BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic sectional view of an exhaust aftertreatment system in accordance with the invention.
FIG. 2 is a sectional view taken along line 2-2 of FIG. 1.
FIG. 3 is like FIG. 1 and shows another embodiment.
FIG. 4 is a sectional view taken along line 4-4- of FIG. 3.
DETAILED DESCRIPTION
FIGS. 1 and 2 show an exhaust aftertreatment system 10 including an exhaust conduit 12 carrying internal combustion engine exhaust from engine 14 to an aftertreatment element 16, FIG. 2, treating the exhaust, for example a selective catalytic reduction (SCR) catalyst and/or an oxidation catalyst (e.g. a diesel oxidation catalyst, DOC). An injector 18 is provided upstream of aftertreatment element 16 and injects chemical species mixing with the exhaust prior to reaching aftertreatment element 16. For example, in one embodiment, aqueous urea solution is injected from reservoir or tank 20. A mixer 22 is provided in the exhaust system upstream of aftertreatment element 16 and mixing the chemical species and the exhaust. The injected chemical species needs to be well-mixed with the exhaust gas prior to reaching aftertreatment element 16 to ensure optimal performance for chemical reaction. Mixer 22 is a spiral chamber 24.
Spiral chamber 24 has a spiral exhaust flow passage 26 around a central axis 28. The spiral exhaust flow passage has an outer reach 30 spaced radially outwardly of central axis 28, and has an inner reach 32 spaced radially inwardly of outer reach 30. Spiral chamber 24 has first and second exhaust flow ports 34 and 36 for exhaust flow therethrough. In the disclosed embodiment, exhaust flow port 34 is an inlet exhaust flow port receiving exhaust from engine 14 as shown at arrow 38, and exhaust flow port 36 is an outlet exhaust flow port discharging exhaust to aftertreatment element or catalyst 16 as shown at arrow 40. Inner reach 32 provides the center of the spiral at central axis 28. Exhaust flow port 34 is at outer reach 30. Exhaust flow port 36 is at inner reach 32. Exhaust flows from inner reach 32 of the spiral through outlet exhaust flow port 36 along an axial flow direction 40 along central axis 28. In the embodiment of FIGS. 1, 2, an outlet exhaust pipe 42 extends axially from spiral chamber 24 at outlet exhaust flow port 36. Outlet exhaust pipe 42 has an outer portion 44 extending axially externally of spiral chamber 24 and conducting exhaust axially therethrough for transmission to aftertreatment element 16. Outlet exhaust pipe 42 has an inner portion 46 extending axially internally of spiral chamber 24. Inner portion 46 of outlet exhaust pipe 42 is perforated as shown at 48 and receives exhaust through such perforations from spiral chamber 24 at inner reach 32 thereof.
Exhaust flows through exhaust flow port 34 along a first flow direction as shown at arrow 38. Exhaust flows through exhaust flow port 36 along a second flow direction as shown at arrow 40. Flow directions 38 and 40 are non-parallel to each other. Exhaust flows through exhaust flow port 36 along an axial flow direction 40. Exhaust flows through exhaust flow port 34 along a lateral flow direction 38 along a lateral plane transverse to axis 28. Spiral exhaust passage 26 guides exhaust flow along a spiral pattern lying in the noted lateral plane. Exhaust flows through exhaust flow port 34 along the noted flow direction 38 radially relative to axis 28. An angled guidance wall 49 may optionally be provided at the spiral entrance adjacent port 34. In another embodiment, exhaust flow port 34 is instead oriented as shown in dashed line at 34a such that exhaust flows through exhaust flow port 34a along flow direction 38a tangentially relative to the noted spiral of spiral exhaust passage 26, for reduced pressure drop.
In the embodiment of FIGS. 1, 2, an inlet exhaust pipe 50 extends from spiral chamber 24 at inlet exhaust flow port 34, and injector 18 is in inlet exhaust pipe 50 and injects chemical species into the exhaust prior to and upstream of spiral chamber 24. In an alternate embodiment, injector 18a is in spiral chamber 24 and injects the chemical species from tank 20a into exhaust flowing in spiral chamber 24.
Spiral chamber 24 has an inner scroll wall 52 defining spiral exhaust flow passage 26. Scroll wall 52 may optionally be heated by a heater, e.g. by electrical resistance heating from a voltage source such as a battery 54, heating the scroll wall to enhance interaction of the chemical species and the exhaust, and to assist evaporation and hydrolysis. In another embodiment, scroll wall 52 may be perforated, for example as shown at 56, for improved acoustic performance. Spiral chamber 24 has first and second axially spaced chamber end walls 58 and 60, FIG. 2, and has an outer circumferential housing wall 62 extending axially therebetween. Inner scroll wall 52 is disposed axially between chamber end walls 58 and 60.
