The present invention relates to an exhaust gas control apparatus.
Generally, a combustion engine creates work by burning a fuel such as for example gasoline, diesel or liquid petroleum gas within the engine. A combustion engine works by burning said fuel in a chamber defined by a cylinder and a moving piston which is linked to a crankshaft.
To increase its power output, a combustion engine can be equipped with a turbocharger. A turbocharger is an exhaust driven compressor which increases the mass of oxygen entering the engine. Conventionally, a turbocharger includes a gas compressor in the intake tract of the engine which compresses the intake air above the atmospheric pressure. The compressor is driven by a turbine which uses waste energy from the exhaust gas. To this end, the compressor and the turbine are connected to a unique shaft.
Although a turbocharger can greatly increase the engine power with only a slight increase in weight, it appears that a significant part of the exhaust gas energy is lost.
A typical combustion engine is provided with a cylinder head upon which an exhaust manifold is secured. The cylinder head is provided with one or more exhaust valves per cylinder which control the flow of gas into an exhaust port; the exhaust manifold collects the exhaust gases coming from the cylinder head exhaust ports. Referring to
An important point lays on the fact that, during the exhaust stroke, the exhaust gases generated in a cylinder pass the then-open exhaust valve or valves and enter the inlet port. At the opening of the exhaust valve or valves, the exhaust gases form a high pressure exhaust pulse. The exhaust gases travel in the entire exhaust manifold as this is shown on
It therefore appears that there is room for improvement in the field of turbocharged combustion engines.
It is desirable to improve the overall efficiency of a turbo charged combustion engine.
The invention relates, according to an aspect thereof, to) an exhaust gas control apparatus for an internal combustion engine having at least two cylinders, a turbine, and an exhaust manifold collecting a flow of exhaust gases formed in each cylinder towards the turbine; the exhaust manifold has an inlet port connected to each cylinder and an output port upon which the turbine is secured. The exhaust gas control apparatus comprises at least one sealing means positioned between two adjacent inlet ports, each sealing means being articulated relative to the exhaust manifold and being capable of sealing one of the two adjacent inlet ports to reduce the internal volume of the exhaust manifold available for the flow of exhaust gas.
The aspect of the invention, therefore, provides an apparatus which makes it possible to control and modify the internal geometry of an exhaust manifold so as to optimize the flow of the exhaust gases generated by the engine towards a turbine. In other words, by providing sealing means which seal at least one of the inlet ports not in use, that is to say, one of the inlet ports connected to a cylinder not in an exhaust cycle, the invention makes it possible to channel the exhaust gases towards the output port and, therefore, towards the turbine. In effect, the apparatus of the invention reduces the internal volume of the exhaust manifold according to the engine cycle. By doing so, most of the kinetic energy of the exhaust gases is channelled towards the turbine; this is in contrast with a traditional exhaust manifold whereby a part of the kinetic and thermal energy of the exhaust gases is dissipated within the internal volume of all the inlet ports of the exhaust manifold.
The overall effect of the apparatus is an improvement of the global output of the engine as more energy is received by the turbine compared to an engine having a traditional exhaust manifold.
Preferably, each sealing means is pivotally connected to the exhaust manifold.
Advantageously, the sealing means are connected to the exhaust manifold by connection means which are positioned towards the direction of the exhaust gas. This allows the sealing means to be moved by the exhaust gas. Accordingly, the apparatus does not require any external control; instead the flow of exhaust gas regulates the internal volume of the exhaust manifold.
In an embodiment of the invention, the apparatus includes at least one sealing device pivotally articulated relative to the exhaust manifold and being capable of sealing one of the two adjacent inlet ports.
In this embodiment, the sealing device can include two flappers pivotally connected to each other and an elastic element interposed between said two flappers. The elastic element urges each flapper in a closing position. In operation, one of the flappers is pushed by the outgoing flow of the exhaust gases while the other flapper is maintained in a closing position. In this embodiment, the apparatus is completely self regulated and does not require any external control.
It can be envisaged that the apparatus can include a sealing device positioned between two adjacent inlet ports.
It can also be envisaged that the apparatus includes a sealing device positioned between two adjacent inlet ports except between the two adjacent inlet ports opposite the output port as in effect each of the two sealing device which are adjacent to the output port can seal half the internal volume of the exhaust manifold.
In a further embodiment, the apparatus includes at least one valve pivotally articulated relative to the exhaust manifold and being capable of sealing one of the two adjacent inlet ports. In this embodiment, a pivotal valve provides simple, reliable and effective sealing means which channel the exhaust gas.
It can be envisaged that a valve is positioned between two adjacent inlet ports.
Preferably, the central valve which is opposite the exhaust manifold output port is capable of sealing half the internal volume of the exhaust manifold.
