The present invention relates to engine exhaust systems and particularly to exhaust catalyst systems. More particularly the invention relates to catalyst units.
Spark ignition engines often use catalytic converters and oxygen sensors to help control engine emissions. A gas pedal is typically connected to a throttle that meters air into engine. That is, stepping on the pedal directly opens the throttle to allow more air into the engine. Oxygen sensors are often used to measure the oxygen level of the engine exhaust, and provide feed back to a fuel injector control to maintain the desired air/fuel ratio (AFR), typically close to a stoichiometric air-fuel ratio to achieve stoichiometric combustion. Stoichiometric combustion can allow three-way catalysts to simultaneously remove hydrocarbons, carbon monoxide, and oxides of nitrogen (NOx) in attempt to meet emission requirements for the spark ignition engines.
Compression ignition engines (e.g., diesel engines) have been steadily growing in popularity. Once reserved for the commercial vehicle markets, diesel engines are now making real headway into the car and light truck markets. Partly because of this, federal regulations were passed requiring decreased emissions in diesel engines.
Many diesel engines now employ turbochargers for increased efficiency. In such systems, and unlike most spark ignition engines, the pedal is not directly connected to a throttle that meters air into engine. Instead, a pedal position is used to control the fuel rate provided to the engine by adjusting a fuel “rack”, which allows more or less fuel per fuel pump shot. The air to the engine is typically controlled by the turbocharger, often a variable nozzle turbocharger (VNT) or waste-gate turbocharger.
Traditional diesel engines can suffer from a mismatch between the air and fuel that is provided to the engine, particularly since there is often a time delay between when the operator moves the pedal, i.e., injecting more fuel, and when the turbocharger spins-up to provide the additional air required to produced the desired air-fuel ratio. To shorten this “turbo-lag”, a throttle position sensor (fuel rate sensor) is often added and fed back to the turbocharger controller to increase the natural turbo acceleration, and consequently the air flow to the engine.
The pedal position is often used as an input to a static map, which is used in the fuel injector control loop. Stepping on the pedal increases the fuel flow in a manner dictated by the static map. In some cases, the diesel engine contains an air-fuel ratio (AFR) estimator, which is based on input parameters such as fuel injector flow and intake manifold air flow, to estimate when the AFR is low enough to expect smoke to appear in the exhaust, at which point the fuel flow is reduced. The airflow is often managed by the turbocharger, which provides an intake manifold pressure and an intake manifold flow rate for each driving condition.
In diesel engines, there are typically no sensors in the exhaust stream analogous to that found in spark ignition engines. Thus, control over the combustion is often performed in an “open-loop” manner, which often relies on engine maps to generate set points for the intake manifold parameters that are favorable for acceptable exhaust emissions. As such, engine air-side control is often an important part of overall engine performance and in meeting exhaust emission requirements. In many cases, control of the turbocharger and EGR systems are the primary components in controlling the emission levels of a diesel engine.
Most diesel engines do not have emissions component sensors. One reason for the lack of emissions component sensors in diesel engines is that combustion is about twice as lean as spark ignition engines. As such, the oxygen level in the exhaust is often at a level where standard emission sensors do not provide useful information. At the same time, diesel engines may burn too lean for conventional three-way catalysts.
After-treatment is often needed to help clean up diesel engine exhaust. After-treatment often includes a “flow through oxidation” catalyst. Typically, such systems do not have any controls. Hydrocarbons, carbon monoxide and most significantly those hydrocarbons that are adsorbed on particulates can sometimes be cleaned up when the conditions are right. Other after-treatment systems include particulate filters. However, these filters must often be periodically cleaned, often by injecting a slug of catalytic material with the fuel. The control of this type of after-treatment may be based on a pressure sensor or on distance traveled, often in an open loop manner.
Practical NOx reduction methods presently pose a technology challenge and particulate traps often require regeneration. As a consequence, air flow, species concentrations, and temperature should be managed in some way in order to minimize diesel emission levels.
