This application is a National Stage of International Application No. PCT/JP2016/003958 filed Aug. 30, 2016, claiming priority based on Japanese Patent Application No. 2015-170156 filed Aug. 31, 2015, the disclosure of which is incorporated in its entirety.
The present invention relates to an exhaust diffuser.
Conventionally, an exhaust diffuser that converts the dynamic pressure of exhaust gas from a turbine into static pressure is disposed downstream of the turbine. For example, Patent Literature 1 discloses an exhaust diffuser incorporated in a gas turbine engine.
In the exhaust diffuser disclosed in Patent Literature 1, an internal cylinder and an external cylinder are coupled together by a plurality of struts. Between the internal cylinder and the external cylinder, an exhaust passage expanding from front to rear is formed. Each strut is plate-shaped in the same manner, and the struts are arranged at a regular angular pitch on the same circumference.
PTL 1: Japanese Laid-Open Patent Application Publication No. 2014-77441
There are cases where some of the plurality of struts are formed to be tubular, and pipes or the like are passed through such tubular struts. However, in a case where some of the struts are made tubular and thick, pressure loss is great in a region where such tubular struts are present.
In view of the above, an object of the present invention is to provide an exhaust diffuser that includes a tubular strut and that is capable of reducing the pressure loss caused by the tubular strut.
In order to solve the above-described problems, an exhaust diffuser according to one aspect of the present invention includes: an internal cylinder; an external cylinder that forms an exhaust passage between the internal cylinder and the external cylinder, the exhaust passage expanding from front to rear; and at least one tubular strut that couples the internal cylinder and the external cylinder together. The external cylinder includes: a front conical portion that is positioned forward of the tubular strut; and an outer flaring portion that starts flaring at a positon forward of the tubular strut at an inclination angle that is greater than an inclination angle of the front conical portion. The internal cylinder includes: a front straight portion that faces the front conical portion and the outer flaring portion; and an inner flaring portion that starts flaring at a position between a maximum width portion and a trailing edge of the tubular strut.
The term “front” or “forward” herein refers to one side of the exhaust diffuser in its axial direction (the upstream side of a flow of exhaust gas), and the term “rear” or “rearward” herein refers to the other side of the exhaust diffuser in the axial direction (the downstream side of the flow of exhaust gas).
According to the above configuration, since the exhaust passage is expanded by the outer flaring portion at a position forward of the tubular struts, the exhaust gas flowing through the exhaust passage flows into between the tubular struts after the velocity of the exhaust gas is sufficiently reduced. This makes it possible to reduce pressure loss near leading edges of the tubular struts. Here, assume that the inner flaring portion is absent. In this case, rearward of the maximum width portions of the tubular struts, the cross-sectional area of the exhaust passage suddenly increases due to reduction in the area occupied by the tubular struts. In this respect, if the inner flaring portion is present, such sudden increase in the cross-sectional area of the exhaust passage can be eased by the presence of the inner flaring portion. This makes it possible to reduce pressure loss also near the trailing edges of the tubular struts.
Part of the external cylinder and part of the internal cylinder may be formed integrally with the tubular strut by casting. This configuration makes it possible to realize the exhaust diffuser that is suitable for middle-size and small-size gas turbine engines.
The external cylinder may include: an outer straight portion that extends rearward from a rear end of the outer flaring portion beyond the maximum width portion of the tubular strut; and a rear conical portion that expands in diameter from a rear end of the outer straight portion. The internal cylinder may include a rear straight portion that extends rearward from a rear end of the inner flaring portion. According to this configuration, the external cylinder is not provided with a recess that is recessed radially outward from the exhaust passage, and the internal cylinder is not provided with a recess that is recessed radially inward from the exhaust passage. This makes it possible to reduce the number of mold segments when manufacturing part of the external cylinder and part of the internal cylinder together with the tubular strut by casting.
The above exhaust diffuser may further include at least one flattened strut that couples the internal cylinder and the external cylinder together and that overlaps with the tubular strut in an axial direction of the exhaust diffuser. According to this configuration, a thin strut can be adopted at a position where no pipes or the like are present, and thereby the cross-sectional area of the exhaust passage can be increased. This makes it possible to reduce the pressure loss compared to a case where all the struts are tubular struts.