Advantageously, the central valve can seat on each side of the inlet port to alternatively seal half the internal volume of the exhaust manifold.
These and other advantages will become apparent upon reading the following description in view of the drawing attached hereto representing, as a non-limiting example, various embodiments of an apparatus according to the invention.
The following detailed description of embodiments of the invention is better understood when read in conjunction with the appended drawing being understood, however, that the invention is not limited to the specific embodiments disclosed. In the drawing,
The exhaust gases control apparatus of the present invention is shown in
The inlet ports 11, 12, 13, 14 merge into an output port 20 upon which a turbine 21 of a turbocharger is fixed. Although not illustrated, the turbine 21 is mechanically linked to a compressor in a known per se manner.
As depicted in
Illustrated on
The flow of exhaust gas coming from the inlet port 12 pushes the two valves 31 and 32 which are adjacent to the inlet port 12 and pushes the central valve 33 which controls the access to half the manifold internal volume.
The flow of exhaust gas coming from the inlet port 12 is again channelled towards the output port 20 without any loss.
Similarly when exhausted gases are discharged from cylinder 3, 4, 5 or 6, the exhaust gases are channelled by the two adjacent valves 32, 34, 35 and the central valve 33 when the exhaust gases are discharged from cylinder 3, 4 or 5 or the exhaust gases are channelled only by the valve 35 and the central valve 33. In the latter case, the inlet port 16 which is at the extremity of the exhaust manifold is equipped with a single valve as a single valve can seal this inlet port.
Each sealing device includes two flappers and an elastic element such as a spring. The two flappers are pivotally fixed onto the exhaust manifold between two adjacent inlet ports with, however, the exception of the two adjacent central ports which are not fitted with a sealing device.
The elastic element is interposed between the two flappers and, therefore, maintains the flappers away from each other.
When idle, the sealing device seals the access of the two inlet ports adjacent to the sealing device. The sealing state of the two inlet ports is achieved by the elastic element which biases the flappers in a position where each flapper seals an inlet port. In the illustrated example of
The flow of exhaust gases pushes the flapper 51 which can pivot towards the flapper 52 and also pushes the flapper 53 towards the flapper 54. The flow of exhaust gases cannot access the inlet ports 14, 15 or 16 as the sealing device 43 prevents the passage of exhaust gas to the part of the manifold which includes the inlet ports 14, 15 and 16. In effect, the flow of exhaust gas is channelled towards the output port 20. At the end of the exhaust stroke of the cylinder 1, the flapper 51 of the sealing device 41 and the flapper 42 of the sealing device 42 are no longer subject to any pressure; at that point the elastic element of each sealing device can push the flappers 51 and 53 into their respective sealing positions.
First of all, the pulse of exhaust gas pushes the flapper 57 of the sealing device 44. The flow of exhaust gas is directed towards the output port 21 and the inlet ports 14, 13, 12 and 11; the access to the inlet port 16 is prevented by the sealing device 58.
Then, the flow of exhaust gas pushes the flapper 56 of the sealing device 43 thereby orienting the flow of gas towards the output port 21 and the output ports 13, 12 and 11; the access to the inlet port 14 is prevented by the sealing device 43.
The flow of exhaust gas is then channelled to the output port 21 as the sealing device 42 seals the access to the part of the exhaust manifold which includes the output ports 11, 12, 13.
At the end of the exhaust stroke of the cylinder 5, the flapper 57 of the sealing device 44 and the flapper 56 of the sealing device 43 are no longer subject to any pressure; at that point the elastic elements of each sealing device can push the flappers 57 and 56 into their respective sealing positions.
The pulse of exhaust gas pushes the flapper 54 of the sealing device 42. The flow of exhaust gas is directed towards the output port 21 and the inlet ports 14, 15 and 16; the access to the inlet ports 12 and 11 is prevented by the sealing device 42.
The flow of exhaust gas is then channelled to the output port 21 as the sealing device 43 seals the access to the part of the exhaust manifold which includes the output ports 14, 15 and 16.
At the end of the exhaust stroke of the cylinder 5, the flapper 54 of the sealing device 42 is no longer subject to any pressure; at that point the elastic elements of the sealing device 42 can push the flapper 54 into its sealing position.
In the embodiment depicted on
In the apparatus depicted on the drawing, the sealing means, which orient the exhaust gas towards the output port, are controlled by the flow of exhaust gases. Accordingly, the apparatus does not require any controlling and driving equipment. In that sense the apparatus is mechanically simple and reliable. However, it can be envisaged to provide each valve or each sealing device with a controlling arrangement such as a micro motor.
The invention is not restricted to the embodiments described above by way of non-limiting examples, but on the contrary it encompasses all embodiments thereof. The apparatus can be implemented onto two, three, four, five, six cylinder engines.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2005/003999 | 11/8/2005 | WO | 00 | 11/9/2008 |