Development of exhaust catalyst systems has been useful for meeting engine emissions requirements around the world. There has been a need for emission reduction efficiency and improved fuel economy in such developed catalyst systems.
The present invention addresses a reduction of the total amount of catalyst (i.e., precious metal) needed in exhaust gas catalyst system to provide a needed NOx/SOx removal efficiency. The invention involves a multi-element catalyst that may be integrated with regeneration relative to a catalyst element configuration.
a and 10b reveal a catalyst system having a rotatory structure to effect regeneration for each of the segments;
a, 15a and 16a show the availability of adsorption sites for each segment of a multi-segment catalyst system over time for various loads;
b, 15b and 16b show the relative amount of NOx versus time at the output of each segment of a multi-segment catalyst system for various loads;
a, 19a, 20a, 21a and 22a are graphs showing the number of adsorption sites available for each of segments of a multi-segment system for certain regeneration periods, NOx inputs and amounts of metal of a catalyst system;
b, 19b, 20b, 21b and 22b are graphs showing the relative amount of NOx particles coming out of each of the segment stages of a multi-segment system relative to an input of particles over time for certain regeneration periods, NOx inputs and amounts of metal of a catalyst system;
a and 26b are graphs illustrating NOx concentration for a first geometry of catalyst operation;
a and 27b are graphs illustrating NOx concentration for a second geometry of catalyst operation;
a and 29b are graphs showing a comparison of absorption sites depletion in time for the first and second geometries of the catalyst system;
a and 31a reveal relative amounts of NOx versus time for a catalyst system with precious metal reduction for the first and second geometries of the system, respectively;
b and 31b show adsorption sites depletion in space for a catalyst system with a catalyst reduction for the first and second geometries, respectively;
a and 32b are graphs showing absorption sites depletion in space for a multi-segment catalyst system without and with flow direction switching, respectively;
a, 33b and 33c are graphs showing the relative amount of NOx in time, the relative amount NOx in space, and absorption sites depletion in space for the second geometry of the catalyst system; and
a, 34b, 35a, 35b, 36a and 36b are graphs showing an impact of the segment regeneration order for regenerating the segment attached last, attached first and sequentially in view of available adsorption sites in time and the relative amount of NOx, respectively, with regard to an achievable catalyst reduction for a multi-segment catalyst system.
In the present description, please note that much of the material may be of a hypothetical or prophetic nature even though stated in apparent matter-of-fact language. The present catalyst system may include controlled regeneration resulting in a reduction of precious metal use and of fuel consumption of the engine incorporating the system. In a monolithic catalytic NOx removal system, the effectiveness of a catalyst may be reduced along a direction of the flow of exhaust gases. To achieve a required average NOx removal (e.g., 90 percent) with a periodic pattern of catalyst usage, (e.g., a 60 second NOx adsorption mode/5 second regeneration mode), some amount of precious metal may be needed. If the total volume of the catalyst is split into “n+1” elements, with “n” elements in the exhaust gas stream used in an NOx adsorption mode and one element regenerated, and the arrangement of the elements is periodically reshufffled, the total amount of the precious metal needed may be significantly reduced. By monitoring NOx emissions, switching times and regeneration parameters may be optimized to result in reduced fuel consumption of the engine. Reference may be made to “fluid” which may be either a gas or liquid.
There may be several alternative mechanical configurations (based on switching the flow by valves or rotation of the catalyst elements), that may provide the above-noted operability. Exhaust gases may pass through “n” cleaning segments, and an “n+1” element may be regenerated. The manifold may be laid out to provide controlled flow distribution. A control system may monitor an average performance and provide control over the element configuration in the exhaust gas and regeneration streams.
