The present application claims priority under 35 USC 119 to Japanese Patent Application No. 2010-042257 filed on Feb. 26, 2010 the entire contents of which are hereby incorporated by reference.
1. Field of the Invention
The present invention relates to an exhaust device of an internal combustion engine which is adapted to discharge the exhaust gas of the engine through an exhaust pipe.
2. Description of Background Art
A conventional exhaust device for an internal combustion engine is known wherein first and second partition-wall plates are disposed in a muffler to define first, second and third expansion chambers. Connection pipes are disposed to allow the first, second and third expansion chambers to communicate with each other. An acoustic absorption material is attached to the outer circumference of the connection pipe and the outer circumference of the acoustic absorption material is covered with punching metal. In this way, a reduction in exhaust sound is intended. See, for example, Japanese Patent Publication No. Hei 7-88771.
An exhaust device for an internal combustion engine is known wherein an expansion chamber is disposed on the exhaust downstream side of an exhaust gas collection portion where a plurality of exhaust pipes are assembled. In this way, the occurrence of a torque valley is suppressed. See, for example, Japanese Patent Laid-Open No. 2007-162653.
In addition, the exhaust devices of an internal combustion engine described in Japanese Patent Publication No. Hei 7-88771 and Japanese Patent Laid-Open No. 2007-162653 can achieve only one of a reduction in exhaust sound and the suppression of occurrence of a torque valley. Therefore, an exhaust device of an internal combustion engine that can achieve both is required.
The present invention has been made in view of the situations described above and aims to provide an exhaust device of an internal combustion engine that can achieve both a reduction in the exhaust sound and the suppression of occurrence of a torque valley.
To achieve the above object according to an embodiment of the present invention, an exhaust device of an internal combustion engine is provided that is adapted to discharge exhaust gas of the engine through an exhaust pipe, by including a sound-deadening and pressure-dissipating device connected to a downstream end of the exhaust pipe. The sound-deadening and pressure-dissipating device includes a spherical member having an opening portion opening toward a downstream edge of the exhaust pipe. The exhaust gas from the exhaust pipe is made to be reflected by an inner spherical surface of the spherical member to reduce exhaust pressure in the spherical member and then is discharged from the opening portion.
According to an embodiment of the present invention, the opening portion of the spherical member is disposed at a position on the upstream side of the downstream edge of the exhaust pipe as viewed from the side.
According to an embodiment of the present invention, the opening portion of the spherical member is disposed at the same position as the downstream edge of the exhaust pipe as viewed from the side.
According to an embodiment of the present invention, the opening portion of the spherical member is disposed at a position away from the downstream edge of the exhaust pipe as viewed from the side.
According to an embodiment of the present invention, the sound-deadening and pressure-dissipating device includes a plurality of the spherical members. The plurality of spherical members are arranged in series along the flow of exhaust gas.
According to an embodiment of the present invention, a muffler is adapted to reduce exhaust sound and the sound-deadening and pressure-dissipating device is provided integrally with the muffler.
According to an embodiment of the present invention, the sound-deadening and pressure-dissipating device includes a housing which houses the spherical member and an end portion. On the exhaust pipe side, the housing is formed in such a tapered shape as to be progressively narrowed as the end portion goes toward the exhaust pipe as viewed from the side.
According to an embodiment of the present invention, the muffler is connected to the downstream side of the sound-deadening and pressure-dissipating device.
According to an embodiment of the present invention, the exhaust device includes a sound-deadening and pressure-dissipating device connected to the downstream end of the exhaust pipe. The sound-deadening and pressure-dissipating device includes the spherical member having the opening portion opening toward a downstream edge of the exhaust pipe. The exhaust gas from the exhaust pipe is made to be reflected by the inner spherical surface of the spherical member to reduce exhaust pressure in the spherical member and then is discharged from the opening portion. In this way, the exhaust gas can be made to interfere with each other to self-dissipate exhaust pressure, exhaust sound and exhaust heat. Thus, the exhaust sound can be reduced. Further, exhaust gas can be expanded in the spherical member to reduce back pressure. Therefore, exhaust gas can be discharged smoothly, which can suppress the occurrence of a torque valley.
According to an embodiment of the present invention, the opening portion of the spherical member is disposed at a position on the upstream side of the downstream edge of the exhaust pipe as viewed from the side. Therefore, the exhaust device emphasizing a reduction in exhaust sound can be provided.