A leading edge of the flattened strut may be positioned forward of a leading edge of the tubular strut, and a trailing edge of the flattened strut may be positioned rearward of the maximum width portion of the tubular strut. According to this configuration, the cross-sectional area of the exhaust passage is reduced by the flattened strut to a small degree and then reduced by the tubular strut to a great degree. In this way, the cross-sectional area of the exhaust passage can be changed in a gradual manner. This makes it possible to reduce the pressure loss compared to a case where the leading edge of the tubular strut coincides with the leading edge of the flattened strut.
The trailing edge of the flattened strut may be positioned forward of the trailing edge of the tubular strut. According to this configuration, streams of the exhaust gas flowing through the exhaust passage merge together near the trailing edge of the flattened strut and then further merge together near the trailing edge of the tubular strut. This makes it possible to stabilize the flow.
An exhaust diffuser according to another aspect of the present invention includes: an internal cylinder; an external cylinder that forms an exhaust passage between the internal cylinder and the external cylinder, the exhaust passage expanding from front to rear; at least one tubular strut that couples the internal cylinder and the external cylinder together; and at least one flattened strut that couples the internal cylinder and the external cylinder together and that overlaps with the tubular strut in an axial direction of the exhaust diffuser. A leading edge of the flattened strut is positioned forward of a leading edge of the tubular strut, and a trailing edge of the flattened strut is positioned rearward of a maximum width portion of the tubular strut.
According to the above configuration, the cross-sectional area of the exhaust passage is reduced by the flattened strut to a small degree and then reduced by the tubular strut to a great degree. In this way, the cross-sectional area of the exhaust passage can be changed in a gradual manner. This makes it possible to reduce the pressure loss compared to a case where the leading edge of the tubular strut coincides with the leading edge of the flattened strut.
In the exhaust diffuser according to the above other aspect, the trailing edge of the flattened strut may be positioned forward of a trailing edge of the tubular strut. According to this configuration, streams of the exhaust gas flowing through the exhaust passage merge together near the trailing edge of the flattened strut and then further merge together near the trailing edge of the tubular strut. This makes it possible to stabilize the flow.
In the exhaust diffuser according to the above other aspect, part of the external cylinder and part of the internal cylinder may be formed integrally with the tubular strut by casting. This configuration makes it possible to realize the exhaust diffuser that is suitable for middle-size and small-size gas turbine engines.
According to the present invention, the exhaust diffuser including a tubular strut is capable of reducing the pressure loss caused by the tubular strut.
The gas turbine engine 1 includes a compressor 11, a combustion chamber 12, and a turbine 13. The exhaust diffuser 2 is disposed downstream of the turbine 13. The gas turbine engine 1 includes a rotor 14, which penetrates the compressor 11 and the turbine 13. A power generator 15 is connected to the front end of the rotor 14.
As shown in
The tubular struts 5 and the flattened struts 6 are arranged in the circumferential direction of the exhaust diffuser 2. Each of the flattened struts 6 is parallel to the radial direction of the exhaust diffuser 2. However, as an alternative, each flattened strut 6 may be inclined relative to the radial direction of the exhaust diffuser 2. In the present embodiment, one of the two tubular struts 5 is disposed on the upper side of the internal cylinder 3; the other tubular strut 5 is disposed on the lower side of the internal cylinder 3; and two flattened struts 6 are disposed on each of the right side and the left side of the internal cylinder 3.
The exhaust diffuser 2 of the present embodiment is suitable for middle-size and small-size gas turbine engines. For this reason, part of the external cylinder 4 and part of the internal cylinder 3 are formed integrally with the tubular struts 5 and the flattened struts 6 by casting.