In one example, NOx sensors may be provided at an inlet and outlet of an after-treatment system. These sensors may be used to determine the degree of loading of the catalyst so that a regenerated segment may be brought into the exhaust gas flow and a loaded segment be brought into the regeneration flow. In another example, only one NOx sensor might be provided, for instance at the outlet, and its reading may be used to determine when to reconfigure the multi-element catalyst. Alternatively, a combination of sensors and numerical models may be used to determine the NOx loading (adsorption site depletion) of each catalyst element.
In still another example, the state of regeneration of the element under regeneration may be monitored. Once a sufficient state is reached, then the regeneration may be halted. Since regeneration in many cases could require the burning of excess fuel, the fuel efficiency of the after-treatment may be improved.
In yet another example, the “multi-element” catalyst may be a continuously rotating device, with a speed and/or phasing of rotation matched to the effectiveness of the catalyst, and controlled through the sensing of NOx and possibly other parameters with or without supplementary use of mathematical models, such as, for example, one or more models of the regeneration process.
In the present system, the number elements may be as few as two. There is not necessarily an upper limit except as restricted by technological capabilities available at the time of application of the system.
The engines dealt with relative to the present system may be the diesel engines (or lean-burn gasoline/natural gas or alternate fuel engines). For such engines, the most significant pollutants to control may be particulate matter (PM), oxides of nitrogen (NOx), and sulfur (SOx). An example catalyst system is shown in
A catalytic diesel particulate filter (CDPF) 14 may be connected to the output of the NAC 13. Filter 14 may provide physical filtration of the exhaust to trap particulates. Whenever the temperature window is appropriate, then oxidation of the trapped particulate matter (PM) may take place.
In addition to the 60/2-5 second lean/rich swing for NOx adsorption/desorption reduction, there may be other “forced” events. They are desulfurization and PM burn-off. The NOx adsorption sites may get saturated with SOx. So periodically the SOx should be driven off which may require a much higher temperature than needed for NOx desorption. As to PM burn-off, there may be a “forced” burn-off if driving conditions (such as long periods of low speed or urban operation) result in excessive PM accumulation. The accumulation period may be several hours depending on the duty cycle of operation. The clean up may be several minutes (about 10). Higher temperatures and a reasonable oxygen level may be required.
It can be seen that the above-noted catalytic system may involve a complex chemical reaction process. This process may utilize a control of flows and temperatures by a computer.
Fuel injection systems may be designed to provide injection events, such as the pre-event 35, pilot event 36, main event 37, after event 38 and post event 39, in that order of time, as shown in the graph of injection rate control in
In some cases when the temperature during expansion is very low (as under light load conditions), the post injection fuel may go out as raw fuel and become difficult to manage using the pre-catalyst 12. Under such conditions, two post injections 44 and 43 may be used—one to raise temperatures early in the expansion stroke and the second to raise it further for use in downstream catalyst processes. There could be an impact on the fuel economy of the engine.
One aspect of the present system may be based on information from process control. Normally in a catalytic flow system, the effectiveness of a catalyst may be reduced exponentially along the direction of flow as shown in
Another aspect of the present system may be a segmented or sectioned NAC 13. The NAC may be divided into “n” sections. As an illustrative example, a three section NAC with intelligent control valves 51 is shown in
System 13 may have sensors for detecting pressure, temperature, flow, NOx, SOx, and other parameters, situated in various locations of the system as desired and/or needed. The sensors may be connected to processor 52. Exhaust gases 55 may enter an inlet 56, go through several segments 15, 16 and or 17, and then exit outlet 57. A regeneration fluid 54 may come through an inlet 53 to be directed by valves 51 to the segment or chamber that is to be regenerated.
