint, for example, a joint between finger bones, in which the articular surfaces are molded to each other in such a manner as to permit only two motions, namely, folding and unfolding motions. The pivot joint is a joint, for example, proximal radiulnar joint, in which a bone with a circular articular head can uniaxially rotate along a bone with a glenoid cavity. The ellipsoidal joint is a joint, for example, radiocarpal joint, in which two articular surfaces ovally rotate and are movable in two directions, namely, in a long axis and a short axis. The saddle joint, such as carpometacarpal articulation of the thumb, has an articular surface in a shape of a saddle, and is a biaxial joint which is movable perpendicularly. The ball-and-socket joint has an articular head in a shape of a ball, and glenoid cavity thereof is in a shape of a mortar, allowing greater freedom of movement and multiaxial movement.
Referring to
Referring to
Here, a threshold value for determination of the risk may be a muscle fatigue measured, with respect to an ordinary user, according to a type of exercise (or muscle identification information and a type of exercise) in a stable state. The threshold value may be previously stored in the storage device 120. Here, for more accurate determination of the risk, a muscle fatigue, which is previously measured according to a type of exercise (or muscle identification information and a type of exercise) in a stable state with respect to a user who is a target for the risk determination, may be used as a threshold value. Since the number of muscle cells, volume and position of a muscle, which is a target for measuring an exercise risk, depend on an individual person, the threshold value as the reference for determining the risk may be different individually.
In this case, the controller 150 may provide a menu to measure the muscle fatigue according to the type of exercise (or muscle identification information and a type of exercise) in a stable state with respect to the user, who is the target for the risk determination, store the muscle fatigue measured via the menu selection in the storage device 120, and use the stored muscle fatigue as a threshold value. Also, upon change in the number of muscle cells, the volume and the position of the user's muscle, the user's muscle fatigue may be re-measured according to a type of exercise (or muscle identification information and a type of exercise) in a stable state, and the re-measured muscle fatigue may be updated in the storage device 120 to be used as a threshold value.
In accordance with one exemplary embodiment, the controller 150 may measure exercise intensity through the I-EMG analysis for the electromyographic signal received from the physical information measuring apparatus 200. For example, the controller 150 may measure the exercise intensity by integrating the electromyographic signal with a muscle contraction time (duration). That is, I-EMG may be the sum of signals exhibited during the muscle contraction. That is, an activity level during the muscle contraction may be taken as the exercise intensity. In certain embodiments, the controller 150 may apply an absolute or rectified value to the electromyographic signal received from the physical information measuring apparatus 200 to rectify only bidirectional components and then may level the rectified values. Also, the controller 150 may integrate the leveled value with an axis of time in a leveled graph so as to measure exercise intensity.
In the meantime, the controller 150, as shown in
Referring to
Referring to
The controller 150 may also output the exercise risk based upon the determined first and second risk levels via the output device 140. In one exemplary embodiment, if one of the first and second risk levels indicate ‘dangerous,’ the controller 150 may determine the risk of the exercise to be dangerous. Also, if both the first and second risks indicate ‘normal,’ the controller 150 may determine the exercise risk to be normal.
Referring to
Based on these signals, the exercise monitoring apparatus 100 may determine a muscle fatigue level.
An exercise monitoring apparatus, as embodied and broadly described herein, may include a communication unit adapted to receive a muscle movement signal and an electromyographic signal from a physical information measuring apparatus; and a controller adapted to acquire muscle identification information, determine a type of exercise based upon the acquired identification information and the muscle movement signal, and determine a muscle fatigue level based on the type of exercise, the muscle movement signal, and the electromyographic signal.
The apparatus may further include a storage device adapted to store the determined muscle fatigue level, wherein the storage device stores the muscle identification information or the determined type of exercise associated with the determined muscle fatigue level, and may further include an output device adapted to output the determined muscle fatigue level, and wherein the output device outputs the muscle identification information or the determined type of exercise together with the determined muscle fatigue level.