To be more specific, the external cylinder 4 is divided into a front piece 4A and a rear piece 4B, and the internal cylinder 3 is divided into a front piece 3A and a rear piece 3B. The front piece 4A of the external cylinder 4 and the front piece 3A of the internal cylinder 3 are formed integrally with the tubular struts 5 and the flattened struts 6 by casting. Each of the rear piece 4B of the external cylinder 4 and the rear piece 3B of the internal cylinder 3 is manufactured by, for example, sheet metal working.
In the present embodiment, the flattened struts 6 protrude forward of the tubular struts 5. In other words, the flattened struts 6 partly overlap the tubular struts 5 in the axial direction of the exhaust diffuser 2.
To be more specific, as shown in
Leading edges 61 of the flattened struts 6 are positioned forward of leading edges 51 of the tubular struts 5 by a distance A. Trailing edges 62 of the flattened struts 6 are positioned forward of trailing edges 52 of the tubular struts 5 by a distance B. It should be noted that the trailing edges 62 of the flattened struts 6 are positioned rearward of the maximum width portions 55 of the tubular struts 5. The term “leading edge” herein means a linear edge of a portion of each of the tubular struts 5 and the flattened struts 6, the portion having a constant sectional shape, and the term “trailing edge” herein also means a linear edge of a portion of each of the tubular struts 5 and the flattened struts 6, the portion having a constant sectional shape.
Returning to
The front conical portion 41 is positioned forward of the tubular struts 5 and the flattened struts 6. The front conical portion 41 expands in diameter rearward at a relatively gentle inclination angle.
The outer flaring portion 42 starts flaring at a position forward of the tubular struts 5 and the flattened struts 6 at an inclination angle that is greater than the inclination angle of the front conical portion 41. In the present embodiment, the rear end of the outer flaring portion 42 is positioned rearward of the leading edges 51 of the tubular struts 5. However, as an alternative, the position of the rear end of the outer flaring portion 42 may be the same as the positions of the leading edges 51 of the tubular struts 5, or the rear end of the outer flaring portion 42 may be positioned forward of the leading edges 51 of the tubular struts 5.
For example, the outer flaring portion 42 expands the diameter of the external cylinder 4, such that reduction in the cross-sectional area of the exhaust passage 21 due to the tubular struts 5 near the leading edges 51 of the tubular struts 5 (and also, in some cases, reduction in the cross-sectional area of the exhaust passage 21 due to the flattened struts 6 near the leading edges 61 of the flattened struts 6) is offset (but not necessarily reduced to zero).
The outer straight portion 43 extends rearward from the rear end of the outer flaring portion 42 beyond the maximum width portions 55 of the tubular struts 5. In the present embodiment, the rear end of the outer straight portion 43 is positioned rearward of the trailing edges 52 of the tubular struts 5. However, as an alternative, the position of the rear end of the outer straight portion 43 may the same as the positions of the trailing edges 52 of the tubular struts 5, or the rear end of the outer straight portion 43 may be positioned forward of the trailing edges 52 of the tubular struts 5.
The rear conical portion 44 expands in diameter rearward from the rear end of the outer straight portion 43. The inclination angle of the rear conical portion 44 may be the same as or different from the inclination angle of the front conical portion 41.
Meanwhile, the internal cylinder 3 includes a front straight portion 31, an inner flaring portion 32, and a rear straight portion 33, which are arranged in this order from the front side of the internal cylinder 3. These portions 31 to 33 form a continuous outward wall surface. That is, the front end of the front straight portion 31 is the front end of the internal cylinder 3, and the rear end of the rear straight portion 33 is the rear end of the internal cylinder 3. Among these portions 31 to 33, adjoining rear and front ends of the adjoining portions are connected to each other. The front straight portion 31 and the inner flaring portion 32 are components of the front piece 3A, and the rear straight portion 33 is a component of the rear piece 3B.
The front straight portion 31 extends rearward from the front end of the internal cylinder 3 beyond the maximum width portions 55 of the tubular struts 5. Accordingly, the front straight portion 31 faces the entirety of the front conical portion 41 and the outer flaring portion 42 of the external cylinder 4, and also faces part of the outer straight portion 43.