Another illustrative example, shown in
Intake 63 may convey a regeneration fluid 54 through a segment 26 for cleaning out the collected pollutants from the exhaust 55. An outlet 64 may provide for an exit of the cleaning or oxidizing fluid 54 from segment 26. The catalyst segments may be rotated to switch in another segment for regeneration. For instance, after the sixth segment 26 is regenerated, then the first segment 21 may be moved in and regenerated, and the exhaust may flow through the second to sixth segments 22-26. This rotation may continue with the second segment 22 being regenerated and the exhaust flowing through the remaining segments, and so on. Structure 65 may mechanically support the rotation of the segments and be a support for manifolds 19 and 58. Also, structure 65 may include a manifold and support of the input 63 and output 64 for the regeneration with fluid 54 of the segment in place for the regeneration. An analysis for the configuration 18 of the NAC 13 is noted below.
An aspect of the present system is the NOx regeneration (i.e., removal) or cleansing. The NOx regeneration process may be one of desorption and catalytic reduction of NOx by CO and HC (unburnt hydrocarbons) under controlled temperature, controlled CO and HC concentration and near-zero free oxygen conditions. Generally, in ordinary systems, all of the exhaust may be heated and the oxygen used up for short periods of time (about 2 to 5 seconds) at frequent intervals (every 60 seconds or so). In the present system, the regeneration flow may be independent of the exhaust flow. Regeneration flow may consist of controlled 1) diverted exhaust, 2) diverted EGR flow from upstream of the turbine, 3) fresh air diverted from the intake, or 4) fresh air supplied from an independent source. A control system for catalyst flow processes may thus be linked to a control system for the air/EGR flow processes, controlled by a VNT (variable nozzle turbine) turbocharger. Only a small portion of flow may be needed. Therefore, the amount of fuel needed to increase the temperature and use up all of the oxygen may be likewise very small. Thus, the impact on the fuel economy may be reduced significantly. Fuel may be burnt in commercially available burners (e.g., such burners for use in diesel exhaust may have been developed both for passenger car and heavy duty truck applications), or with the use of a small “pre-catalyst”.
Additionally, because regeneration flow rates are small, space velocity may be low and the efficiency of NOx reduction may be high. Space velocity is a measure of gas volume flow rate/catalyst volume. Higher space velocity for a given temperature and chemistry may usually mean lower catalyst efficiency. Diverted flow may be controlled to be a very low flow rate and may result in high efficiency for NOx desorption and reduction. One other benefit may deal with PM emissions. The state of the process of after-injection may result in very high PM emissions. These emissions may be trapped in the downstream CDPF 14, but this frequent high dose of PM may represent high back pressure, more forced CDPF regenerations—both of which may impose a fuel economy penalty. Thus, there may be more fuel saving to be had with the use of a controlled regeneration process, independent of the main exhaust flow rate. Previously, parallel flow paths may have been considered. One path may be trapping/catalyzing while the other is regenerating. This approach may make the regeneration process independent of the exhaust flow rate but may double the size of the catalyst. However, the present system may reduce the size of the catalyst to a size of “1/n”. There may be asymmetric flow paths.
Another aspect of the present system may be of the pre-catalyst 12. During an emissions test cycle, the first about 100 seconds of operation may be responsible for about 85 percent of the emissions, because during this time the catalyst may be too cold to be effective. The pre-catalyst may serve several functions—a fast warm-up of the catalytic system, and exhaust temperature and composition control by oxidizing unburnt fuel of secondary or post injections. The parallel regeneration flow stream described in a noted aspect of the present system may also be used for fast warm-up. The exhaust may be controlled to flow through one section of the NAC 13 during startup, while the other two sections are being heated to a desired temperature using very low flow rates resulting in a low fuel penalty. The pre-catalyst 12 may be eliminated. If instead of a burner, a catalytic device is used in the regeneration stream, then the size of the catalyst may be greatly reduced because of the low flow rates.
Still another aspect of the present system may involve SOx regeneration. Sulfur is present in diesel fuel. Oxides of sulfur may occupy the sites that the NOx would have occupied. Therefore, over a period of time, SOx poisoning may render the NAC 13 ineffective. SOx may be driven off by temperatures higher than those needed for NOx regeneration. With control of the regeneration temperature, independently of the exhaust temperature of the main flow rate, it may be possible to re-optimize the SOx/NOx regeneration process to occur in overlapping temperature windows.
