This application claims the benefit of priority under 35 U.S.C. ยง119 of German Patent Application DE 10 2015 102 611.2 filed Feb. 24, 2015, the entire contents of which are incorporated herein by reference.
The present invention pertains to an exhaust gas duct system for an internal combustion engine, which may be provided, for example, in a passenger car, a truck or a motorcycle.
One or more probes, which protrude into the exhaust gas flow volume of the exhaust gas duct system for interaction with the exhaust gases, are frequently provided in exhaust gas duct systems removing combustion waste gases from an internal combustion engine for detecting the composition of the combustion waste gases, for example, in an upstream area of said exhaust gas duct systems. The exhaust gas duct system is, in general, open towards the outside in its downstream end area, so that it is possible, in principle, that liquid, e.g., water, will enter this downstream end area of the exhaust gas duct system. If the water reaches the area of the probes, the latter may be damaged. Since the output signals of such probes, which signals represent the exhaust gas composition, are also used to actuate, for example, an internal combustion engine in order to make it possible to reach the lowest possible pollutant emission, a loss of function or malfunction in the area of the probes may lead to a corresponding impairment in the operation of an internal combustion engine or other system areas of a vehicle.
An object of the present invention is to provide an exhaust gas duct system for an internal combustion engine, especially of a vehicle, which system prevents the entry of liquid while having a simple and compact design.
This object is accomplished according to the present invention by an exhaust gas duct system for an internal combustion engine, comprising an upstream, first exhaust gas pipe area (first exhaust gas pipe portion), a downstream, second exhaust gas pipe area second exhaust gas pipe portion) adjoining the first exhaust gas pipe area in an exhaust gas flow direction, and a liquid drain channel area in the transition area, which said liquid drain channel area is open from an exhaust gas flow volume in the first exhaust gas pipe area or/and in the second exhaust gas pipe area.
It is ensured in the exhaust gas duct system designed according to the present invention that in the area in which two exhaust gas pipe areas adjoin each other, liquid entering from the downstream end area of the exhaust gas duct system is drained off from the exhaust gas flow volume via the liquid drain channel and is taken up in a liquid collection volume. The provision of the liquid drain channel area where two exhaust gas pipe areas adjoin each other can be embodied in a simple manner with a compact mode of construction and it eliminates the need for milling special channel arrangements in individual components of an exhaust gas duct system.
Provisions may be made, for example, for the liquid drain channel area to comprise an intermediate space formed between the first exhaust gas pipe area and the second exhaust gas pipe area. Such an intermediate space may be prepared in a simple manner, for example, by means of a jump in the transverse dimension of the exhaust gas pipe areas adjoining each other and it does not require any additional constructive measures.
To make it possible to connect the two exhaust gas pipe areas to one another, on the one hand, and to also make it possible to produce the intermediate space for the outlet of the liquid, on the other hand, it is proposed that a downstream end area of the first exhaust gas pipe area mesh with an upstream end area of the second exhaust gas pipe area in the transition area and that the intermediate space between an outer surface of the first exhaust gas pipe area and an inner surface of the second exhaust gas pipe area be formed at least in a circumferential area.
The jump in the transverse dimension in the transition area between the two exhaust gas pipe areas for generating the intermediate space for the liquid rain channel area can be achieved in a simple manner by the second exhaust gas pipe area being expanded in the upstream direction towards the upstream end area thereof in at least one direction at right angles to the exhaust gas flow direction. This expansion can be provided, for example, in relation to a circular basic cross-sectional geometry by the second exhaust gas pipe area having a flattened circular circumferential contour, preferably an oval or elliptical contour, in its upstream end area.
To provide the liquid collection volume in the exhaust gas duct system designed according to the present invention in association with the transition area, it is proposed that the transition area be arranged in a housing providing the liquid collection volume.
To provide a stable assembly unit, provisions are made for the housing to have an inlet opening, the first exhaust gas pipe area being led through the inlet opening into the interior of the housing, or/and an outlet opening, the second exhaust gas pipe area being led out of the interior of the housing through the outlet opening. Provisions may be made now, in particular, for the first exhaust gas pipe area to comprise a first pipe section, which extends in the interior of the housing, provides the downstream end area of the first exhaust gas pipe area and is permanently connected to the housing in the area of the inlet opening, or/and for the second exhaust gas pipe area to comprise a second pipe section, which extends in the interior of the housing, provides the upstream end area of the second exhaust gas pipe area and is permanently connected to the housing in the area of the outlet opening.
The housing may be designed with the first pipe section and with the second pipe section as an assembly unit in the manner of an exhaust muffler or rear muffler. To bring about the feeding and removal of exhaust gases to and from this assembly unit in a simple manner, it is proposed that the first exhaust gas pipe area comprise a third pipe section connected permanently to the first pipe section preferably in the area of the inlet opening, or/and that the second exhaust gas pipe area comprise a fourth pipe section connected permanently to the second pipe section preferably in the area of the outlet opening.
