The present Application claims priority to PCT/FR2008/050906 filed May 26, 2008 and French Application No. 0755261 May 25, 2007.
None.
None.
None.
(1) Field of the Invention
The present invention relates generally to motor vehicle exhaust lines.
(2) Description of Related Art
More precisely, the invention relates to an exhaust chamber for a motor vehicle exhaust line, of the type comprising:
Such an exhaust chamber is known from FR-04 13087, which further describes that the secondary enclosure is filled with a heat insulating material.
Because that exhaust chamber is thermally insulated in only some areas, namely the areas covered by the saucer-shaped shell, the different parts of the exhaust chamber exhibit heterogeneous thermomechanical behaviour. Under some extreme operating conditions, unacceptable deformations and cracks may appear in the exhaust chamber.
Within that context, the object of the invention is to propose an exhaust chamber having better thermomechanical behaviour.
To that end, the invention relates to an exhaust chamber of the above-mentioned type, characterized in that the main envelope has, in a first area located beneath the shell, at least one slot for increasing the elasticity of said first area, and/or the main envelope has, in a second area that is not covered by the shell, at least one rib for increasing the stiffness of said second area.
The exhaust chamber can also exhibit one or more of the following features, considered individually or in all technically possible combinations:
Other features and advantages of the invention will become apparent from the detailed description thereof which is given below, by way of example and without implying any limitation, with reference to the accompanying drawings, in which:
The exhaust chamber 1 shown in
The silencer 1 is of the type described in patent application FR-04 13087. It comprises, as shown in
The main envelope 2 comprises a rolled sleeve 26 which defines mutually opposite upstream and downstream openings, an upstream plate 28 carrying the gas inlet 6 and closing off the upstream opening, and a downstream plate 29 carrying the exhaust gas outlet 8 and closing off the downstream opening. The sleeve 26 is composed of a generally rectangular sheet metal blank (
The inlet tube 10 extends substantially parallel to the central axis X and passes, in succession, through the end plate 28, the compartment 14, the plate 12, the compartment 16 and the plate 13. The tube is connected at one end to the upstream part of the exhaust line and opens at its opposite end inside the compartment 18. As is shown in
The outlet tube 11 is connected at one end to the downstream part of the exhaust line and opens at its opposite end into the first compartment 14. It extends substantially parallel to the central axis X. The tube passes, in succession, through the plate 12, the compartment 16, the plate 13, the compartment 18 and the downstream end plate 29. The tube 11 also has small lateral orifices 33, which place the inside of the tube 11 in communication with the compartment 16.
The plates 12 and 13 are additionally provided with a plurality of small orifices 34 which place the compartments in communication with one another. The inner plates 12 and 13 can also be provided with orifices of a larger size, some of which can be closed by valves which open selectively according to the pressure differences between the compartments 14, 16 and 18.
The shell 20 is typically formed by an embossed sheet shaped by folding, pressing or swaging. As is shown in
The shell 20, with the main envelope 2, defines a secondary enclosure 40 (
The shell 20 extends over the whole of the axial length of the sleeve 26. It covers the upper face 42 and the upper part of the left-hand lateral face 44 of the sleeve. Accordingly, the curved edges 38 are arranged immediately adjacent to the upstream and downstream plates 28 and 29. The straight edges 36 are arranged so that they cover the slots and perforations of the main envelope. One of the edges 36 is located, for example, at the top of the right-hand lateral face 46 and the other is located at the bottom of the left-hand lateral face 44 of the sleeve.
Beneath the shell 20, the sleeve 26 has a plurality of perforations 48 for placing the main enclosure 4 in communication with the secondary enclosure 40. These perforations are visible in
The perforations 48 are grouped together in three separate areas 50, 50′ and 50″, which are separated from one another by unperforated strips which are substantially parallel to the curved edges 38. The area 50 is located between the plate 12 and the orifices 32 of the tube 10. The area 50′ extends between the orifices 32 and the plate 13. The area 50″ extends close to the plate 13, on the side of the compartment 18.
In order to improve the thermomechanical behaviour of the silencer, the main envelope has, in an area located beneath the shell 20, three slots 52, 54 and 56 and, in another area that is not covered by the shell 20, four ribs 58, 60, 62 and 64.
The slots 52, 54, 56 are parallel to one another and each extend in a plane perpendicular to the central axis X of the sleeve 26. They are spaced at regular intervals from one another. They extend across the greater part of the area of the sleeve 26 that is covered by the shell 20. Preferably, they extend virtually from one straight edge 36 to the other straight edge 36, their ends stopping substantially 20 mm to 50 mm from the edges 36.
Each slot has a width of from 1 mm to 10 mm, preferably from 3 mm to 5 mm.