Another aspect of the present system may involve CDPF regeneration. A particulate filter 67 at the tail end of the catalytic process may be a device to physically filter, trap and oxidize PM 66. It may continuously trap and oxidize—depending on the duty cycle/temperatures. Under prolonged light load driving conditions, the CDPF 14 may continuously accumulate trapped PM 66 without regeneration. This may impose a high back pressure and fuel economy penalty on the engine. “Forced regeneration” may have to be used imposing its own fuel penalty. In the present system, the CDPF 14 may be designed with segments, sections or chambers 68 and 69 like those of NAC 13 in
Under normal conditions, within a range of CDPF 14 self-cleaning temperatures, flow conditions may be like those of the CDPF as in
Applications of the present system may be with heavy duty diesel engines since they seem to be more sensitive to fuel economy than other kinds of engines. With ratios of catalyst/trap volumes to engine displacements being about 3 to 1, a 12 liter on-highway diesel engine may need 36 liters of catalyst. Other applications may include light trucks and passenger vehicles. The control box may communicate with the fuel controller on a similar level.
A model of a six-segmented catalyst, e.g., configuration 18 of the NAC 13 mentioned above and shown in
a and 14b are graphs of performance of a single segment catalyst system for a maximum load performance of c_input=1.
The performance of a multi-segment rotating catalyst is shown in
For the six-segment filter as noted above, the filter area of the catalyst is reduced to 0.9 and performance checked as shown by
a and 20b are graphs showing the impact of a reduced NOx input of 0.8 into the catalyst system with a reduced regeneration rate. The time axis is to 400 seconds versus 120 second in the immediate previous four graphs.
a and 21b are graphs showing the impact of the reduced NOx input (0.8) along with a reduced amount of precious metal in the catalyst segments. The time axis is at 120 seconds.
a and 22b are graphs showing the impact of a further reduced NOx input of 0.6 along with also a reduced amount of catalyst.
An NOx removal model may be established. ci may be the concentration of NOx (normalized to 1=maximum input); ni may be the number of adsorption sites (normalized to 1=fresh after regeneration); the catalyst may be divided into 5+1 elements/10 slices in each element; the residence time in each slice dx may be dt; diffusion and desorption may be neglected; the regeneration time may be 5 seconds; and a simple 1st order model may be used. The formulae may include:
ni(t+dt)=ni(t)−knni(t)ci(t)dt; and
ci+1(t=dt)=ci(t)−kcni(t)ci(t)dt.
There may be an impact of geometry of the catalyst model. For a geometry 1 or first geometry, the “thick” aspect ratio, kn, kc may be calibrated given an initial output (NOx=0.01) for a fully regenerated catalyst, and an average output NOx to trigger a regeneration (NOx=0.1) after a 60 second period. For a geometry 2 or second geometry, the “thin” aspect ratio, kn, kc may be calibrated given an initial output (NOx=0.001) for a fully regenerated catalyst, and an average output (NOx_avg=0.1) to trigger a regeneration after a 60 second period. The geometry 1 versus geometry 2 may be a different ratio between kn, kc, relative to depletion of the catalyst per unit NOx removed.
One may note the reference and rotatory geometries illustrated in
a and 26b are graphs revealing the NOx concentration for the first geometry of the catalyst.
a and 27b are graphs like those of
a and 29b are graphs showing a comparison of absorption sites depletion in time for the first and second geometries, respectively, of the catalyst system. At point 88 for t=60 seconds, the first geometry appears to have a slower depletion. At point 89 for t=60 seconds, the second geometry appears to have a faster depletion. The relative depletion rate may be expressed as kn1/kc1<kn2/kc2.
