1. Technical Field
The present invention is related to exercise training systems, and more particularly, to an exercise training system providing programmable circulative guiding track (e.g. circular or elliptical guiding track) for an exerciser to move accordingly and detecting the exerciser's performance.
2. Description of Related Art
Taijiquan is known for being beneficial to health and has become a popular exercise nowadays. It's also highly evaluated by general exercisers and sports scientist for its sports effect. Practicing Pushing-hands is one form of Taijiquan training. Through practicing Pushing-hands, the sensitivity, sense of balance, limb coordination and reaction rate can be substantively improved.
In a traditional training method, Pushing-hands is typically practiced through sparring. To practice Pushing-hands, two exercisers face each other and contact the opponent's wrist and make the contacted wrists circling repeatedly in a circular or elliptical guiding track synchronously. During practicing, both the exercisers detect the opponent's motion by his hand, wrist as well as lower arm and give proper reaction. It is important for the exercisers to keep the wrists intercontacting lightly yet avoiding mutual resistance. Thus, Pushing-hands facilitates training for generalized sensitivity, limb coordination and reaction rate. However, one fundamental problem of such traditional training method of Pushing-hands is that the practice requires two participants. Additionally, an exerciser may not get objective data of performance assessment from his opponent as a reference material. Thus the popularization of Pushing-hands is limited.
Some sport facilities have therefore been developed to overcome foresaid limitation in Pushing-hands and benefit the popularization of Taijiquan. However, such prior art facilities are usually noninteractive, unadjustable and nonprogrammable, hence such facilities are inadequate to provide satisfactory training effect.
On the other hand, though Taiwan Patent M064330 provides an interactive Taijiquan simulator whereby an exerciser can practice dodging and parrying, such prior art interactive Taijiquan simulator has no detecting element or means to monitor the exerciser's performance and the guiding track and operating mode thereof are not adjustable. Thus, a need exists for an exercise training system for Pushing-hands practice that provides interactive operating mode and programmable circulative guiding track.
The present invention has been accomplished under these circumstances in view and discloses an exercise training system for simulating an opponent in Pushing-hands practice to provide different guiding tracks and practicing mode and respond to the exerciser with objective data of performance assessment.
It is one object of the present invention to provide an exercise training system for training an exerciser's sensitivity, sense of balance, limb coordination and reaction rate with Pushing-hands practice.
It is another object of the present invention to provide an exercise training system that allows an exerciser to practice Pushing-hands without the need of a practicing partner.
It is still another object of the present invention to provide an exercise training system that utilizes adjustable linkage system to perform variable guiding track for meeting an exerciser's need and leading effective training of Pushing-hands exercise.
It is yet another object of the present invention to provide an exercise training system that is equipped with sensing elements to detect an exerciser's performance of Pushing-hands for warning the exerciser of the inappropriate exertion or exporting the detecting results as training reference material.
In
As can be seen in
Additionally, according to the present embodiment, the third link 16 further comprises a frame 162 and an extension arm 161 wherein the frame 162 is pivotly connected to the second link 15 and fourth link 17 respectively at the second link joint (b) and third link joint (c) and the extension arm 161 is slidably installed in the frame 162 and operatively connected to an actuator 163 so that the extension arm 161 can extend or retract with respect to the frame 162 and in turn render the distance between the third link joint (c) and the track point (e) altered, as shown in
Also, according to the present embodiment, the fourth link 17 is assembled with the pivot set 18 in a slidable way and operatively connected to an actuator 171 which is fixed on the pivot set 18 so that the fourth link 17 can slide against the pivot set 18 to render the distance between the fourth link joint (d) and the pivot joint (f) altered. As shown in
According to foregoing structure, when the power device 11 drives the transmission shaft 12 to rotate the crank 13, the linkage system is hauled to move, and meantime the length alterations of the third link 16 and fourth link 17 result in variation of the circulative moving path of the track point (e).
Referring to
According to another concept of the present invention, an extendable track 19 or linking rod 191 can be arranged respectively between the links 14, 15, 16, 17 in the way that each track 19 or linking rod 191 can swing horizontally with respect to the base frame 10 so as to bear the weight and ensure a stable movement of the linkage system.
Furthermore, the disclosed exercise training system may comprise a guide device 40 settled at foresaid track point (e) so that an exerciser can lean his hand thereon and move his hand following the guiding track formed by the moving path of the track point (e). According to one concept on the present invention, the guide device 40 can be a sway stick system that includes a sway stick 401 and a sway stick stand 402 wherein the sway stick 401 can freely sway with respect to the sway stick stand 402 under an external pushing force and right itself when the pushing force is relieved. Said sway stick 401 further comprises a touch sensing element or circuit that is communicated with the controlling unit for detecting contact and exertion of an exerciser's hand.
Besides, between the power device 11 and transmission shaft 12, a torque limiter (not shown) may be equipped as a safety device or a transmission mechanism (not shown) such as a coupler or a belt pulley may be provided for steadying the rotary speed of the transmission shaft 12. As shown in
The disclosed exercise training system may further include a brace 20 and a foundation 30 as shown in
In addition, the controlling unit of the exercise training system according to the present invention comprises a controlling circuit operatively connected to the power device 11, actuator 163 of the third link 16, actuator 171 of the third link 17, and the actuator 201 of the brace 20, a detecting system communicated with the guide device 40, a database, a computing unit and a input device, a display device and an alarm device which are communicated with the controlling circuit, database and computing unit and performs following functions:
1. controlling the guiding track: controlling the scope, shape and altitude of the moving path of the track point (e) with a constant-track mode or a variable-track mode wherein the constant-track mode leads a training course with the guiding track retaining constant scope, shape and altitude throughout while the variable-track mode leads a training course with the guiding track varied in a preprogrammed range at preprogrammed time points.
2. controlling the operating speed: controlling the moving speed of the linkage system with a constant-speed mode or a variable-speed mode wherein the constant-speed mode leads a training course with the track point (e) moving stably at a preset speed while the variable-speed mode leads a training course with the moving speed of the track point (e) varied within a preprogrammed range at preprogrammed time points.
3. detecting motion: utilizing the touch sensing element or circuit of the guide device 40 to detect the relationship between an exerciser's hand and the guide device 40 and generate a feedback signal as an evaluating material of the consistence of the moving speed and moving path between the exerciser's hand and the guide device 40.
4. implementing database for programming a training parameter: comprising one or more databases the may record human physiological information and corresponding machine operating speed, track and fault tolerance so that an exerciser can input individual physiological information and easily get the exercise training system programmed with a training parameter.
5. computing and gauging an exerciser's performance: taking the information recorded in the database as a parameter to gauge an exerciser's performance detected by the detecting system; figuring out the failure that is defined as a motion rushing or delayed beyond the tolerance; performing a warning sign through the display device or the alarm device; and recording the failure occurrence frequency and time points.
Although a particular embodiment of the invention has been described in detail for purposes of illustration, it will be understood by one of ordinary skill in the art that numerous variations will be possible to the disclosed embodiments without going outside the scope of the invention as disclosed in the claims.