FIGS. 3, 4 show another embodiment and use like reference numerals from above where appropriate to facilitate understanding. Exhaust aftertreatment system 70 includes exhaust conduit 72 carrying exhaust from engine 14 to aftertreatment element 16, FIG. 4, treating the exhaust. Injector 18 injects chemical species from tank 20 mixing with the exhaust prior to reaching aftertreatment element 16. A mixer 74 mixes the chemical species and the exhaust. Mixer 74 is a spiral chamber 76 having a spiral exhaust flow passage 78 around central axis 28. Spiral exhaust flow passage 78 has an outer reach 80 spaced radially outwardly of central axis 28, and has an inner reach 82 spaced radially inwardly of outer reach 80. Spiral chamber 76 has first and second exhaust flow ports 84 and 86 for exhaust flow therethrough. In the embodiment of FIGS. 3, 4, exhaust flow port 84 is an inlet exhaust flow port receiving exhaust from engine 14 as shown at arrow 88. Exhaust flow port 86 is an outlet exhaust flow port, and exhaust flows from spiral chamber 76 through outlet exhaust flow port 86 along an axial flow direction 90. Inner reach 82 provides the center of the spiral at central axis 28. Exhaust flow port 84 is at outer reach 80. Exhaust flow port 86 is at inner reach 82 and also along the downstream chamber end wall 92 spanning between inner reach 82 and outer reach 80, to be described. In the embodiment of FIGS. 3, 4, outlet exhaust pipe 42 of FIG. 2 is eliminated, and instead chamber wall 92 is perforated and provides exhaust flow therethrough to aftertreatment element 16.
In FIGS. 3, 4, exhaust flows through exhaust flow port 84 along flow direction 88, and exhaust flows through exhaust flow port 86 along flow direction 90. First and second flow directions 88 and 90 are non-parallel to each other. Exhaust flows through exhaust flow port 86 along axial flow direction 90. Exhaust flows through exhaust flow port 84 along a lateral flow direction 88 along a lateral plane transverse to axis 28. Spiral exhaust passage 78 guides exhaust flow along a spiral pattern lying in the noted lateral plane. Exhaust flows through exhaust flow port 84 along the noted flow direction 88 radially relative to axis 28. In an alternate embodiment, exhaust flow port 84 may instead by oriented like that shown in dashed line at 34a in FIG. 1 such that exhaust flows through the exhaust flow port in a flow direction tangentially relative to the spiral. Injector 18 may be provided in an inlet exhaust pipe 94 extending from the spiral chamber at inlet exhaust flow port 84, such that injector 18 is in inlet exhaust pipe 94 and injects chemical species into the exhaust prior to and upstream of spiral chamber 76. Alternatively, the injector may be provided in spiral chamber 76, for example as shown in dashed line at 18a in FIG. 1, such that the injector injects the chemical species into the exhaust flowing in spiral chamber 76.
Spiral chamber 76 in FIGS. 3, 4 has an inner scroll wall 96 defining spiral exhaust flow passage 78. A heater, such as heater 54 in FIG. 1, may be provided for heating scroll wall 96 to enhance interaction of the chemical species and the exhaust, e.g. by assisting evaporation and hydrolysis of urea. Scroll wall 96 may be perforated, for example as shown at 98, to gain additional acoustic performance. Spiral chamber 76 has the noted first and second exhaust flow ports 84, 86 for exhaust flow therethrough. Spiral chamber 76 has first and second axially spaced chamber end walls 100 and 92 and an outer circumferential housing wall 102 spanning axially therebetween. Inner scroll wall 96 is disposed axially between chamber end walls 100 and 92. Chamber wall 92 is perforated at 104 and provides the noted exhaust flow port 86 for exhaust flow therethrough as shown at arrows 90. This provides improved flow distribution prior to entering aftertreatment catalyst section 16, to assist optimization of catalyst performance. The perforations 104 of chamber end wall 92 span at least partially between the noted inner and outer reaches 82 and 80 of spiral exhaust flow passage 78, and provide the noted exhaust flow port 86. In the embodiment of FIGS. 3, 4, exhaust flow port 86 is an outlet exhaust flow port supplying exhaust to aftertreatment element 16, and perforations 104 of chamber end wall 92 distribute flow from outlet exhaust port 86 to aftertreatment element 16.
In the foregoing description, certain terms have been used for brevity, clearness, and understanding. No unnecessary limitations are to be implied therefrom beyond the requirement of the prior art because such terms are used for descriptive purposes and are intended to be broadly construed. The different configurations, methods and systems described herein may be used alone or in combination with other configurations, methods, and systems. It is to be expected that various equivalents, alternatives and modifications are possible within the scope of the appended claims.