a and 31a reveal relative amounts of NOx versus time for a catalyst system with a catalyst reduction for the first and second geometries of the system, respectively. The regeneration period is 6 seconds. Point 91 in
b and 31b show adsorption sites depletion in space for a catalyst system with a catalyst reduction for the first and second geometries, respectively. Point 92 in
a and 32b are graphs showing absorption sites depletion in space for a multi-segment catalyst system with without and with flow direction switching, respectively. The spatial profiles 94 may be at one second without flow direction switching. The spatial profiles 95 may be at one second with flow direction switching. The regeneration may be at 6 seconds. There appears to be a more uniform depletion in the segments. The impact on catalyst reduction appears to be minimal.
a, 33b and 33c are graphs showing the relative amount of NOx in time, the relative amount NOx in space and absorption sites depletion in space for the second geometry of a system with a catalyst load of 40 percent. Point 96 of the graph in
a, 34b, 35a, 35b, 36a and 36b are graphs showing an impact of the segment regeneration order optimization for regenerating the segment attached last, attached first and sequentially in view of available adsorption sites in time and the relative amount of NOx particles, respectively, with regard to an achievable catalyst reduction for a multi-segment catalyst system. The system may be a six-segment catalyst having one of the segments being regenerated at a time while the remaining five segments are active. The saturation time of the segments may be 60 seconds while the regeneration time may be 12 seconds. Where the regeneration segment is attached last, the achievable catlayst reduction may be 0.9. Where the regeneration segment is attached first, the achievable catalyst reduction may be 0.96. In the case where the regeneration of the segments is done sequentially, the achievable catalyst reduction may be 0.96.
Although the invention has been described with respect to at least one illustrative embodiment, many variations and modifications will become apparent to those skilled in the art upon reading the present specification. It is therefore the intention that the appended claims be interpreted as broadly as possible in view of the prior art to include all such variations and modifications.
Number | Name | Date | Kind |
---|---|---|---|
3744461 | Davis | Jul 1973 | A |
4005578 | McInerney | Feb 1977 | A |
4055158 | Marsee | Oct 1977 | A |
4252098 | Tomczak et al. | Feb 1981 | A |
4383441 | Willis et al. | May 1983 | A |
4426982 | Lehner et al. | Jan 1984 | A |
4438497 | Willis et al. | Mar 1984 | A |
4456883 | Bullis et al. | Jun 1984 | A |
4485794 | Kimberley et al. | Dec 1984 | A |
4601270 | Kimberley et al. | Jul 1986 | A |
4653449 | Kamei et al. | Mar 1987 | A |
5044337 | Williams | Sep 1991 | A |
5076237 | Hartman et al. | Dec 1991 | A |
5089236 | Clerc | Feb 1992 | A |