The inner flaring portion 32 starts flaring at a position between the maximum width portions 55 and the trailing edges 52 of the tubular struts 5. The rear end of the inner flaring portion 32 is positioned rearward of the trailing edges 52 of the tubular struts 5.
For example, the inner flaring portion 32 expands the diameter of the internal cylinder 3, such that increase in the cross-sectional area of the exhaust passage 21 due to the tubular struts 5 near the trailing edges 52 of the tubular struts 5 (and also, in some cases, increase in the cross-sectional area of the exhaust passage 21 due to the flattened struts 6 near the trailing edges 62 of the flattened struts 6) is offset (but not necessarily reduced to zero).
The rear straight portion 33 extends rearward from the rear end of the inner flaring portion 32, and faces the rear conical portion 44 of the external cylinder 4.
As described above, in the exhaust diffuser 2 of the present embodiment, since the exhaust passage 21 is expanded by the outer flaring portion 42 at a position forward of the tubular struts 5, the exhaust gas flowing through the exhaust passage 21 flows into between the tubular struts 5 after the velocity of the exhaust gas is sufficiently reduced. This makes it possible to reduce pressure loss near the leading edges 51 of the tubular struts 5. Here, assume that the inner flaring portion 32 is absent. In this case, rearward of the maximum width portions 55 of the tubular struts 5, the cross-sectional area of the exhaust passage 21 suddenly increases due to reduction in the area occupied by the tubular struts 5. In this respect, if the inner flaring portion 32 is present, such sudden increase in the cross-sectional area of the exhaust passage 21 can be eased by the presence of the inner flaring portion 32. This makes it possible to reduce pressure loss also near the trailing edges 52 of the tubular struts 5.
Moreover, in the present embodiment, since the leading edges 61 of the flattened struts 6 are positioned forward of the leading edges 51 of the tubular struts 5, the cross-sectional area of the exhaust passage 21 is reduced by the flattened struts 6 to a small degree and then reduced by the tubular struts 5 to a great degree. In this way, the cross-sectional area of the exhaust passage 21 can be changed in a gradual manner. This makes it possible to reduce the pressure loss compared to a case where the leading edges 51 of the tubular struts 5 coincide with the leading edges 61 of the flattened struts 6.
Furthermore, since the trailing edges 62 of the flattened struts 6 are positioned forward of the trailing edges 52 of the tubular struts 5, streams of the exhaust gas flowing through the exhaust passage 21 merge together near the trailing edges 62 of the flattened struts 6 and then further merge together near the trailing edges 52 of the tubular struts 5. This makes it possible to stabilize the flow.
Further, in the present embodiment, the external cylinder 4 is not provided with a recess that is recessed radially outward from the exhaust passage 21, and the internal cylinder 3 is not provided with a recess that is recessed radially inward from the exhaust passage. This makes it possible to reduce the number of mold (e.g., wooden mold) segments when manufacturing the front piece 4A of the external cylinder 4 and the front piece 3A of the internal cylinder 3 together with the tubular struts 5 and the flattened struts 6 by casting.
(Variations)
The present invention is not limited to the above-described embodiment. Various modifications can be made without departing from the spirit of the present invention.
For example, it is not essential that the exhaust diffuser 2 be incorporated in the gas turbine engine 1. For example, the exhaust diffuser 2 may be disposed downstream of a steam turbine.
It is also not essential that the flattened struts 6 partly overlap with the tubular struts 5 in the axial direction of the exhaust diffuser 2. Alternatively, the flattened struts 6 may fully overlap with the tubular struts 5.
The flattened struts 6 are not essential components, and only the plurality of tubular struts 5 may be provided. However, if at least one tubular strut 5 and at least one flattened strut 6 are provided as in the above-described embodiment, a thin strut can be adopted at a position where no pipes or the like are present, and thereby the cross-sectional area of the exhaust passage 21 can be increased. This makes it possible to reduce the pressure loss compared to a case where all the struts are tubular struts 5.
The front end of the outer flaring portion 42 may be positioned rearward of the leading edges 61 of the flattened struts 6. However, if the front end of the outer flaring portion 42 is positioned forward of the leading edges 61 of the flattened struts 6 as in the above-described embodiment, the velocity of the exhaust gas flowing into between the flattened struts 6 can be reduced.