In this exercise monitoring apparatus, the controller may determine a level of risk based on a threshold value of muscle fatigue level corresponding to the type of exercise and the determined muscle fatigue level. Moreover, this apparatus may further include an output device adapted to output the determined level of risk, and an output device adapted to output an alert message based on the determined level of risk, wherein the controller measures an exercise intensity level through an Integrated-EMG (I-EMG) analysis for the electromyographic signal, and wherein the controller determines a level of risk associated with the exercise based on the muscle movement signal and the measured exercise intensity level. This exercise monitoring apparatus may further include a storage device adapted to store the measured exercise intensity level, and an output device adapted to output the measured exercise intensity level.
This exercise monitoring apparatus may further include an input device adapted to receive an input of the muscle identification information, wherein the communication unit receives the muscle identification information from the physical information measuring apparatus. Moreover, in this embodiment, the controller may identify a joint associated with the muscle movement signal and one or more muscles which are attached to the identified joint, and wherein the muscle identification information is determined based on the identified joint and the one or more muscles attached to the joint. Furthermore, in this apparatus, if a plurality of joints are identified or if a plurality of muscles are attached to the identified joint, the controller is configured to determine the muscle identification information based on muscles attached to the plurality of identified joints or the plurality of muscles attached to the identified joint, wherein the output device is configured to display a user prompt to instruct a user to move a sensor related to the muscle to acquire the muscle identification information. Moreover, the muscle movement signal may be detected by an acceleration sensor or a gyro sensor.
A method for monitoring exercise, as embodied and broadly described herein, may include receiving a muscle movement signal and an electromyographic signal from a physical information measuring apparatus; acquiring a muscle identification information related to the muscle movement signal; determining a type of exercise based on the acquired muscle identification information and the muscle movement signal; and determining a level of muscle fatigue based on the type of exercise, the muscle movement signal, and the electromyographic signal.
An exercise monitoring system, as embodied and broadly described herein, may include a physical information measuring apparatus and an exercise monitoring apparatus, wherein the physical information measuring apparatus includes at least one sensor configured to generate a muscle movement related signal and an electromyographic signal, and a first communication interface adapted to transmit the muscle movement related signal and the electromyographic signal to the exercise monitoring apparatus. In this embodiment, the exercise monitoring apparatus may include a second communication interface configured to receive the muscle movement related signal and the electromyographic signal from the physical information measuring apparatus, and a controller configured to identify a muscle corresponding to the muscle movement related signal, determine a type of exercise based on the identified muscle and the muscle movement related signal, and measure a level of muscle fatigue based on the type of exercise, the muscle movement related signal, and the electromyographic signal.
An exercise monitor, as embodied and broadly described herein, may include a first sensor to detect a movement of a muscle; a second sensor to detect an electric activity in the muscle; a controller to receive the detected movement and electric activity from the first and second sensors, wherein the controller is configured to determine at least one of an amount of muscle fatigue, a type of muscle being monitored, a type of exercise being performed, exercise intensity, or health risks of a user based on the detected movement and electric activity; and a display that displays the amount of muscle fatigue and health risks. In this embodiment, the first sensor includes an accelerometer that detects an acceleration and a gyro sensor that detects an angular velocity, wherein the second sensor includes one or more probes that detect electromyographic signals.
Moreover, an exercise monitoring apparatus is further embodied and broadly disclosed herein which may include a communication unit adapted to receive a signal related to a muscle movement and an electromyographic signal from a physical information measuring apparatus, and a controller adapted to acquire identification information related to the muscle, determine a type of exercise based upon the acquired identification information and the muscle movement related signal, and measure a muscle fatigue based upon the type of exercise, the muscle movement related signal and the electromyographic signal.
In certain embodiments, the apparatus may further include a storage unit adapted to store the measured muscle fatigue. In certain embodiments, the storage unit may store the muscle identification information or the determined type of exercise in associated with the muscle fatigue. The apparatus may further include an output unit adapted to output the measured muscle fatigue. In an embodiment, the output unit may output the muscle identification information of the determined type of exercise together with the muscle fatigue. Moreover, in certain embodiments, the controller may determine a risk of the exercise by comparing a threshold value corresponding to the type of exercise with the measured muscle fatigue.