5108716 | Nishizawa | Apr 1992 | A |
5123397 | Richeson | Jun 1992 | A |
5233829 | Komatsu | Aug 1993 | A |
5282449 | Takahashi et al. | Feb 1994 | A |
5349816 | Sanbayashi et al. | Sep 1994 | A |
5365734 | Takeshima | Nov 1994 | A |
5398502 | Watanabe | Mar 1995 | A |
5452576 | Hamburg et al. | Sep 1995 | A |
5477840 | Neumann | Dec 1995 | A |
5560208 | Halimi et al. | Oct 1996 | A |
5570574 | Yamashita et al. | Nov 1996 | A |
5598825 | Neumann | Feb 1997 | A |
5609139 | Ueda et al. | Mar 1997 | A |
5611198 | Lane et al. | Mar 1997 | A |
5690086 | Kawano et al. | Nov 1997 | A |
5692478 | Nogi et al. | Dec 1997 | A |
5746183 | Parke et al. | May 1998 | A |
5765533 | Nakajima | Jun 1998 | A |
5771867 | Amstutz et al. | Jun 1998 | A |
5785030 | Paas | Jul 1998 | A |
5788004 | Friedmann et al. | Aug 1998 | A |
5846157 | Reinke et al. | Dec 1998 | A |
5893092 | Driscoll | Apr 1999 | A |
5942195 | Lecea et al. | Aug 1999 | A |
5964199 | Atago et al. | Oct 1999 | A |
5974788 | Hepburn et al. | Nov 1999 | A |
6029626 | Bruestle | Feb 2000 | A |
6035640 | Kolmanovsky et al. | Mar 2000 | A |
6048620 | Zhong | Apr 2000 | A |
6055810 | Borland et al. | May 2000 | A |
6058700 | Yamashita et al. | May 2000 | A |
6067800 | Kolmanovsky et al. | May 2000 | A |
6076353 | Freudenberg et al. | Jun 2000 | A |
6105365 | Deeba et al. | Aug 2000 | A |
6153159 | Engeler et al. | Nov 2000 | A |
6161528 | Akao et al. | Dec 2000 | A |
6170259 | Boegner et al. | Jan 2001 | B1 |
6171556 | Burk et al. | Jan 2001 | B1 |
6178743 | Hirota et al. | Jan 2001 | B1 |
6178749 | Kolmanovsky et al. | Jan 2001 | B1 |
6216083 | Ulyanov et al. | Apr 2001 | B1 |
6237330 | Takahashi et al. | May 2001 | B1 |
6242873 | Drozdz et al. | Jun 2001 | B1 |
6263672 | Roby et al. | Jul 2001 | B1 |
6273060 | Cullen | Aug 2001 | B1 |
6279551 | Iwano et al. | Aug 2001 | B1 |
6312538 | Latypov et al. | Nov 2001 | B1 |
6321538 | Hasler | Nov 2001 | B2 |
6338245 | Shimoda et al. | Jan 2002 | B1 |
6347619 | Whiting et al. | Feb 2002 | B1 |
6360159 | Miller et al. | Mar 2002 | B1 |
6360541 | Waszkiewicz et al. | Mar 2002 | B2 |
6360732 | Bailey et al. | Mar 2002 | B1 |
6379281 | Collins et al. | Apr 2002 | B1 |
6425371 | Majima | Jul 2002 | B2 |
6427436 | Allansson et al. | Aug 2002 | B1 |
6431160 | Sugiyama et al. | Aug 2002 | B1 |
6463733 | Asik et al. | Oct 2002 | B1 |
6463734 | Tamura et al. | Oct 2002 | B1 |
6470682 | Gray, Jr. | Oct 2002 | B2 |
6470886 | Cook | Oct 2002 | B1 |
6497848 | Deeba et al. | Dec 2002 | B1 |
6502391 | Hirota et al. | Jan 2003 | B1 |
6512974 | Houston et al. | Jan 2003 | B2 |
6546329 | Bellinger | Apr 2003 | B2 |
6560528 | Gitlin et al. | May 2003 | B1 |
6571191 | York et al. | May 2003 | B1 |
6579206 | Liu et al. | Jun 2003 | B2 |
6612293 | Schweinzer et al. | Sep 2003 | B2 |
6625978 | Eriksson et al. | Sep 2003 | B1 |
6629408 | Murakami et al. | Oct 2003 | B1 |
6647710 | Nishiyama et al. | Nov 2003 | B2 |
6647971 | Vaughan et al. | Nov 2003 | B2 |
6671603 | Cari et al. | Dec 2003 | B2 |