It is not essential that the trailing edges 62 of the flattened struts 6 be positioned forward of the trailing edges 52 of the tubular struts 5, and the positions of the trailing edges 62 of the flattened struts 6 may coincide with the positions of the trailing edges 52 of the tubular struts 5, or the trailing edges 62 of the flattened struts 6 may be positioned rearward of the trailing edges 52 of the tubular struts 5.
Although not illustrated, a middle conical portion having the same inclination angle as that of the rear conical portion 44 may be provided instead of the outer straight portion 43 of the external cylinder 4. In addition, a conical portion whose diameter starts decreasing from the rear end of the inner flaring portion 32 may be adopted instead of the rear straight portion 33 of the internal cylinder 3, and at the same time, a straight portion may be adopted instead of the rear conical portion 44 of the external cylinder 4.
Each of the front piece 4A of the external cylinder 4 and the front piece 3A of the internal cylinder 3 may be manufactured by sheet metal working. Each of the external cylinder 4 and the internal cylinder 3 may be a single member.
Focusing attention on the positional relationship between the tubular struts 5 and the flattened struts 6 in the above-described embodiment, the external cylinder 4 need not include the outer flaring portion 42, and also, the internal cylinder 3 need not include the inner flaring portion 32. Specifically, since the leading edges 61 of the flattened struts 6 are positioned forward of the leading edges 51 of the tubular struts 5 in the above-described embodiment, the cross-sectional area of the exhaust passage 21 is reduced by the flattened struts 6 to a small degree and then reduced by the tubular struts 5 to a great degree. In this way, the cross-sectional area of the exhaust passage 21 can be changed in a gradual manner. This makes it possible to reduce the pressure loss compared to a case where the leading edges 51 of the tubular struts 5 coincide with the leading edges 61 of the flattened struts 6. Thus, when focusing attention on the positional relationship between the tubular struts 5 and the flattened struts 6 in the above-described embodiment, the internal cylinder 3 and the external cylinder 4 may have any shape, so long as the exhaust passage 21 formed therebetween expands from front to rear.
Even when focusing attention on the positional relationship between the tubular struts 5 and the flattened struts 6 in the above-described embodiment, it is not essential that the trailing edges 62 of the flattened struts 6 be positioned forward of the trailing edges 52 of the tubular struts 5, and the positions of the trailing edges 62 of the flattened struts 6 may coincide with the positions of the trailing edges 52 of the tubular struts 5, or the trailing edges 62 of the flattened struts 6 may be positioned rearward of the trailing edges 52 of the tubular struts 5. The entirety of each of the external cylinder 4 and the internal cylinder 3 may be manufactured by sheet metal working, and also, each of the external cylinder 4 and the internal cylinder 3 may be a single member.