To provide with the housing not only the functionality of a liquid collection volume, but to also make it possible to use this especially for muffling, it is proposed that at least one plate-like (plate shaped) sound absorption element be arranged in the interior of the housing.
The arrangement may be such that at least one sound absorption element surrounds the upstream end area of the second exhaust gas pipe area or/and is permanently connected to the upstream end area of the second exhaust gas pipe area or/and is permanently connected to the housing in its outer circumferential area or/and comprises a first sound absorption opening arrangement. In particular, the at least one sound absorption element may divide the interior space of the housing into two areas, which are in connection with one another via the first sound absorption opening arrangement, so that a large inner volume area of the housing is nevertheless available as a liquid collection volume.
The sound absorption functionality can be further improved in the exhaust gas duct system according to the present invention by the second exhaust gas pipe area having in its area extending in the interior of the housing a second sound absorption opening arrangement downstream of the transition area.
To make the design as simple as possible in the area of the housing as well, but to create the possibility of leading the two exhaust gas pipe areas into this housing or to couple two exhaust pipe areas to this housing, it is proposed that the housing comprise a first housing shell providing at least one part and preferably the entire inlet opening and at least one part of the outlet opening and a part of the inlet opening not provided by the first housing shell, and a part of the outlet opening, which part is not provided by the first housing shell and is permanently connected to the first housing shell.
The present invention will be described below in detail with reference to the attached figures. The present invention is described in detail below with reference to the attached figures. The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and specific objects attained by its uses, reference is made to the accompanying drawings and descriptive matter in which preferred embodiments of the invention are illustrated.
In the drawings:
Referring to the drawings,
Technical measures, by which it is ensured that liquid, e.g., water, which enters the exhaust gas duct system 10 in the area of the downstream end area 18, is prevented from reaching the upstream end area 12 and especially the probes 14, 16 positioned there, will be described below with reference to
The exhaust gas duct system 10 comprises an upstream, first exhaust gas pipe area 30, which leads into the interior 32 of the housing 26. Further, the exhaust gas duct system 10 comprises a downstream, second exhaust gas pipe area 34, which leads out of the interior 32 of the housing 26 and is provided with a single tail pipe 22 in the example shown in
It can be clearly seen in
The first exhaust gas pipe area 30 comprises a first pipe section 42 extending essentially in the interior 32 of the housing 26 and providing the downstream end area 36. The second exhaust gas pipe area 34 comprises a second pipe section 44, which likewise extends essentially in the interior 32 of the housing 26 and which provides the upstream end area 40. In its end located at a distance from the downstream end area 36, the first pipe section 42 is inserted into an inlet opening 46 formed in the housing shell 28 and is permanently connected in this area in a fluid-tight manner, for example, to an essentially cylindrical section 48 of the housing shell 28, which said essentially cylindrical section 48 surrounds the inlet opening 46, for example, by welding. A third pipe section 50, which can be considered to be part of the first exhaust gas pipe area 30, may be inserted, for example, in the area of the inlet opening 46, into the end of the first pipe section 42, which said end of the first pipe section 42 is positioned there, and may be connected thereto permanently and in a fluid-tight manner, for example, by welding.
In the areas of an outlet opening 52 formed in the housing 26, the second pipe section 44 is permanently connected to the housing, for example, by welding, in its end located facing away from the upstream end area 40.
The first pipe section 42 and the second pipe section 44 are dimensioned or shaped in their end areas 36, 40 in the area of the transition area 38 such that an intermediate space 58 is obtained, which is positioned essentially in a lower area in the installed state in a vehicle and which forms essentially a liquid drain channel 60 leading to the interior 32 of the housing 26. This intermediate space 58 may be provided, for example, by the first pipe section 42 being provided with an essentially circular cross-sectional contour in its downstream end area 36. Starting from a central area 62, which is likewise designed, for example, with a circular, essentially cylindrical cross-sectional geometry, the second pipe section 44 may be expanded in a funnel-like manner and then flattened, so that a flattened round, for example, approximately oval or elliptical cross-sectional contour (See
The exhaust muffler 20 comprises, further, a plate-like (plate shaped) sound absorption element 68, which surrounds the upstream end area 40, for example, in the transition area 38, is permanently connected in this area to the second pipe section 44, and may be fixed with its outer circumferential area on an inner surface of the housing 26. The sound absorption element 68 divides the interior 32 of the housing 26 into two space areas 70, 72. Since a first sound absorption opening arrangement 74 comprising a plurality of holes or openings is formed in the sound absorption element 68, the two space areas 70, 72 are, in principle, nevertheless in connection with one another. A second sound absorption opening arrangement 76 is formed in the central area 62 of the second pipe section 44, so that the exhaust gas flow volume 78 formed in the area of the exhaust muffler 20 or in the area of the first exhaust gas pipe area 30 or of the second exhaust gas pipe area 34 is, in principle, open towards the interior 32 of the housing 26. The two sound absorption opening arrangements 74, 76 of the exhaust muffler 20 contribute to the sound absorption primarily by sound reflection.