6672060 | Buckland et al. | Jan 2004 | B1 |
6679050 | Takahashi et al. | Jan 2004 | B1 |
6687597 | Sulatisky et al. | Feb 2004 | B2 |
6705084 | Allen et al. | Mar 2004 | B2 |
6742330 | Genderen | Jun 2004 | B2 |
6758037 | Terada et al. | Jul 2004 | B2 |
6789533 | Hashimoto et al. | Sep 2004 | B1 |
6820414 | Stroia et al. | Nov 2004 | B2 |
6823667 | Braun et al. | Nov 2004 | B2 |
6823675 | Brunell et al. | Nov 2004 | B2 |
6826903 | Yahata et al. | Dec 2004 | B2 |
6827061 | Nytomt et al. | Dec 2004 | B2 |
6989045 | Bailey et al. | Jan 2006 | B2 |
7029634 | Sherwood, Jr. | Apr 2006 | B2 |
7052532 | Liu et al. | May 2006 | B1 |
7171801 | Verkiel et al. | Feb 2007 | B2 |
20010002591 | Majima | Jun 2001 | A1 |
20020029564 | Roth et al. | Mar 2002 | A1 |
20020056434 | Flamig-Vetter et al. | May 2002 | A1 |
20020073696 | Kuenstler et al. | Jun 2002 | A1 |
20020098975 | Kimura et al. | Jul 2002 | A1 |
20020170550 | Mitsutani | Nov 2002 | A1 |
20020173919 | Moteki et al. | Nov 2002 | A1 |
20020184879 | Lewis | Dec 2002 | A1 |
20020194835 | Bromberg et al. | Dec 2002 | A1 |
20030022752 | Liu et al. | Jan 2003 | A1 |
20030041590 | Kitajima et al. | Mar 2003 | A1 |
20030089101 | Tanaka et al. | May 2003 | A1 |
20030101713 | Dalla Betta et al. | Jun 2003 | A1 |
20030120410 | Cari et al. | Jun 2003 | A1 |
20030143957 | Lyon | Jul 2003 | A1 |
20030145837 | Esteghlal et al. | Aug 2003 | A1 |
20030150422 | Huh | Aug 2003 | A1 |
20030172907 | Nytomt et al. | Sep 2003 | A1 |
20030200016 | Spillane et al. | Oct 2003 | A1 |
20030213465 | Fehl et al. | Nov 2003 | A1 |
20030221679 | Surnilla | Dec 2003 | A1 |
20030225507 | Tamura | Dec 2003 | A1 |
20040006973 | Makki et al. | Jan 2004 | A1 |
20040007211 | Kobayashi | Jan 2004 | A1 |
20040007217 | Poola et al. | Jan 2004 | A1 |
20040025837 | Hunt et al. | Feb 2004 | A1 |
20040034460 | Folkerts et al. | Feb 2004 | A1 |
20040040283 | Yasui et al. | Mar 2004 | A1 |
20040040287 | Beutel et al. | Mar 2004 | A1 |
20040050037 | Betta et al. | Mar 2004 | A1 |
20040055278 | Miyoshi et al. | Mar 2004 | A1 |
20040060284 | Roberts, Jr. et al. | Apr 2004 | A1 |
20040074226 | Tanaka | Apr 2004 | A1 |
20040089279 | McLaughlin et al. | May 2004 | A1 |
20040112335 | Makino et al. | Jun 2004 | A1 |
20040118117 | Hartman et al. | Jun 2004 | A1 |
20040128058 | Andres et al. | Jul 2004 | A1 |
20040129259 | Mitsutani | Jul 2004 | A1 |
20040134464 | Mogi | Jul 2004 | A1 |
20040135584 | Nagy et al. | Jul 2004 | A1 |
20040139735 | Zhu | Jul 2004 | A1 |
20040139951 | Fisher et al. | Jul 2004 | A1 |
20040216448 | Brillant et al. | Nov 2004 | A1 |
20040249558 | Meaney | Dec 2004 | A1 |
Number | Date | Country |
---|---|---|
19835565 | Feb 2000 | DE |
10137050 | Feb 2002 | DE |
10219382 | Nov 2002 | DE |
1221544 | Jul 2002 | EP |
59190443 | Oct 1984 | JP |
0232552 | Apr 2002 | WO |
WO 02101208 | Dec 2002 | WO |
03065135 | Aug 2003 | WO |
WO 2004027230 | Apr 2004 | WO |
03050398 | May 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20060101812 A1 | May 2006 | US |