The slots 52, 54 and 56 can each be continuous or alternatively, as is shown in
As will be seen in
The slot 54 is provided in the part of the sleeve 26 that defines the compartment 18. It extends close to the inner plate 13 but is slightly offset axially towards the downstream end tray 29 relative to the plate 12.
The slot 52 is provided in the part of the sleeve 26 that defines the compartment 16. It is arranged in alignment with the lateral orifices 32 of the inlet tube 10, placing the inside of the tube 10 in direct communication with the compartment 16.
Located in alignment is here understood as meaning that the slot 52 and the orifices 32 are located substantially at the same level axially.
The slot 52 is located between the perforated areas 50 and 50′ of the sleeve 26. The slot 54 passes through the perforated area 50″ and divides it into two parts.
The ribs 58, 60, 62 and 64 extend over substantially the whole of the longitudinal length of the silencer. They project towards the outside of the sleeve 26 and have a height of from 3 mm to 5 mm relative to the surface of the sleeve. They have a width of from 5 mm to 15 mm, preferably from 8 mm to 12 mm. The rib 64 is located on the right-hand lateral face 46 of the sleeve, immediately beneath the straight edge 36 of the shell (
As is shown in
The exhaust chamber described above has many advantages.
The thermomechanical behaviour of the exhaust chamber is better because the main envelope has, in a first area located beneath the shell, at least one slot and/or, in a second area that is not covered by the shell, at least one rib. The slots enable the elasticity of the first area to be increased, and the ribs enable the stiffness of the second area to be increased.
The slots are advantageously arranged in the hottest areas of the main envelope, especially in alignment with the end through which the exhaust gas inlet conduit opens into the main enclosure, and in alignment with the small lateral orifices by which the inside of the inlet conduit communicates with the compartment 16.
The slots 52, 54 and 56 are spaced at regular intervals so that the behaviour of the exhaust chamber, from a thermomechanical point of view, is as homogeneous as possible. They are arranged across considerable temperature gradients.
The slots are arranged in the parts of the sleeve that are subjected to pronounced stress variations due to thermomechanical stress.
The slots are offset sufficiently with respect to the inner plates of the main envelope that they do not impair the fixing of the inner plates to the sleeve. The ends of the slots are also offset sufficiently from the peripheral edge of the shell so that they do not interfere with the fixing of said shell to the sleeve.
The fact that the slots are produced in the form of discontinuous segments has the advantage of presenting less of a hindrance to the fitting of the inner plates 12 and 13 inside the sleeve, as compared with the case where the slots are continuous.
The ribs 58, 60, 62 and 64 enable the areas of the main envelope that are not insulated to be stiffened. Two of the ribs are located close to the two straight edges of the shell welded to the sleeve, in order effectively to stiffen that area so as to limit weld separation.
The exhaust chamber can have many variants.
Accordingly, the main envelope can have only slots and no ribs or, alternatively, it can have only stiffening ribs and no slots.
The number of slots can be variable and can be less than or more than three. The number of ribs can likewise be variable and can be less than or more than four. Accordingly, as is shown in
It is possible for the sleeve to have a cross-section that is not tapered as is shown in
It is possible for the main envelope not to be composed of a rolled sleeve and plates attached to the sleeve. For example, it can be composed of two dish-shaped half-shells fixed rigidly to one another. The sleeve, when it is rolled, can be closed by any means other than crimping or welding.
The upstream and downstream plates can likewise be replaced by convergent and divergent tubular profiles.
It is possible for the slots 52, 54 and 56 not to be parallel to one another. They can likewise not extend in planes perpendicular to the main axis of the sleeve. When the sleeve is opened out, they can have curved portions.
It is possible for the ribs 58, 60, 62 and 64 to extend not parallel to the central axis of the sleeve but obliquely. The ribs can be not parallel to one another. They can comprise curved portions.
The slots and ribs can be located, as required, in locations other than those shown in
It is possible for the exhaust chamber not to be a silencer. For example, it can comprise a particle filter and/or a catalyst inside the main enclosure.
Number | Date | Country | Kind |
---|---|---|---|
07 55261 | May 2007 | FR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FR2008/050906 | 5/26/2008 | WO | 00 | 4/6/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/149040 | 12/11/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4865154 | Hanson et al. | Sep 1989 | A |
4941545 | Wilcox et al. | Jul 1990 | A |
5187334 | Abbott et al. | Feb 1993 | A |
5229557 | Allman et al. | Jul 1993 | A |
5563383 | Harwood | Oct 1996 | A |
5563385 | Harwood | Oct 1996 | A |
5859394 | Seehaus et al. | Jan 1999 | A |
6257367 | Allman | Jul 2001 | B1 |
Number | Date | Country |
---|---|---|
1268668 | Apr 1961 | FR |
2878894 | Jun 2006 | FR |
2006061489 | Jun 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20100193284 A1 | Aug 2010 | US |