The subject invention relates to an exhaust component, such as a muffler for example, which provides a fully packed noise reduction capability without requiring a fully packed configuration.
A vehicle exhaust system component, such as a muffler for example, transmits exhaust gases through an exhaust component body from an inlet to an outlet. Typically, fibrous material such as fiberglass, Basalt, etc., is incorporated into the exhaust component body to reduce noise transmissions that are generated as exhaust gases flow from the inlet to the outlet. The material is used to fill all open space within an internal cavity defined within the exhaust component body to provide a fully packed configuration.
One disadvantage with fully filling the cavity with this material is cost and increased weight. Further, installing this material within the exhaust component body is time consuming and difficult to handle within the production process.
A vehicle exhaust component provides a fully packed noise reduction capability without requiring a fully packed configuration.
In one example, the exhaust component comprises an exhaust body having first and second opposing ends and which defines an internal cavity with an inlet and an outlet. Exhaust gases are directed through the exhaust body from the inlet to the outlet. The exhaust body is defined by a plurality of dimensions with one of the plurality of dimensions comprising a longest dimension. A pack is positioned within the internal cavity at a pack distance that is at least 20% from either of the first and second opposing ends along an axis defined by the longest dimension. In a further example, the pack distance is within a range of 20% to 60%.
In one example, the pack comprises a body of compressed fibrous material formed as a single-piece. The body can be placed within one of a plurality of pack positions within the specified ranges to provide a desired noise reduction.
In another example, the pack has a thickness defined in a direction along the axis defined by the longest dimension wherein the thickness is no more than 25% of the longest dimension. In a further contemplated example, the thickness is within a range of 2% to 25%.
In another example, at least one perforated pipe is positioned within the internal cavity and the pack is mounted around an outer surface of the perforated pipe to extend along a substantial length of the perforated pipe. In this example, the pack fills no more than 50% of a total open cross-sectional area of the internal cavity to leave a gap between an outer surface of the pack and an inner wall surface of the exhaust body.
In one example, a baffle is located within the internal cavity. The pack is attached to the baffle.
In another example, at least one ¼ wave tuner is located within the internal cavity. The ¼ wave tuner cooperates with the pack to further reduce undesirable noise.
An example method of assembling the pack within the exhaust component includes the steps of defining a plurality of pack positions within the internal cavity, selecting at least one pack position based upon a desired noise reduction parameter, and positioning at least one pack in the selected pack position. Examples of pack positions are described above.
These and other features of the present invention can be best understood from the following specification and drawings, the following of which is a brief description.
As shown in
In one example, the exhaust body 14 comprises an outer shell of a muffler. The pack 12 is installed within the internal cavity 20 of the muffler to provide the desired noise reduction parameter. The positioning of the pack 12 will be discussed in greater detail below.
The pack 12 is comprised of a fibrous material such as fiberglass, Basalt, etc. that is used within exhaust components. In the example shown, the pack 12 comprises a disc body that is formed from the fibrous material and which is compacted or contained as a single piece. This single piece is easily installed within the internal cavity 20 at the desired pack position.
The exhaust body is defined by a plurality of dimensions such as a length L, a height H, and a width W (
The exhaust body 14 is shown in this example as a circular tube with the pack 12 comprising a corresponding circular, disc-shaped body. It should be understood that the exhaust body and pack 12 could be formed to have other shapes, such as oval, square, or rectangular for example.
Another important characteristic of the pack 12 that cooperates with optimal pack position to further improve noise reduction is the thickness T of the pack 12. In one example, the pack 12 has a thickness T defined along the axis A that is no more than 25% of the length L. In a further example, the thickness T is defined within a range of 2% to 25% of the length L.
Another important characteristic of the pack 12 that cooperates with optimal pack position and pack thickness T to further improve noise reduction is the density of the fibrous material used to form the pack 12. In one example, the pack 12 is comprised of a fibrous material having a density within a range of 10 to 150 grams per liter.
As shown in
In the example shown in
The pack 12 is attached through use of a containment member 64 such as a perforated sheet metal and/or wire mesh that would completely contain the fibrous material but would be porous enough to be acoustically transparent. In one example, the containment member 64 is at least 20% porous. The density, location, and thickness of the pack 12 would be similar to that discussed above.
The pack includes an outer containment structure 84 that surrounds an outer surface of the pack 80. The outer containment structure 84 comprises a wire mesh tube, a perforated tube, a continuous wound fiber, a pre-form fiber that may or may not be resin impregnated, or other similar containment structures. The outer containment structure 84 is spaced apart from the internal wall of the cavity 20 by a gap 88. The thickness of the pack 80 is configured such that no more than 50% of the total cross-sectional area of the internal cavity 20 (less the cross-section of the flow pipe 70) is filled by the pack 80. One particularly beneficial configuration fills the internal cavity 20 within a range of 20% to 25%. Optionally, a second pack 90, similar to the pack 12 discussed above, can be positioned within the internal cavity 20 to surround the flow pipe 70. Further, the pack 80 and flow pipe 70 can be utilized in combination with any of the configurations discussed above.
As known, a fully compact exhaust component, such as a muffler, provides significant noise reduction compared to an empty muffler. The configurations set forth above, provide similar noise reduction characteristics and parameters as those found in a fully packed muffler but which significantly reduce the amount of packing material. This results in cost reductions and facilitates assembly.
Further, test results have proven that reducing pack size and locating the pack within certain predefined areas provides noise reduction capability that is comparable to a fully packed condition. The pack suppresses and/or dampens standing waves at discrete higher frequency levels. The pack is located in these areas where the velocities are higher than other areas within the muffler. The pack is not located in areas where velocities are lower. As a significant portion of the noise is generated at the higher frequency/higher velocity areas, locating the pack at these specific areas allows material to be removed from other areas without adversely affecting noise reduction.
The tuners were used in combination with the pack to further reduce noise for certain applications. Using these tuners alone can provide inconsistent results because subtle variations can cause significant changes in the transmission loss. Further, at high frequencies, such as higher that 1600 Hz, the ¼ tuners have been found not to provide sufficient noise suppression. However, when the pack is used in combination with a ¼ wave tuner a configuration is provided that has the benefits of both within a common muffler.
Further, optimized damping can be accomplished by installing the packing material within the ¼ wave tuner. The amount of packing within the tuner can be varied as needed to provide a desired result. In one example, 10-20 mm of material provides a good balance between the negative and positive benefits of damping the standing wave and the ¼ wave. Although a preferred embodiment of this invention has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.