According to an embodiment of the present invention, the opening portion of the spherical member is disposed at the same position as the downstream edge of the exhaust pipe as viewed from the side. Therefore, the exhaust device combining a reduction in exhaust sound and the suppression of occurrence of a torque valley can be provided.
According to an embodiment of the present invention, the opening portion of the spherical member is disposed at a position away from the downstream edge of the exhaust pipe as viewed from the side. Therefore, the exhaust device emphasizing the suppression of the occurrence of a torque valley can be provided.
According to an embodiment of the present invention, the sound-deadening and sound-dissipating device includes a plurality of the spherical members, which are arranged in series along the flow of exhaust gas. Therefore, the individual members can be downsized.
According to an embodiment of the present invention, the exhaust device including the muffler adapted to reduce exhaust sound and the sound-deadening and sound-dissipating device is provided integrally with the muffler. Therefore, a dedicated part used to attach the sound-deadening and pressure-dissipating device to a vehicle is not needed. Thus, the number of parts can be reduced to reduce manufacturing costs. Since the sound-deadening and sound-dissipating device and the muffler are configured integrally with each other, the external appearance of the exhaust device can be enhanced.
According to an embodiment of the present invention, the sound-deadening and pressure-dissipating device includes a housing which houses the spherical member and the end portion, on the exhaust pipe side, of the housing is formed in such a tapered shape so as to be progressively narrowed as it goes toward the exhaust pipe as viewed from the side. Thus, exhaust gas from the opening portion of the spherical member can be made to flow to the muffler smoothly. Thus, the interference of exhaust-gas flows can be suppressed.
According to an embodiment of the present invention, the muffler is connected to the downstream side of the sound-deadening and pressure-dissipating device. Therefore, both the sound-deadening and pressure-dissipating device and the muffler can reduce exhaust sound. Thus, the sound-deadening performance of the exhaust device can further be enhanced.
Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus are not limitative of the present invention, and wherein:
An embodiment of an exhaust device according to the present invention will hereinafter be described in detail with reference to the drawings. It is to be noted that the drawings shall be viewed based on the direction of reference numerals. In addition, in the following description, the front and back or rear, the left and right, and upside and downside are based on the direction a driver looks. The front, back or rear, left, right, upside and downside of a vehicle are denoted with symbols “Fr,” “Rr,” “L,” “R,” “U” and “D,” respectively.
Referring to
The motorcycle 10 includes a front fork 21 steerably supported by the head pipe 12 with a front wheel WF rotatably supported by the lower end of the front fork 21. A steering handlebar 22 is attached to the upper end of the front fork 21 with a swing arm 23 swingably supported by the pivot frame 14. A rear wheel WR is rotatably supported by the rear end of the swing arm 23 with a rear wheel suspension device 40 allowing the pivot frame 14 to suspend the swing arm 23. A seat 25 is mounted onto the rear frames 15. In addition, in
As illustrated in
As illustrated in
Referring to
Referring to
As illustrated in
As illustrated in
The spherical member 90 is supported by a support member 92 as if it floats in the air in the first through third housings 81 to 83. The support member 92 includes a circular plate portion 92a held between the attachment flange 81a of the first housing 81 and the third housing 83; and three leg portions 92b extending radially inwardly from the inner circumferential edge of the circular plate portion 92a and joined to the outer circumferential surface of the spherical member 90. The outer circumferential surface of the spherical member 90, the inner circumferential edge of the circular plate portion 92a, and the edge portions of the three leg portions 92b define an exhaust-gas flow port 92c adapted to allow exhaust gas to flow from the first housing 81 side to the second housing 82 side.
In the present embodiment, as illustrated in
In the exhaust device 70 configured as set forth above, exhaust gas discharged from the downstream edge 71a of the exhaust pipe 71 into the spherical member 90 is reflected by an inner spherical surface 90a in the spherical member 90 to reduce exhaust pressure in the spherical member 90. Thereafter, the exhaust gas is discharged from the opening portion 91 of the spherical member 90, flowing toward the second housing 82 via the exhaust-flow port 92c, and is led into the muffler 73. In this way, the exhaust gas can be made to interfere with each other in the spherical member 90. Thus, exhaust pressure, exhaust sound and exhaust heat can be self-dissipated.