By providing the intermediate space 58 providing essentially the liquid drain channel 60 in the transition area 38 between the two exhaust pipe areas 30, 34, the possibility is created for liquid, for example, water, penetrating via the tail pipe 22 or the second exhaust gas pipe area 34 to enter a liquid collection volume 80 provided especially in the area of the lower housing shell 28 before entering the first exhaust gas pipe area 30. Part of the water entering via the tail pipe 22 may also enter the liquid collection volume 80 via the second sound absorption opening arrangement 76, especially when the inflow velocity is comparatively low. Especially when water gushes in, as it may be the case, for example, when driving through pools or streams of liquid or the like, the water will, however, move essentially completely beyond the second sound absorption opening arrangement 76 and may reach the liquid collection volume 80 via the intermediate space 58. It is thus guaranteed that the exhaust gas duct system 10 or a vehicle equipped therewith will have the generally required fordability (water exposure), with which it is guaranteed that the entry of water into the exhaust gas duct system 10 especially up to the upstream area 12, where the probes 14, 16 are positioned, is also prevented for a predetermined time period with the internal combustion engine shut off. A comparatively large quantity of liquid or water can be taken up by the liquid collection volume 80 provided in the interior of the housing 26. This liquid is gradually evaporated during the combustion operation by the comparatively high temperature that the different components of the exhaust gas duct system 10 will have, and the exhaust gas flow flowing in the exhaust gas flow direction G develops a suction pump effect for evaporating liquid and draws off the liquid vapor from the liquid collection volume 80. Drainage openings that can be opened manually or in an automated manner may also be provided, if necessary, in the area of the housing 26 in order to drain larger quantities of liquid collected therein.
Due to the possibility of draining liquid entering an exhaust gas duct system through a liquid drain channel area in the transition area between two exhaust pipe areas and of storing it in a liquid collection volume, which possibility is provided according to the present invention, a simple possibility, which can nevertheless be embodied in a compact design, is created for protecting further system areas of an exhaust gas duct system from entering liquid. The design according to the present invention of an exhaust gas duct system is therefore suitable not only for larger vehicles, e.g., trucks or utility vehicles, but may also be used especially in passenger cars and in motorcycles. The design according to the present invention of the exhaust gas duct system does not compromise the exhaust gas flow and thus it does not lead to a higher back pressure and hence to a reduction of the output of a drive unit coupled with this exhaust gas duct system.
It should finally be noted that the exhaust gas duct system according to the present invention could, of course, be designed differently especially in the area of the components that provide the liquid drain channel or interact with same. Thus, additional measures contributing to sound insulation may, of course, be taken in the interior of the housing, which also provides the liquid collection volume. Such a housing providing the liquid collection volume could also be designed exclusively for this purpose and without measures taken for sound insulation or without positioning components used for sound insulation in the interior thereof. As this is also shown in
Further, the exhaust gas duct system according to the present invention could also be designed essentially only as an exhaust muffler, i.e., for example, comprise the housing with the first pipe section and with the second pipe section of the two exhaust gas pipe areas, and additional pipe sections may then be attached to said pipe sections as separate assembly units.
While specific embodiments of the invention have been shown and described in detail to illustrate the application of the principles of the invention, it will be understood that the invention may be embodied otherwise without departing from such principles.
Number | Date | Country | Kind |
---|---|---|---|
10 2015 102 611 | Feb 2015 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
20040079079 | Martin et al. | Apr 2004 | A1 |
20140054101 | Zhang et al. | Feb 2014 | A1 |
20140161677 | Latham et al. | Jun 2014 | A1 |
20140166392 | Kye et al. | Jun 2014 | A1 |
Number | Date | Country |
---|---|---|
199 12 330 | Sep 2000 | DE |
11 2009 000 763 | Mar 2011 | DE |
11 2006 000 693 | Sep 2011 | DE |
10 2012 206871 | Oct 2013 | DE |
11 2006 003 385 | Sep 2015 | DE |
1 039 105 | Sep 2000 | EP |
Entry |
---|
English translation of German Patent Application Publication No. DE 102012206871 A1 (Oct. 2013). |
Number | Date | Country | |
---|---|---|---|
20160245140 A1 | Aug 2016 | US |