In certain embodiments, the controller may measure exercise intensity through an Integrated-EMG (I-EMG) analysis for the electromyographic signal. In an exemplary embodiment, the controller may determine a risk of the exercise based upon the muscle movement related signal and the measured exercise intensity. Moreover, the apparatus may further include a storage unit adapted to store the measured exercise intensity. In another exemplary embodiment, the apparatus may further include an output unit adapted to output the measured exercise intensity.
In certain embodiments, the apparatus may further include an output unit adapted to output the determined risk. In an exemplary embodiment, the apparatus may further include an output unit adapted to output an alert message based upon the determined risk. The apparatus may further include an input unit adapted to allow inputting of the muscle identification information.
In certain embodiments, the communication unit may receive the muscle identification information from the physical information measuring apparatus. In certain embodiments, the controller may identify a joint associated to the movement based upon the muscle movement related signal, determine a muscle attached onto the joint, and acquire identification information related to the muscle. In one exemplary embodiment, if the identified joint or the muscle attached onto the identified joint is in plurality, the controller may acquire identification information related to a muscle selected from the muscles attached onto the identified joint. In one exemplary embodiment, the output unit may output guide information related to the muscle movement for identification of the muscle. In certain embodiments, the muscle movement related signal may be detected by an acceleration sensor or a gyro sensor.
Moreover, to achieve the aspect of the detailed description as broadly described herein, there is provided an exercise monitoring method that may include receiving a signal related to a muscle movement and an electromyographic signal from a physical information measuring apparatus, acquiring identification information related to the muscle, determining a type of exercise based upon the acquired identification information and the muscle movement related signal, and measuring a muscle fatigue based upon the type of exercise, the muscle movement related signal and the electromyographic signal.
Moreover, to achieve the aspect of the detailed description as broadly described herein, there is provided an exercise monitoring system that may include a physical information measuring apparatus and an exercise monitoring apparatus, wherein the physical information measuring apparatus may include at least one sensor adapted to detect a muscle movement related signal and an electromyographic signal, and a communication unit adapted to send the muscle movement related signal and the electromyographic signal to the exercise monitoring apparatus, wherein the exercise monitoring apparatus may includes a communication unit adapted to receive the muscle movement related signal and the electromyographic signal from the physical information measuring apparatus, and a controller adapted to acquire identification information related to the muscle, determine a type of exercise based upon the acquired identification information and the muscle movement related signal, and measure a muscle fatigue based upon the type of exercise, the muscle movement related signal and the electromyographic signal.
In accordance with an exemplary embodiment, when a user keeps doing a muscular motion for a long time or a sudden load occurs in muscular cells to cause an immoderate muscle contraction, the fatigue affecting the muscles can be monitored, thereby obviating or eliminating risks, such as muscle cramp or muscle rupture, due to the immoderate muscular motion. Especially, use of inertial sensor allows an accurate measurement of a muscle fatigue in response to a user's movement, and the measured muscle fatigue can be utilized in various aspects, such as being associated with exercise intensity, determining a type of exercise according to a portion in motion and the like.
Any reference in this specification to “one embodiment,” “an embodiment,” “example embodiment,” etc., means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. The appearances of such phrases in various places in the specification are not necessarily all referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with any embodiment, it is submitted that it is within the purview of one skilled in the art to effect such feature, structure, or characteristic in connection with other ones of the embodiments.
Although embodiments have been described with reference to a number of illustrative embodiments thereof, it should be understood that numerous other modifications and embodiments can be devised by those skilled in the art that will fall within the spirit and scope of the principles of this disclosure. More particularly, various variations and modifications are possible in the component parts and/or arrangements of the subject combination arrangement within the scope of the disclosure, the drawings and the appended claims. In addition to variations and modifications in the component parts and/or arrangements, alternative uses will also be apparent to those skilled in the art.