As described above, in the exhaust device 70 of the internal combustion engine 50 according to the present embodiment, the sound-deadening and pressure-dissipating device 72 joined to the downstream end of the exhaust pipe 71 includes the spherical member 90 having the opening portion 91 opening toward the downstream edge 71a of the exhaust pipe 71. Exhaust gas from the exhaust pipe 71 is made to be reflected by the inner spherical surface 90a of the spherical member 90 to reduce exhaust pressure in the spherical member 90 and then is discharged from the opening portion 91. In this way, the exhaust gas is made to interfere with each other in the spherical member 90, which can self-dissipate exhaust pressure, exhaust sound and exhaust heat. Thus, exhaust sound can be reduced. Further, exhaust gas can be expanded in the spherical member 90 to reduce back pressure, which can make it possible to discharge the exhaust gas smoothly. Thus, it is possible to suppress the occurrence of a torque valley.
In the exhaust device 70 of the internal combustion engine 50 in the present embodiment, the opening portion 91 of the spherical member 90 is disposed at a position on the upstream side of the downstream edge 71a of the exhaust pipe 71 as viewed from the side. Thus, it is possible to provide the exhaust device 70 emphasizing a reduction in exhaust sound.
In the exhaust device 70 of the internal combustion engine 50 in the present embodiment, since the sound-deadening and pressure-dissipating device 72 is provided integrally with the muffler 73, a dedicated part used to attach the sound-deadening and pressure-dissipating device 72 to the vehicle 10 is not needed. Thus, the number of parts can be reduced to reduce manufacturing costs. Since the sound-deadening and pressure-dissipating device 72 and the muffler 73 can be configured integrally with each other, the external appearance of the exhaust device 70 can be enhanced.
In the exhaust device 70 of the internal combustion engine 50 in the present embodiment, the sound-deadening and pressure-dissipating device 72 includes the first through third housings 81 to 83 housing the spherical member 90 therein. In addition, the first housing 81 is formed at the exhaust pipe 71 side end with the tapered portion 81b which is progressively narrowed as it goes toward the exhaust pipe 71 as viewed from the side. Therefore, it is possible to allow the exhaust gas from the opening portion 91 of the spherical member 90 to smoothly flow into the muffler 73. Thus, the interference of exhaust-gas flow can be suppressed.
In the exhaust device 70 of the internal combustion engine 50 in the present embodiment, the muffler 73 is joined to the downstream end of the sound-deadening and pressure-dissipating device 72. Therefore, exhaust sound can be reduced in both the sound-deadening and pressure-dissipating device 72 and the muffler 73. Thus, the sound-deadening performance of the exhaust device 70 can further be enhanced.
Referring to
According to the present modification, the opening portion 91 of the spherical member 90 is disposed at the same position as the downstream edge 71a of the exhaust pipe 71 as viewed from the side. Therefore, the exhaust device 70 combining a reduction in exhaust sound and the suppression of the occurrence of a torque valley can be provided.
Referring to
According to the present modification, the opening portion 91 of the annular member 90 is disposed at the position away from the downstream edge 71a of the exhaust pipe 71. Thus, the exhaust device 70 emphasizing the suppression of the occurrence of a torque valley can be provided.
Referring to
According to the present modification, the two spherical members 90 are arranged in series along the flow of exhaust gas; therefore, the individual members can be downsized.
In addition, the present invention is not limited to the exemplifications in the embodiment described above but can be appropriately modified in a range not departing from the gist of the present invention.
For example, in the present embodiment, the muffler 73 is coupled to the downstream end of the sound-deadening and pressure-dissipating device 72. However, the present invention is not limited to this. The muffler 73 may not be installed.
Additionally, the exhaust pipe side end portion may not be tapered in shape but may be of e.g. a straight pipe with the same shape.
The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2010-042257 | Feb 2010 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
2906364 | Crouch et al. | Sep 1959 | A |
3704763 | Becker et al. | Dec 1972 | A |
20070137189 | Kikuchi et al. | Jun 2007 | A1 |
Number | Date | Country |
---|---|---|
02185614 | Jul 1990 | JP |
03246312 | Nov 1991 | JP |
7-88771 | Sep 1995 | JP |
2007-162653 | Jun 2007 | JP |
Number | Date | Country | |
---|---|---|---|
20110209942 A1 | Sep 2011 | US |