Number | Date | Country | Kind |
---|---|---|---|
2015-170156 | Aug 2015 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2016/003958 | 8/30/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/038086 | 3/9/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2110679 | Robinson | Mar 1938 | A |
2622790 | McLeod | Dec 1952 | A |
3024969 | Russell | Mar 1962 | A |
3075744 | Peterson | Jan 1963 | A |
3286461 | Johnson | Nov 1966 | A |
3800864 | Hauser | Apr 1974 | A |
3965066 | Sterman | Jun 1976 | A |
4292008 | Grosjean | Sep 1981 | A |
4375891 | Pask | Mar 1983 | A |
4464094 | Gerken | Aug 1984 | A |
4642024 | Weidner | Feb 1987 | A |
4821522 | Matthews | Apr 1989 | A |
5197856 | Koertge | Mar 1993 | A |
5332360 | Correia | Jul 1994 | A |
5398496 | Taylor | Mar 1995 | A |
5470198 | Harrogate | Nov 1995 | A |
6164903 | Kouris | Dec 2000 | A |
6368055 | Matsuda | Apr 2002 | B1 |
6431824 | Schotsch | Aug 2002 | B2 |
6439841 | Bosel | Aug 2002 | B1 |
6854738 | Matsuda | Feb 2005 | B2 |
6860716 | Czachor | Mar 2005 | B2 |
6884030 | Darkins, Jr. | Apr 2005 | B2 |
6988369 | Conete | Jan 2006 | B2 |
7004720 | Synnott | Feb 2006 | B2 |
7114339 | Alvanos | Oct 2006 | B2 |
7114917 | Legg | Oct 2006 | B2 |
7360988 | Lee | Apr 2008 | B2 |
7452182 | Vance | Nov 2008 | B2 |
7452184 | Durocher | Nov 2008 | B2 |
7527469 | Zborovsky | May 2009 | B2 |
7553126 | Charier | Jun 2009 | B2 |
7726131 | Sze | Jun 2010 | B2 |
7836702 | Grivas | Nov 2010 | B2 |
7976274 | Lee | Jul 2011 | B2 |
8177488 | Manteiga | May 2012 | B2 |
8388307 | Smoke | Mar 2013 | B2 |
8783044 | Steiger | Jul 2014 | B2 |
8950192 | Tschuor | Feb 2015 | B2 |
9097141 | Paradis | Aug 2015 | B2 |
9115593 | Suciu | Aug 2015 | B2 |
9200536 | McCaffrey | Dec 2015 | B2 |
9311445 | Nanda | Apr 2016 | B2 |
9732674 | Sakamoto | Aug 2017 | B2 |
9752447 | Clum | Sep 2017 | B2 |
9777595 | Sheridan | Oct 2017 | B2 |
9828914 | Suciu | Nov 2017 | B2 |
10060291 | Kumar | Aug 2018 | B2 |
10087847 | Szymanski | Oct 2018 | B2 |
20050254942 | Morrison | Nov 2005 | A1 |
20060010852 | Gekht | Jan 2006 | A1 |
20070140845 | Marke | Jun 2007 | A1 |
20080199661 | Keller | Aug 2008 | A1 |
20080307795 | Bader | Dec 2008 | A1 |
20100132371 | Durocher | Jun 2010 | A1 |
20100132372 | Durocher | Jun 2010 | A1 |
20100132374 | Manteiga | Jun 2010 | A1 |
20100132376 | Durocher | Jun 2010 | A1 |
20100135770 | Durocher | Jun 2010 | A1 |
20100275572 | Durocher | Nov 2010 | A1 |
20100275614 | Fontaine | Nov 2010 | A1 |
20110005234 | Hashimoto | Jan 2011 | A1 |
20110081237 | Durocher | Apr 2011 | A1 |
20110252808 | McKenney | Oct 2011 | A1 |
20120297791 | Suciu | Nov 2012 | A1 |
20130111906 | Bouchard | May 2013 | A1 |
20130259670 | Sakamoto | Oct 2013 | A1 |
20140013771 | Farah | Jan 2014 | A1 |
20140142898 | Nanda | May 2014 | A1 |
20140248152 | Chuong | Sep 2014 | A1 |
20150007580 | Bellabal | Jan 2015 | A1 |
20150143815 | Salunkhe | May 2015 | A1 |
20150143816 | Salunkhe | May 2015 | A1 |
20150308343 | Scott | Oct 2015 | A1 |
20150315925 | Budnick | Nov 2015 | A1 |
20160230576 | Freeman | Aug 2016 | A1 |
20160281721 | Army, Jr. | Sep 2016 | A1 |
20160290147 | Weaver | Oct 2016 | A1 |
Number | Date | Country |
---|---|---|
103261631 | Aug 2013 | CN |
2584152 | Apr 2013 | EP |
2746535 | Jun 2014 | EP |
2831383 | Sep 2017 | EP |
2014-077441 | May 2014 | JP |
2014-122622 | Jul 2014 | JP |
Entry |
---|
International Search Report for PCT/JP2016/003958 dated Oct. 11, 2016 [PCT/ISA/210]. |
Number | Date | Country | |
---|---|---|---|
20180328230 A1 | Nov 2018 | US |