The present invention relates to exhaust systems and more particularly to exhaust systems designed to exhaust air from commercial kitchen appliances, such as kitchen hoods.
Commercial kitchens are typically equipped with an exhaust system for exhausting air from appliances, such as kitchen hoods and dishwashers. In the case of a kitchen hood, for example, the air exhausted therefrom is typically laden with grease and is of a relatively high temperature, sometimes approaching 300° F. Typically, exhaust systems include a fan driven by a motor. These typically lie in the exhaust air stream being directed from the kitchen appliances to a point outside of the building containing the kitchen. Here the motor is asked to perform in a hot environment. This hot environment impacts the performance and life of the motor which in turn results in the motor requiring replacement too often and also contributes to increased maintenance cost.
Hence, there is a need for a commercial kitchen exhaust system designed to minimize heat buildup in and around the motor. Further, there is a need to incorporate into the exhaust system features that positively cool the motor when the exhaust system is operating.
The present invention relates to an exhaust fan for exhausting air from an appliance in a commercial kitchen. The exhaust fan includes a motor for driving a fan. A motor compartment at least partially encloses the motor. To cool the motor when the exhaust system is operating, cooling air is induced into and through the motor compartment and in the process the cooling air cools the motor. Cooling air in the motor compartment is directed into what is termed a cooling air snorkel that extends from the motor compartment and around the fan to where the snorkel includes a terminal end that discharges the cooling air adjacent the low pressure side of the fan. Hence, the cooling air discharged by the snorkel is mixed with exhaust air to form an air mixture and the air mixture is exhausted through a housing containing the motor, motor compartment and fan.
The present invention in one embodiment also comprises a method or process for cooling the motor of an exhaust fan incorporated into a commercial kitchen. The exhaust fan includes a motor for driving a fan and there is provided a motor compartment that at least partially encases the motor. The method or process for cooling the motor includes inducing cooling air into cooling air inlets formed in the side walls of a housing that contains the motor and fan. From the cooling air inlets, the method or process entails directing the cooling air through one or more conduits or tubes into the motor compartment where the cooling air passes in and around the motor and in the process cools the same. Thereafter, at least some of the cooling air in the motor compartment is directed through the snorkel that extends from the motor compartment and around the fan. The snorkel includes a terminal end that is located on the low pressure side of the fan. Cooling air discharged from this terminal end is mixed with the exhaust air to form an air mixture that is exhausted through the housing containing the fan, motor and motor compartment.
The open terminal end of the cooling air snorkel is located in a low pressure zone adjacent the inlet end of the fan. In this method or process, it is the low pressure zone that induces cooling air to enter the housing and flow around the motor in the motor compartment and to flow out the cooling air snorkel. Effectively, the cooling air is drawn into the motor compartment due to the low pressure zone existing on the inlet side of the fan.
In some embodiments, all or substantially all of the cooling air is discharged through the snorkel. In other cases, only a part of the cooling air in the motor compartment is discharged via the snorkel. Here a portion of the cooling air in the motor compartment is exhausted through a front motor plate disposed between the motor and the fan. This cooling air is also mixed with the exhaust air.
Other objects and advantages of the present invention will become apparent and obvious from a study of the following description and the accompanying drawings which are merely illustrative of such invention.
With further reference to the drawings, an exhaust fan is shown therein and indicated generally by the numeral 10. As will be discussed in more detail below, the exhaust fan 10 is provided with a cooling system for cooling an electric motor which forms a part of the exhaust fan.
Exhaust fan 10 is particularly adapted to exhaust air from a commercial kitchen indicated generally by the numeral 12. See
There are various ways the exhaust fan 10 can be incorporated into a system for exhausting air from kitchen hood 14.
Now turning to the exhaust fan 10 as seen in
A motor compartment 28 at least partially encloses or encases the motor 22. Motor compartment 28 functions to protect the motor from grease-laden exhaust air that passes through the housing 20 and at the same time, as illustrated below, facilitates the cooling of the motor 22 during operation. As explained below, the exhaust fan is designed to induce cooling air into the housing and into the motor compartment and over and around the motor 22 to cool the same.
In this regard, the housing is provided with one or more cooling air inlets 26. The function of the cooling air inlets 26 is to enable air outside of the housing 20 to enter the housing for purposes of cooling the motor 22. Each cooling air inlet 26 is operatively connected to a conduit or tube 36. See
Operatively connected to the motor compartment 28 is what is referred to as a cooling air snorkel 32. See
A low pressure zone or area 34 is formed on the inlet side of the fan 24. This low pressure zone 34 serves to induce cooling air into the motor compartment 28. That is, in this embodiment, the low pressure zone 34 is disposed at least partially within the confines of the Venturi 30 and as such the terminal end 32A of the cooling air snorkel 32 is open to this low pressure zone. Because of the presence of the low pressure zone, cooling air is induced to move into and through the cooling air inlets 26 and through the cooling air conduits 36 into the motor compartment 28 and from the motor compartment through the cooling air snorkel 32 to where the cooling air is exhausted on the low pressure side of the fan 24.
Disposed between the motor 22 and fan 24 is a plate referred to as a front motor plate. The front motor plate is also disposed between the motor compartment 28 and the fan 24. However, the motor plate includes openings that are open to the motor compartment 28. Hence, cooling air in the motor compartment 28 can flow out through the openings in the motor plate. When the fan 24 is driven, its secondary blades 24B (see
Hence, when the exhaust fan 10 is operating, exhaust air (arrows 42) from the kitchen hood 14 enters the Venturi 30. Also, cooling air discharged from the snorkel 32 enters the Venturi 30. Further, in the embodiment illustrated, cooling air induced by the secondary blades 24B and passing through the motor plate enters the housing downstream of the Venturi 30. Note arrows 40 and
In the embodiment illustrated, the exhaust fan 10 is generally horizontally oriented. One reason for this is that the exhaust fan 10 includes a grease pan 38 (
The term “configured to” has been used in the specification, including the claims. The term “configured to” is meant to mean “designed to”.
The present invention may, of course, be carried out in other specific ways than those herein set forth without departing from the scope and the essential characteristics of the invention. The present embodiments are therefore to be construed in all aspects as illustrative and not restrictive and all changes coming within the meaning and equivalency range of the appended claims are intended to be embraced therein.
Number | Name | Date | Kind |
---|---|---|---|
3117770 | Cromb | Jan 1964 | A |
10731281 | Chan | Aug 2020 | B2 |
20070202795 | Seliger et al. | Aug 2007 | A1 |
20130011239 | Khalitov et al. | Jan 2013 | A1 |
20130101402 | Rosen | Apr 2013 | A1 |
20130180220 | McAuliffe | Jul 2013 | A1 |
20180135651 | Howe | May 2018 | A1 |
20190027996 | Lang | Jan 2019 | A1 |
Number | Date | Country |
---|---|---|
3524823 | Aug 2019 | EP |
Number | Date | Country | |
---|---|---|---|
20210262673 A1 | Aug 2021 | US |